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It is shown that the vacuum expectation values (VEV) of :edei(s, f) = [ dxf(x) iedo:(¢,X) are contin-
uous functions of the time for test functions which are C* and of rapid decrease, with 4 in some
neighborhood of the origin in the complex plane. The field o(x) is the pseudopotential derived from the
pseudovector current of a free two-component massive field in two-dimensional space-time. A
consequence of this result is the existence of Green’s functions in the Federbush model. An essential
technique in the proof is a theorem by Jaffe on the boundary values of limits of sequences of analytic

functions.

1. INTRODUCTION

Recent attempts to find examples of nontrivial
quantum field theories have led to the study of
various two-dimensional models,* which, even though
the fundamental existence problem remains to be
answered, have provided some clear examples of
general propositions in field theory. In particular,
Wightman has shown how to define a local field
o(f) from the bilinear currents of free two-dimen-
sional two-component fields y'9(f), +®(f), which
has the distinction of being a member of a local
equivalence class other than that of the underlying
free fields, and also playing a central role in the
solution of both the Federbush? and massive Thirring
models. For the former, a solution of the field equa-
tions is given by y(f) = [:e*: @](f),® while as yet
no such simple functional form has been found for the
latter case. The solution u(f) allows an explicit
characterization of the perturbation series after a field
strength renormalization which is sufficiently compact
to lead directly to the existence of the time-ordered
vacuum expectation values. Unfortunately for the
more interesting Thirring model it appears necessary

1 A. S. Wightman, “Introduction to Some Aspects of the Relativ-
istic Dynamics of Quantized Fields” (I.H.E.S. preprint, 1965).
2 P. Federbush, Phys. Rev. 121, 1247 (1961).
3J. L. Challifour and A. S. Wightman (unpublished). The
relation (2.1) follows from the triple-dot product formula
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This result in turn may be obtained by a series of lengthy, but
straightforward induction arguments.

to deal directly with the Gell-Mann-Low expansion
in the manner proposed by Lanford* and renormalize
by techniques such as those used by Glimm,® both for
the Yukawa model. The close relation between these
two field theories underlines the need for a complete
solution to the Federbush model in spite of its rather
simple structure.

We proceed by first showing that for any positive
integer the vacuum expectation values of :¢™: (7, X)
are tempered distributions in the space variables
with values in the Banach space B* of bounded func-
tions obeying a Lipschitz condition of order o, 0 <
« < 1, in the time variables. A result of this type was
first given by Jaffe® for the free field in two-dimensional
space-time. The extension to ie#?: (¢, x) itself, for A
in some neighborhood of the origin, is accomplished
by a slight modification of Jaffe’s limit theorem’ on
the boundary values of analytic functions. It is clear
that this limit theorem may be extended to a variety
of countably normed spaces complete with respect to
some distribution topology.

Let us recall some definitions which will be needed
in our work. The triple-dot ordering of a field is
defined by

a(x,) - - - a(x,)

= 2 lo(xy) e o(x)i(o(x,) - o(xs, Do
partitions (11)

the sum being taken over all partitions of (123 -« - n)
into disjoint subsets (iyiy* - i), (jofa* " juy) in
natural order. The triple dot of o to order » is defined
by

lim

Tr...

0" (x) = fo(xy) - rolxy)t (1.2)

and by the reconstruction theorem when this limit
exists. It is shown in Ref. 3 that :¢™: (f) exists for all
4 0. Lanford, Thesis, Princeton University, Princeton, N.J., 1966.
® J. Glimm, Commun. Math. Phys. 5, 343 (1967); 6, 61 (1967).

8 A. Jaffe, J. Math. Phys. 7, 1250 (1966).
7 A. Jaffe, J. Math. Phys. 5, 1174 (1965).
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f€8® as an operator-valued distribution satisfying
the usual requirements for a local field.® The dense
domain in @y space for ypO(f), v*O(f) is D =
P9, p*OWW, - where ¥, is the vacuum state and
o ()D< D,Vn=1,2,3,"-

A formal expression for o(f) is given by the
convolution

o(f) = 2m(& » K)(f), "(1.3)

@)y fd em'

Our notation and spinor conventions follow Ref. 1:

0 __ 0 l 1 0 —i 5 __ “—1 0
P=( o 7= o) =T 1)

1 0
Py Yt = =280, gt = (0 3 )

with
k(f) = 19 Viy*y™: (),

A(x) =

1
This allows us to write

(0(x1) =+ o(xam))i
2N
= (2m)*™¥ [Il Aglx; — )
X (k(yy) -+ k(yan))s dyy - dyay, (1.4
where ( )T indicates the truncated vacuum expecta-

tion value. In the next section it is shown that these
convolutions exist. Expanding the VEV of the
pseudocurrent leads to the formal expression

IZ_nI

2n
dpd % (2% — m?) exp [—i > %P0 ~ p,(i,-l)]

(o) -+ - (g = — (‘—’E)N )

™ T2n

(e — P1)2]£
1.5

in which 6(£p%,)) if i $ 77 [=(i) 4- 1]. The summation
in (1.5) is over the (2n — 1)! cycles of length 2n in the
symmetric group of order 2n with (1) = 1, #(l) —
1 = 2n.

The expressions which are of interest to us are
functions of the time variables 7= (4,75 1,)
defined on R* by

Wpr) = (o™ (11, £) 107 (1, )
with

[(pr — P)* (P2 — Po)* - -

O'n": (ts ’ fs))()

(o™ (t, f) = f dxf(x) o™ (1, %), f€S.

We will not entertain the possibility that f need not be
so restricive. Proposition 1 shows that w?(r) is
bounded on R°, while Proposition 2 verifies that
oMr)eB(R), 0<a < L.

8 .. Schwartz, Theorie des distributions (Hermann et Cie., Paris
1957), Tome II.

® R. F. Streater and A. S. Wightman; PCT Spin and Statistics
and All That (W. A. Benjamin, Inc., New York, 1964).
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2. EXISTENCE OF w}(7)

The structure of w?(7) is apparent from the product
formula®

(o™ (x) + - 10™ (%))
=n!y 1—[ [(6"(x;) - - - a™(x . )a [k @1
o e, !

at least two k; # 0. Throughout we use Schwartz’s®
multi-index notation. (k) = (k;ks - - - k,) is a partition

of positive integers 0 < k, < o0, k! =k, kp! -+ - k!,
n!=m!ny!---n!and n,, are positive integers such
that
Z kingy = n;
=0
1<’5<8

for each 1 < j <'s. The truncated VEV inside the
bracket is nonzero only if |k| =k, + ky + -+ - + k,
is even. This is tactitly understood throughout.

For a given partition (k) let m, be any cycle of
length |k| as in (1.5) and write

Ryt ok
Piﬂ(k) = [pw(a) - pw(a)—l]'
o=ky+ - kj_1+l
Denote by I7, that subset of (123 -- - |k|) taken in
natural order for which p, appears in PI®1 < j <
s> pely, for the permutation =,,. With this
notation we find from (1.5) that, for a given partition

),

(MH(x))a™(xy) -+ o™(x,))g
m\}¥l
= _(—) S| IT dp.6 £ (2 — md
o Tk)J A€IT(ky

X Gio(p.) exp (—12 p”““xj) (2.2a)

j=1

in which
G:k)(pa)
=J‘ I dpgd + (pp — m?) .
per [(py — Pz)z(Pz —p) (P|k| - P1)2]%
(2.2b)

Hence w?(7) takes the form

w;’(‘r) _ npz H (_M

Ay k=0 Miy! (KD

x X

7”0)
1<f<‘n(k)

H H dp,d + (p2 — m®)

=1 gerf; (k)

. 8 n;  Nik)
< ol 1 8, 3|
j=1 kim0 =1
1<i<g

X {exp l:—iét,( nz'o nZiP"”"" )]} 23

1<i<s
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Here fis the Fourier transform of f. Following Jaffe®
denote || f || = sup [(1 + {x])$/(x)|, then we have

Proposition 1:
l03(M)] < Kale, 5) H1 I/l Ve >0,
=

where K, (e, s) is bounded for any finite partition

(n) = (mny~ - - ny).
It is enough to verify that integrals of the form

Uﬁﬁ’ndpaéﬂ:(p:—mz)

k=0 r=1 ael:’;,
8

<i<
- 8 ni Nk) » —€j
x G}'k)(pa)[l:! (1 +|3 3P ) ] (24)

exist for any partition (k), finite (n) and s, with any
€= (€, €, " ,€) > 0. K,(e,5) is a finite sum of
such integrals.

Changing variables to p, = m (cosh 6,, sinh 6;) —
w0 £ 0, < o and including all the additional numer-
ical factors, (2.2b) becomes

r 1 w0
H(0) = —— f 11 46,
Am)= o oy
X g1(0; — 05)(ga(02 — 03) - - * 81012y — 00)s
where

{Sinh—1 6/2 B(nggﬂ )
8= cosh™ /2 6(—pipl.y)

For a given r I, = {o;, ap, " "
so that

H:rk)(ea)
= hzl(oal - Gzz)hdz(eaz - 0@3) Tt h“}.(e“l - 6111)’ (2'5)

where each #,(0) is given by a chain of length /, =
o1 — &; — 1 consisting of the convolutions

ha,-(e) = [ga,- * gai+1 ¥tk gai+1—1](0)' (26)

Each g,0) is a distribution in O, being the
Fourier transform of the O, function i tanh #o, or
else lies in 8, being the Fourier transform of cosh™ #o.
Further, if any g; in the chain (2.6) lies in 8, then so
does the whole convolution. Otherwise 4, (0) € O .1

Moreover, for any chain of length /;, 0 < /; < o0,
h,(6) varies over bounded sets in 8 and 0y, respec-
tively. In the case that 4, (6) € O and /; is odd, 4, (6)
may be written as a sum of functions in 8 together
with sinh~ 6/2; while for /; even the chain is again a
sum of functions in 8§ but now the distribution is
8(0). As a last remark on the properties of (2.5) let us
note that for any partition (k) and permutation =,

«,,} in natural order,

10 Reference 8, Théoremes XI et XV, pp. 103, 124.
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at least one term in (2.5) is in 8. This is a consequence
of the observation that g,(6) = cosh™ 6 for any
such permutation.

In terms of these variables, (2.4) becomes a repeated
application of integrals of the form

p|” TI d8.he(@n = 0.) huy B, — 6.)
—®© aEI{rkr)
X hy(0a, — 001 (z + u(@), (2.7
where z + u(0) = {z; + w,(0), - - -, z, + u,(0)} and

ni M)

w@=1+m 3 >
ki=0 r=1a=ky+- - +kj_1+1
1<i<s

kit +ky

2
’ . . .
X {€7 (o) sinh err('k,(a) = €1 y(w—1 SiNA eu(k,<a)—1}) )

e, being the sign for the permutation =. Here f(z) €
Cy (R9) with
IDY@I< KITT + 27 () = (p1, - -+, P,

() =(¢e, " ",€)>0, for|z

large enough. It is convenient to relabel the variables
and transform again by setting 6, = x; + x;; +
- -+ + x, so that (2.7) becomes

17(z2) = PJ

—00 =

w n

1 dx;hy(x)ha(xs) * + * By _y(%,_5)

n—1

X h,,(+ __zlx,-) D*f(z + v(x)), (2.8a)

where D? = gl#ljg71z, - - - 97z, and w(x) is u(6)
expressed in terms of the new variables. The relabeling
is chosen so that |h,(x)] < cosh™'x/2 while the
remaining h,(x) are either test functions in 8 or
distributions d(x), sinh™ x/2. It is clearly enough to
take each A;(x) =sinh™'x/2 1 <i<n—1in (2.8).
The alternative cases are dealt with similarly.
We then study the integral

00 n
D¥I(z) =P f TT dx; sinh™ % «++sinh™ x—’é‘l
— i=1

u—1

X hn<+ 3 xi) D*(z + »(x)) (2.8b)

and show the following result.

Lemma 1: Let f be C* and in Weinberg’s class
F 2 (R°) where u = min (¢;), 0 < p < 1. Then so is
the integral I(z).

Proof: The proof is an application of Weinberg’s
asymptotic theorem!! after the region of integration

11'S. Weinberg, Phys. Rev. 118, 838 (1960).
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has been suitably partitioned to take into account the
singular nature of the integrand. For the definitions
of a multidimensional singular integral we refer the
reader to Dunford and Schwartz.*

Let ()= (aig--im) 1<m<n—1 be any
subset of m distinct elements in natural order chosen

from (123---n —1). Then we define an (i),, — 9
corridor by
0,0 = Qi,i,' : 'i,,,(a) = {x| |x;| < di€@)m,

X > 6j ¢ @Om, Jjn}
The part of the corridor with |x,| < 4 i € (i),, we shall
refer to as an (i), — 0 box. Then the region of
integration in (2.8b) is partitioned into disjoint sets by

w=| U 000]|us.

The nonsingular region may also be written R} =
U, where of;, is a wedge defined by the coordi-
nate planes; i.e., consider a set of signs

20 %20
2" in number. Then 1 < j < 2" and oy, is the corre-
sponding region defined by a particular j.
We now consider the behavior of I(z) on each of
these disjoint regions.

x, 2 0,

Wedges: On each wedge the integrand is bounded
and

o) < H dx; 1£(z + o(3)]

T dp Sep)l.
<1 PG + Zep)l

Weinberg’s asymptotic theorem and Jaffe’s analysis®

gives the existence of the integral and that it belongs
toFr,0<u<l

Corridors: On a corridor Q;, (d) with the notation
A(i) = Ai1A12 -A

A.1'h(xl T xn)
= h(xy," " Xp) — h(xy, -,

the integral becomes the limit

T ?

s Xyttt _xj’...’x”)’

Qe () = li ' _dx j P dx
. p—4 lm ——— . e .
(D dw,~0" Je sinh x; /2 &, sinh x,} [2
% f 2 dx, dx, ‘
jz;1>¢ =1 sinh x;{2
n—1
X A(c),{ (+ zx)D”f(z + u(x))}
=1
2.9
12 N. Dunford and J. Schwartz, Theory of Linear Operators

(Interscience Publishers, Inc., New York, 1965), Vol. IL.
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The unbounded part of the corridor may be broken
into compact and unbounded regions

6<|xj|SNj’ lxj|>Njy j¢(i)m'

On the compact regions, the C* nature of f(z) and
h,(x) together with the boundedness for large (2)
permit the estimate

IA(i)m{hn(xl + -
< 2™y, e X,

5:?'"'13_36.-,,,{,1" (:gx,-) D*f[z + u(x)]}

+ %, )D’f [z + (x)]}|

X

b
*

m

(2.10)

:c;l oo @

with x} ---x} some point in the (i), — 6 box.

Wemberg s asymptotic theorem together with his
equation (12) for the asymptotic coefficients shows
that /7[Q; (9)] in (2.9) over the compact regions is
again in F 7 (R?).

For the unbounded regions choose N, j ¢ (i), j # n,
such that for |x,| > |N,],

1 Kaglxs, -
[sinh x,/2| —

x; |7

H [1 + z2](£;+m)/2[1 + xz]M,/z

i=1

0 <y <1, M,alargeinteger.

This may be achieved for any z, (p), (). The regions
under consideration break down into three types:

0 o< || <N;, j#n, [x,| > Ny
(i) [x,| < N, with at least one |x,| > N,
J#EN jE@On;
(iii) |x,| > N, and at least one |x;| > N,

as in (ii).

Case (ii) is readily handled. V(¢), (p), z3 K., (M) =
My M;+--M,,;), 0<y <1 such that for |z|
large enough, the integral is bounded by

Y
dx; x!

_ 5 dx. x) F
lim a2 T -
&, ~0" Je, sinh x, /2 &, sinh x; [2

n1 2K N, C
X f 1T dx; —= ,
Rl L (R
i=1

where

C = sup[Aw, {haCa + - % DD [z + o).

This integral exists as (), — O and satisfies the
estimates at large |z] for . Over the region of
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integration appropriate to Case (i) let us write
A(i)m{hn('xl S xn—l)Dzy[z + U(X)]}
= Z [A(i)mlh;n(xl + 0+ x,)]

myt-Ma=m
partitions

X B, DYz + v(x)]}

[ ' means —x; if k€ ()] As h,€8 and each
x;1 <j<n—1 varies over a compact, we may
estimate A, h;, terms by the mean-value theorem as
2™ K T ey, x4 The A, D*f(z + v(x)) terms are
a little more delicate. The case m, = 0 reduces to the
discussion for wedges /™. When my # 0 let us
examine one difference:

8Dz + o0 = D1z + (v X+ x,)]
— DIz + o =%, X))

Recalling that each 6, = x, + x,, - - - + x,, we may
choose N, sufficiently large that the Cauchy conver-
gence condition gives

K IT Ixl”
IA(i)szpf[Z + v(0))} < . PETII ’
TI I + (z; + v)?Yletei
i=1
0<y <y,

for |x,| > N,. Weinberg’s theorem is now applicable
to this estimate to show the existence of the integral
as (€)(;,, — OF with the correct asymptotic behavior
at large |z| for &°.

Case (iii) is clearly a compounding of cases (i)
and (ii) with no new conditions arising.

This concludes the proof of the lemma.

An application of Lemma 1 leads directly to the
existence of (2.4), as these integrals are a repeated
iteration of integrals of the form (2.8a) with (z) =0
at the last stop. The order of these integrals is also
immaterial since the integrals are absolutely converg-
ent in any order.

From Proposition 1, we have seen the existence of
w?(7) as a bounded function on R*. The continuity
in the time variables is a direct consequence of simple
inequalities.

Proposition 2: o(7) € B*(R®) for any finite (n)
and some 0 < o < 1.

Proof: B*(R*®) is complete with respect to the norm

|@f(r) — wi(=')]

lr ==

(@I = sup |wf(n)] + sup

1141

where

e~ 71" =

inl(ti _ t;)z]am

To verify the existence of the second supremum, the
identical theorem to Jaffe’s® equations (32) and (33)
holds in this case, to give

lwi(r) — wf ) < 2 Kile, ) |t — ] 0<a< 1
k=1

uniformly on Rs. If K" = max [K}, K}, -+, K?],
then the elementary inequality >%_ |5, — #1* <
230-a/2) |If — ¢'||* gives

j@2() ~ @X(r)] < K2 |r — 7
and thus o(7) € B*(R?).
3. EXPONENTIAL

Our next consideration concerns demonstrating
that w>(r) € B*(R®), where, for any test functions

fi€8,
o2(r) = (e (ty, ) 16 (1, f) - 16 (1, ).
(3.1

More precisely, let us define the operator-valued
distributions

4y = $ 2576
n=0 n

and their vacuum expectation values

w.lsv(sl’ Ea, L b)) = ((,‘bﬁ(xl)qﬁﬁv(xg Tt

ﬁV xs»o .
(3.2)

The completeness of B*(R?) would allow us to con-
clude that w°(r) is bounded and satisfies a Lipschitz
condition provided that we could show the sequence
{wY(7)} constructed from (3.2) to be Cauchy with
respect to the norm || ||*. As it stands, a direct esti-
mate of this condition is fairly hard due to the detailed
nature of the series (2.3). A more natural method of
proof is suggested by Jaffe’s limit theorem? since (3.2)
has a formal sum as N — oo, which may be used in
the tube B, = R~ — jpO6-1 1n fact, the o (£)
in (3.2) are boundary values of functions FN({),
{ = & — in analytic in G,. In a similar manner the
wM(7) are boundary values of functions HN({%
analytic in II*' = R* — iR (R5 is the set of
vectors (x;, Xy, ***, X,) with positive real compo-
nents), where, in the sense of 8,

HIE) = lim [dx - drin) - SFNQ.
V. (3.3)
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The various relations between these sequences of analytic in N_(0) x G,15:

analytic functions and the convergence of their
boundary values is contained in the diagram

F(O— FF(),

{ l
HY() — HX(LY),
l {

0 (7) ~ wP(7),

where the regions in which the limits exist must be
specified. In particular, we show that the compact
convergence of FY({) — F*({) as analytic functions
in the tube G, leads to wM(7) > wP(7) as N— o
in the sense of B

To simplify the notation, let us write for (1.5)

GR(&) = (o*1(x)o™(xy) - + - ¥(x,))T,

where (k) = (ky, kz, -, k,) is any partition with
|k| even, Then in the tube G, consider the sum

N n (k) AL
RO= 3 gpagraps I EOE )
%2, nebd !

whose boundary value is the distribution wX(§).
G®({) is analytic in G, as may be seen directly from
(1.5) and the remarks in the Appendix. Further, on
any compact subset K < G,,

A G(lc)
P < o [ SO
in which the summation over the partition (k) must

have at least two nonzero entries, |A}% = |A,[% |A,)%2 - - -

|Al*. In the Appendix it is shown that for { =
&—itn, 0 <t < 1, and 7 in a compact of V¥,
k
6001 < P ki 1+ K31 G.6)

The (Jk| — 1)! arises from the number of terms in
(1.5), each of which is analytic in G,. Using this in
(3.5), noting that for {€ K, 3 a ¢, such that 0 <
to < t < 1 for which the uniform bound {G®({)| £
(ik] — 1)! M holds, and after performing the summa-
tion over (k), we have

141G
5«
M. (1= AP — Ilzlz) o

ST am+ T A

Thus, we may find some neighborhood N (0) of the
origin in the (1) = (4, '+, 4,) complex space such
that F¥({) converges compactly to a function F;°({)

£¥e)

3.7

l' N, _ 0 _ lkG:(zk,(Z)
lim FY(Q) = F2() = exp ((zk)——k! ) 3.8)

From this last statement, it is an easy matter to

verify that HY({’) converges compactly to H>({9),
analytic in N (0) x II*-! where

dX,fi(x0) * * - f(X)F (D)
(3.9)

To complete the diagram above, we now give a lemma
on the boundary values of functions analytic in II® .

H2() =lim |dx, - -
M-+

inp .

Lemma 2: Let ®(£) be analytic in I1° . Then @(£)
has a boundary value ¥'(§) = lim ®(¢ — i) in
0+
B(R?) > [00(D)/9L,] < K — &lI*,
1<i<s,

0<a<1as {— & with y— Ot and { remaining
inside any compact set A < [ which only meets the
boundary R in the point £,, which may be arbitrary.

Proof: The necessity of the above condition is a
simple generalization to s variables of Privalov’s
lemma. 1

For the sufficiency, consider

13
0 — i) — 0 ~ i) < [ dr | L 0 — irn),

where £ € R* and 7 varies over compacts in R,
0 < t < 1. The hypotheses of the lemma allows the
estimate

10 — i) — ¢ — itn)] < X3 ] = ¢
o [ =1

so that {®(& — itn)} is a Cauchy sequence of bounded

continuous functions as z-— O* with respect to the

supremum norm. Thus lim ®(& — ity) = ¥ (£) exists
—0

and is continuous and bounded on R°.
Next consider &, &' on the boundary R We may
choose 0 < ¢ < 1 and 7 in a compact of R} so that

[¥(§) — ¥ (&)
S8 — O — it +1D(€ — itn) — D&’ — itn)]
+ D& — itg) — ¥ (&),

13 The uniformity on compacts is a consequence of Vitali’s
theorem [E. C. Titchmarsh, Theory of Functions (Oxford University
Press, New York, 1939), 2nd ed., paragraph 5.21].

N, J. Muskhelishvili, Smgular Integral Equations (P. Noordhoff
Ltd., Groningen, The Netherlands, 1953).
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where we have just seen that the first and third terms
are bounded by kf«[>:_, |nl*]¢*. For the second
term we have

|® — i) — (& — itm)]

i—1

<k3 [ ap] - 50"+ 3 (6 - b

k=il

(a—1)/2
+ (pi — &0)* + tz}gllnklz} ,
with & < £ < &,
the right-hand side being bounded by
21K &
2 & — &~

g=1

Finally, we may find a constant K, independent of
&, & for which

W) — YN K 1= &% 0<a<t,

t = min (1, |§ — &|).

This last lemma provides a convenient criterion for
deducing-when the boundary values of H.*({’) belong
to B2 It remains only to be able to decide when such
boundary values are actually the limits w(7) with
respect to || ||*, and then apply the reconstruction
theorem to recover the field :e**: (f). This is provided
by Lemma 3 below which is quoted without proof.
This is identical to the one given in Ref. 7.

Lemma 3: Let @,({), N=10,1,2,--- be a se-
quence of functions analytic in II* and bounded on
compactsindependently of N, such that [0®({)/0(;| <
K[ — &)1 <i<s5,0<a< 1for{— &under
the same conditions as in Lemma 2. Then

lim @y (& — in) = V(&) € BY(RY)

ot
and {¥'y(&)} varies over a bounded set in B% Moreover,
if ®,(0)— ®,({) pointwise in II* , then ¥y (&) —
¥, (&) in B* uniformly on bounded sets.

This last result indicates that in order to show
w>(7) € B%, it is only necessary to check the growth
condition [@HY({)/0L < K||° — 7=, 1 L i<,
0 <« <1, where 7 is some real point in RS. The
condition on the manner in which {° approaches the
point 7 allows us to find a cone with angles 0 < §; <
wm, 1 <i<s such that {®-—+ inside this cone
and ° —t; = (& — 1) — in; = yftan o, — i],
where 0 < ¢ < 1; #? varying over a compact in R_.
As [? — 1, the angle w, is strictly less than =/2 in
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FiG. 1. Region such that {° — 7 inside cone defined by
0<6;~m

magnitude. (See Fig. 1.) Then

10— 7] = (Zw’—w)

0? 0? i
=%%ﬁm+%L]
COs” w, COs® w,_,

the coefficient of ¢ being bounded for {* — 7 in the
cone and #° varying over compacts of R~

With these preliminaries it is now necessary to
estimate the growth of the derivatives of H¥({°) as ¢
approaches zero. For this, we use the bound below
obtained from (3.3), (3.4), and (3.5):

HN(")
az’o ()
<1.,‘i‘?, f dx, - A (%) - fux 3)[ i aGaqu(g) H

X exp [g li_lv |G""(£)I:| l (3.10)

From the Appendix we find that in the limit  — 0 in
Ve, 0= —im,0< 1< 1,

U dx, dxy - dx,fi(x) -+ £y 20D

oy}
1M |k|! [kl-1 ,

< [0 ™= 4 K]
Here 0 < € < 1, while M, K; are constants. Lastly,
before using these estimates in (3.10), let us note that
for every |k| >0, (In1/t)¥ =O0[1/r*] with any
0 < u < 1. This remark together with (3.10) leads
directly to the bound

(3.11)

MN !

0H; (") .
A 12
T < e G12)
where
| = A+ + 14D AP
L= 3]+ + 14D 1= 2"
_ AP
1—34,*
r=Xn [0 — A (1=~ illslz)}
20 L 1= Ml + -+ 1A T
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and M is some appropriate constant. If we restrict
(%) to a neighborhood of the origin in which |1, <
20/s, then r < (K[2w)In (1/1 — 62). In particular, if
8 < (e'fe + K/27r)5, 0<e <1, thenr < €.
Combining these remarks, we may state finally that
310< € <a<1forany0 < ¢ < 1such that

' OH(L")

0 <K, 0<t<l,

1<i<s—~1

uniformly in some neighborhood N,(0) of the origin
in the (1) plane. By Lemma 3 we then have the result
below.

Proposition 3: For any test functions f; € §, there
exists some neighborhood N (O) of the origin in the 1
complex plane such that

w:o(,r) = (Eelas (tafl) e selaa (fy’ ts))O
is in B*(R?), 0 < o < 1 for all A € N(0).
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APPENDIX: GROWTH ESTIMATES
FOR G¥Y({ — in)
During the discussion of ,°(7) in. Sec. 3, two
estimates [(3.6), (3.11)] on the growth of G*/(§ — itn)
as t — O" were required. We give an account of these

below.
From (2.2a) we may start with the formula

are—im=(-2)" 3 [

8—1
dpsd £ (52 — m?) exp [—izﬁ’;m(s,- - itm-)]
j=1

(P, — PPz — P+ Py — PO’
(A1)
where
Bt - - - ks
P;(k) = 21 [pﬂ(a) - pr(a)—l]a

which exists as a principal-value integral. Throughout
we restrict 0 < t < 1 and allow # to vary over com-
pact subsets of V®¢-1, (For the time variables, 7°
ranges over R:) In order to show that the integral
(A1) exists and to obtain simple estimates for its
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behavior near the boundary, we note the following
trivial lemma.

Lemma 4: V partitions (k) = (k;, ko, -+ * , k,) and
permutations (k) there exist polynomials Q,(%°, nl)
which are strictly greater than zero when the ;1 <
J £ s — 1 vary over compact subsets of V., , such that

s—1

2 Piom; 2 3 cosh b, Q. nl)> 0.
J=1 ael (k)7
Proof: The lemma follows in the case of an arbitrary
partition (k) once it is proved for (1.5).
Consider the partial sums

p:r(a)—l]a
8(£ P2 ) 7 Ma(a) + 1]

and suppose a given p,,, appears in P7 for some mly,|
after cancellations. Then as P?, = 0 B:j+1<L
B < 2n and w(f) — 1 = m(«) hence for this particular
m(); play > O. Slmllarly, we may show that a term
Pty Temaining in P7 after cancellation must have
negative energy.

It is now clear that, after changing the integration
variables appropriately in (A1), we may find a bound

J
P? = z [pir(a) -
a=1

if «<

2n—1 2n
3, Pons 2 m( 3,c00h 0,061% Inb) >,
= t=

where Q(7°, In|) is a polynomial made up of terms of
the form 79 — |n,| with positive coefficients.

As a consequence, the exponential in (Al) with
0 < t < lisin 8 for the variables 6, , « € I, and (Al)
exists. To study the limit ¢t — O*, rewrite (Al) in the
form

|G — itn)]

8—1
< o 3| [ T doge) exo (—1 3 Fom) |
(47T)l I (k) a Iy™ j=1
where H{,(6) was defined by (2.5). From our remarks
following (2.5) and (2.6), let us suppose that 4, (6) is
in 8 and change variables to x; =6, — 0, ,1 < j#
i<4, x;,=0,; whereupon the above integral
becomes

IGY"(E — im)|

A 1
f dx; - dx, [1 h,,(x,-)h,‘[— > xk]
=1 k=1
i#Fi k#1i

< (477-)| L

x exp [—tm(cosh x;7i° — sinh x;n)  (A2)

with 7 a linear combination of the 7, 1 <j<s — 1
as given by Lemma 4. Due to the convexity of the
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future light cone, 7j € ¥, and varies over compact
subsets with the 7;.
It is a straightforward exercise to show

f dx; exp [—tm(cosh x,77° — sinh x0)]

< Klln 1/t + K,),

where K, K, are continwous on 0 <t <1, and
uniformly bounded in #, ¢ over their respective
domains. The remaining integrals exist as convolutions
of distributions in 0, with a function in 8. Further,
using the fact that &, (x) j 7 i is the Fourier transform
of (i tanh mo)¥, and similarly 4, (x,) of (i tanh 7o)¥/
cosh 7o, we easily find

f dxy <+

Applied to (Al) with 12 bounded by |k| gives the
relation (3.6):

(lkl !

dxlha1(xl)

A
ha¢(—j§1xi) e hul(x}.)
#

i#i

< @m*

IGPO) £ "= Kol(in 1/n) + K,

The second bound (3.11) requires a little more
detail in order to give the power of ¢ precisely. From
(3.3),

o<t 1.

[§3]
lfdxl dx, fi(Xg) - fi(X) Gaz-:o(g
< (m/m™
ud dp:d + (pf — m)P;
X
"%) fg [(p, — Pz)z(Pz - Pa)z tee (P|k| - P1)2]é

X exp [—iiﬁ?(f‘} - in?)] TI/®, ~ P,
=1 i1

-1,
X exp (— zlej) ’, (A3)
=
where there are at most |k| terms in
BY = m 3+ [cosh 0, + cosh 0, ]

after changing the signs of the integration variables
and omitting cancelled terms. As for Eq. (A2), by using
Fourier transforms, (A3) is bounded by a similar
integral in which ¢, is replaced by p,, where

piloy, .00

it A
- (2’:)A f_ As - a0, cosh By exp (_iz akek)

X exp (——lsilP"""CoH [fi(®; — 9‘—1)])'
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Replacing the test functions by | f;“s,[l + (P7 —
P7_ )] <’?, ¢, > 0, and changing variables to u, =
tmitcosh 6, 1 <k <A, we see that T2, (1 +
o?) |p,] is bounded by 2* terms of the form

il f duytfte™
=1 (2m)Mig Jmisio (uf — mPeRyE
f dugtpPuge™s J‘

y U
‘mtﬂ'lﬁ (Up —m tﬂnoz) m
x {1 — Plug, (u® — Em*%H}

» 1—[ {t n [2 (g —

j=1

du,thre "4

iz (U —m tm”)é

2402 \}
w(a)m ﬂ”(a))

nr(a)
2 2502 yhq2)—¢2
(urr(a)—-l - tﬂ(d)—‘lm nﬂ(a)—l) ] } i
s

A0
Nrta)—1

+ (A4

where t = min (¢;) and P (a, b) is a polynomial.
1Sk<a
We have been a little free with the indices in this

formula as the meaning is clear. It requires a simple
argument to show that the polynomial P may be
chosen so that the limit £ — O* is not affected. The
numbers u,| > O representlthe degree of divergence
as t, — O% of our estimate for the test functions. We
may always choose one or more of the ¢, such that
there exists 0 < € < | for which the singular part of
(A4) as the 1, approach zero is bounded by

e Wl 157 f dugtre

=1 (2w) 1},3 tmin® ul (uf — timzﬁgz)é
J‘oo duﬁu Tte U8 [‘ dult""e'u‘
% ... \
. Bmﬁﬁn(uﬂ - t,g,m2 02)% sami® ubA(u3 — timzﬁ?)%

Letting ¢ = min (t,), this is bounded by

(In 1/ 17l
Qm* =1

tl—e °

Combining these estimates with the remarks following
(A2), we find (3.11):

(k)
’ deI - dxsfl(xl) fs( s) aGa O(C)
i

- 7r2|kl [0n 1/ + Kq),

0<e<1,0<t<l;andn} 1 <j<s—11in com-
pact subsets of R:™.
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The general theory of the realizations of finite Lie groups by means of canonical transformations in
classical mechanics, which has been developed in a preceding paper and already applied to the rotation
group, is now applied to the Galilei group. Some complements to the general theory are introduced; in
particular, a new kind of possible canonical realizations connected with the singularity surfaces of the
functions Q(y), P(y), I(y) are discussed (singular realizations). In agreement with the situation encoun-
tered in quantum mechanics, the constants 4, appearing in the fundamental Poisson bracket relations
among the infinitesimal generators ({y,, ¥s} = ¢y, + d,,) cannot all be reduced to zero. There remains
a single independent constant m, which, in the physically significant cases (m > 0), represents the mass
of the system. No physical interpretation seems to be attachable to the realizations corresponding to
m =0, For m # 0, two different kinds of irreducible realizations exist: one of a singular type which
describes the free mass-point, and another of a regular type which describes a classical particle spin.
A number of physical significant examples corresponding to nonirreducible realizations are thereafter
discussed and the related typical forms are constructed: specifically, the cases dealt with are the rigid
rod (linear rotator), the rigid body, and a system of two interacting mass points. It is shown that the
problem of the construction of the variables of the typical form is equivalent to the determination of an
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appropriate solution of the time-independent Hamilton-Jacobi equation.

1. INTRODUCTION

In two preceding papers,! which we shall refer to as
I and II, respectively, we developed a general theory
of the realizations of finite-parameter Lie groups by
means of the canonical transformations in classical
mechanics and applied the theory to the rotation
group. In this paper we deal with the more interesting
case of the Galilei group. The paper has to be read
in strict connection with II: here we use the same
terminology and notations and assume the reader is
familiar with all the results obtained there.

In order to clarify the physical meaning of the
formal developments which follow and to expound a
direct justification for our approach, we shall briefly
outline some very general considerations about the
problem of the invariance in the specific case of
classical physics.

Let us synthetically denote, by the point P of an
appropriate space, the set of variables which is suffi-
cient to an observer O for the complete description
of a physical system at a certain instant of time.
Specifically, denoting by P(z) the position of P at the
time ¢, we shall assume that P(#) can be expressed by
means of a suitable transformation in terms only of
t and P(0), and write

P(t) = U,P(0). (M

1 M. Pauri and G. M. Prosperi, J. Math. Phys. 7, 366 (1966);
8, 2256 (1967). For a general discussion of related matter see also:
E. C. G. Sudarshan, *Principles of Classical Dynamics,” lecture
notes, Rochester (1963); D. G. Currie, T F. Jordan, and E. C. G.
Sudarshan, Rev. Mod. Phys. 35, 350 (1963).

Let us consider, now, a second observer O’ and assume
that he can perform the same kind of measurements
on the system that O does. Consequently, the time
evolution of the system will be described by O’
through a certain function P’(¢’) in the same space to
which P(¢) belongs. We assume also that the two
trajectories P(7) and P'(¢’) are linked by a one-to-one
correspondence. Clearly, such a correspondence can
be expressed in particular also as a transformation
connecting the point P(z), labeled by the time co-
ordinate ¢ with respect to O, with the point P'(r)
labeled by the same time coordinate (¢’ = ¢) with
respect to O’. This transformation will depend in
general on the time coordinate itself so that we shall

write P(1) = LP(1). @)

We shall say that the two observers O and O’ are
equivalent if the time evolution of the system can be
described by the two observers through the same
transformation U,, i.e., if one can also write

P'(r) = U,P'(0). 3
Substituting Eqs. (1) and (3) into Eq. (2), one obtains
UP'(0) = LUP(0); C)

and using again Eq. (2), for t = 0, one has finally
Ul = LU, %
L, = UL U (6)

Equation (6) expresses in the most general way the
equivalence of the two observers O and O’.

or
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Let us now consider a definite class of observers and
assume that the set of all the space-time coordinate
transformations connecting the observers form a
group §. We shall state that the physical laws are
invariant with respect to the group § if the two
following requirements are satisfied:

(1) Any two observers of the considered class are
equivalent to each other in the sense specified above.

(2) The transformations L,, relative to any pair of
observers O and O’ belonging to the class, depend
only on the relation which connects O with O’ and
not on the particular choice of 0. The second require-
ment directly implies that the set £, of the transfor-
mations L, and, in particular, the set £, of the
transformations Ly will form a group homomorphic
to S.

Now, let us assume that the group § includes the
time translation which connects two observers
differing only in the choice of the origin of the time
variable

0

and denote by E(s) the transformation L, corre-
sponding to the operation (7). It holds in particular

'=t—r

that )
2 P'(0) = Eo(r)P(0). (8)
Since, obviously, in this case
P'(0) = P(7), €))
it follows that
Eo(1) = U,; (10)

that is, the time translation coincides with the trans-
formation which expresses the time evolution of the
system between the instants of time 0 and 7. Then
Eq. (6) can be written as

L, = E()LoET (D). (1

From Egs. (10) and (11) one sees that the time-
evolution law and the transformation properties of
the complete description given by different observers
at any given instant of time are completely determined
once the transformations L, are given. Since the set £,
provides a realization of the group G, we conclude
that, independently of time considerations, the prob-
lem of the construction of the most general theory
invariant under § itself is reduced to that of con-
structing its possible realizations.

Here we are interested in the case of a system with
a finite number of degrees of freedom and charac-
terized by a set of canonical coordinates ¢,, - , ¢,;
P1s° ", Pn, Whose time evolution is described in
Hamiltonian form. In this way, we are led to consider
a situation in which the L,’s are canonical transforma-
tions and then to look for the possible canonical
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realizations & of § which will be identified hereafter
with the Galilei group. We stress once more that the
realizations &, the construction of which is our
main concern, do not directly involve time anyway,
and that their elements physically represent the trans-
formations which connect the canonical coordinates
at time zero for equivalent observers. On the other
hand, once the realization 8 is given, the transforma-
tions defined by Eq. (11), which connect the canonical
coordinates at any time ¢, provide a second realization
&, of the group § by means of canonical transforma-
tions depending explicitly on time. On considering
an element of §, we shall refer to the corresponding
elements of & and K, as the time-independent and the
time-dependent images, respectively.

In Sec. 2 we discuss some complements to the
general theory given in I. More precisely, we treat in
greater detail particular kinds of realizations which in
I were only mentioned and are now of relevant
interest for the Galilei group. Such realizations, which
we call singular realizations, are distinguished by
possessing invariant manifolds which lie on the
boundary of the domain of the functions Q(y),
BG), 3() (see I).

In Sec. 3, after recalling some preliminaries on the
Galilei group, the fundamental Poisson brackets
among the canonical generators are established. The
problem of the reduction of the constants d,, to
their minimum number is next discussed. As it is
already known from the quantum case,? all the con-
stants can be reduced to zero, apart from those
relative to the Poisson brackets between the generators
of the pure Galilean transformations and the homolog
space translations, which remain equal to a single con-
stant. Such a constant, which will be denoted by m,
in the physical cases turns out to be the total mass of
the system.

In Sec. 4, Scheme A (see II) is constructed, both in
the case m 7 0 and m = 0, and all the possible types
of singular realizations are discussed. As in the
quantum problem, only the realizations corresponding
to m > 0 are directly significant from the physical
point of view, while those corresponding to m < 0
are shown to be reducible to the former ones by means
of an anticanonical transformation, and those corre-
sponding to m = 0 are not directly interpretable as
describing physical systems. In the case of m > 0, a
direct physical meaning can be attached, in particular,
to the canonical invariants, which, according to the
most natural choice, can be taken for instance as the
energy and the angular momentum in the center-of-
mass system.

?J. M. Levy-Leblond, J. Math. Phys. 4, 776 (1963).
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In Sec. 5 we construct the irreducible realizations,
which correspond to fixed values of the invariants.
Such irreducible realizations appear to be of particular
interest. In the case m > 0, they are essentially of two
kinds. The former one is of a singular type and
corresponds to a system with three degrees of freedom
and zero intrinsic angular momentum. The latter one
is of a regular type and corresponds to a system with
one more degree of freedom and a definite nonzero
value of the intrinsic angular momentum. In both
realizations, the Hamiltonian turns out to be of the

form .

P
— 4 const,
2

m

so that they can be interpreted as corresponding to a
free mass point and to a free particle with spin,
respectively. This seems to be the most natural way
for introducing the spin in classical mechanics. We
stress that two constants characterize anyway the
irreducible realizations: they are the values of m and
of the intrinsic angular momentum. On the other
hand, the value of the second invariant gives only the
zero-point energy and does not affect the realizations.
We are here in a case of identical realizations in the
sense of the Sec. 4 of I. The construction of the
irreducible realizations for the case m = 0 concludes
the section.

In Secs. 6 and 7, the problem of constructing
Scheme B for a number of physically significant
examples corresponding to nonirreducible realiza-
tions is considered. The cases of the free rigid rod,
the spherical and the symmetrical top, and a system
of two mass points interacting through a Coulombian
potential are explicitly solved. In the cases of the
rotater and the spherical top, one of the two invari-
ants is still fixed and gives the zero-point energy;
consequently, the phenomenon of the identical real-
izations occurs again. In the case of the symmetrical
top and of the system of two interacting mass points,
the two invariants appear as canonical variables and
there are no inessential variables. The same qualitative
results hold for the case of the asymmetrical top:
The corresponding realization turns out to be canoni-
cally equivalent to the realization corresponding to
the symmetrical top.

Finally, in connection with the construction of
Scheme B, it is noteworthy to notice that, with an
appropriate choice of the invariants, the variables
Q(g, p) and P(q, p) of the typical form are essentially
Hamilton-Jacobi variables in the sense of the
analytical mechanics. The problem of the construction
of these variables can be consequently reduced to
the finding of a suitable solution of the time-inde-
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pendent Hamilton-Jacobi equation. Conversely, the
knowledge of the inverse canonical transformation
amounts to obtaining the solution of the equations
of motion. We take advantage of this remarkable
circumstance for the actual construction of the
variables of the typical form in the case of the
two interacting mass points. In all other cases we
shall follow directly the constructive procedure of the
Theorem 2 proved in I.

2. COMPLEMENTS TO THE GENERAL
THEORY: SINGULAR REALIZATIONS
As we pointed out in I and II, the canonical
generators y;(q, p), * - -, ¥;(q, p) are not, in general,
independent functions within a particular realization,
because a certain number of relations of the form

fa(J’1,"‘,y,-)=0, ,s<r (12)
may exist. Let us consider the form that such rela-
tions assume in terms of the expressions Q, P, and J
of Scheme A. When the y,’s are reexpressed in terms
of the variables Q, B, and J, Eq. (12) becomes

ga(Q’ §B’ 3) =0,
Then, using the fundamental relations
{Di’ Qj} = {g‘Bi’ “B]} = {St’ St'}
= {9, 3} = {$,, 3} =0,

a=1,- -

(13)

a=1,',s.

{Qiaq;j}:aij; i’j=1:'.',h; tyt,=17“"ka
14
it follows that
9% _ 08 _ o ,—1...s (15)
o[, JP,;

This means that Eq. (13) does not imply constraints
on the variables Q,, P, so that Eqgs. (12) are essen-
tially relations among the invariants (cf. I, Sec. 3).
However, we stress that in order to draw such a
conclusion it is necessary that the manifold defined
by Eqgs. (12) lies inside the domain of the functions
Q) B(»), 3I(y). An exceptional situation occurs,
instead, when the above manifold belongs to the
singularity surfaces of the same functions. All the
realizations corresponding to this last class will be
called exceptional or singular realizations. In order to
treat such singular realizations one has to proceed in
the following way: Among the singularity manifold
of the functions Q(y), B(y), 3(») one must choose, in
all possible ways, the submanifolds which are left
invariant by the group transformations. Let us write

h10’1, °t ayr) = Oa
“ o (16)
hr—u(yl""’yr)=0’ u<lr,
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as the equations for a given invariant submanifold.
Then, from the expressions y,, * - *, y,, onehastoselect
a set y;,-++,y, which is independent within the
manifold (16). After that, one has to reapply the
procedure given in I and to construct a system of new
functions Q'(y), B'(y), IJ'(y), i.e., according to the
terminology introduced in II, a new Scheme A. We
shall presently see, in particular (cf. Sec. 3), that the
only unfaithful realizations occurring in the case of
the Galilei group are just of the singular kind. On the
other hand, we know that this is not true in general
(see I, Sec. 4).

Another kind of singularity may occur in connection
with the dependence of the functions of Scheme A on
the constants d,,. Actually, it may happen that the
original expressions of the variables Q(y), B(»), I(»)
lose their meaning for exceptional values of such
constants. In this case Scheme A has to be inde-

pendently constructed from the beginning, starting

from these exceptional values of the d,,’s. Such a
situation occurs in the case of the Galilei group in
correspondence with the value m = 0.

3. GENERALITIES ON THE GALILEI GROUP

The general Galilei transformation will be written
in the following way, adopting the passive point of
view:

x = Rx — vt — a,

(17

where R represents a pure rotation. The parameters
of the group are then the three parameters w which
characterize R, and v, a, and 7. The following special
kinds of transformations are contained in Egs. (17):

=1t~

() a=v=r7=0, pure rotations,
(b) R =1, v = v = 0, pure space translations,

(c) R =1, a=r =0, pure Galilean transforma-
tions or accelerations,

and finally
(d) R =1, a =v =0, pure time translations.

The infinitesimal operators of the group relative to
the transformations (a), (b), (¢), and (d) will be
denoted by M, G, X, and &, respectively. They have
the form

M:—xx—a—, 'G=-—a—,
ox 0
d 0
K=—t—, §=—~—, 1
ox ot (18)
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and satisfy the following commutation relations

(Mo, M) = €5 Mo,  [G;,T;]1 =0,

[M;, Bl = fm‘Ga (K, J{’j] =0,

[M;, 3] = €, 00, [G;, 8] =0, (19)
[M), 8] =0, [X;, 8] =T,
[, X;]=0, G.j,l=ux,p,2).

Given a canonical realization & of the group, the
generators corresponding to M, G, K, and & will be
denoted by M, T, K, and E, respectively. According
to the results established in I, the Poisson-bracket
relations among such generators can be formally
obtained from Eqgs. (19), replacing the canonical
generators for the group operators, the Poisson
brackets for the commutators, and adding suitable
constants d,, to the right-hand side of the equations.
The constants d,, are not all independent but are
liriked by the system of conditions

dpa+ddp=0 (p,o,A=1,---,10),
c;adrl + c;.pdm + c;ldrp = 0. (20)
In the present case the restrictions implied by such

conditions, with obvious meaning of the symbols,
are

dMiTj = dT.-Mj’ dM,K,- = dKiM,-’
drg, =0 (I#)),

dr.x, = dT,K,a

dyr, = dyng, = dyg = dT.»T,-

@1

= dTlE = dKiK,» =0,

dyr, = €5dg, g, foreveryiandj,
dMiMj = _dMiM::’ sz‘Ti = _dTlMt’
dMin = —dKjM."

Consequently, there are ten independent d,, and the
Poisson-bracket relations become

{M;, M} = M, + dyypy,, T T} =0,
{Mi, Ta} = eilel + dM{Tj’ {Ki’ K?} = 0’

{Mi’ Ka'} =¢;K, + dMin’ {Mz’ E} =0, (22)
{Ki’ E} =T+ %GmdM,Tw {T,, E} =0
{n; Kj}=m61'j, (i,j=x,y,z).

In order to reduce the d,,’s to the minimum number,
one has to consider the following equations (see I):

€% =0 (p,0,7=1,---,10). 23)
Since they give
Ey, = &p, = Ag, = 0 (l =X, Z)’ (24)

all the independent d,,’s but one can be put equal to
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zero by means of a suitable redefinition of the canon-
ical generators y, —y, + «,. Precisely performing
the substitutions

M;—M; + 3edp,m, s

T,— T, + %ed 7, (25)
K;— K, + %fmdM;Kp
one obtains from Egs. (22)
{M;, M;} =€3M,, {T;,T;} =0,
{Mis Tj} =715 {Kz" Ki} =0,
{M;,K;} = ¢;K,, {M,E}=0, (26)

{Ki,E} =T, {T, E} =0,
{T;', K]} = m‘si;” (l,] =X, Z).

The reason why the constant m cannot be reduced to
zero is essentially that a transformation of the form

E—E+ ag 27

does not change the values of the d,,’s.

At this point, let us make a few remarks. First,
recalling Eq. (10) and comparing the Hamilton
equations and the structure of the canonical trans-
formations corresponding to the infinitesimal time
translation, one can see that the following relation
holds:

E=—-H (28)

[cf. Eq. (10)], where H is the Hamiltonian of the
system. Moreover, as to the determination of the
number of the invariants, we observe that, as stated
in I, such a number is directly provided by order r of
the group minus the generic rank of the matrix
lle;oy: + dy0ll- Using Eqs. (26), it can be easily seen
that in our case this rank is eight, whatever be the
value of m. Thus, the number of the canonical invari-
ants for the Galilei group is two. Finally, before
concluding this section, we want to say some more
about the meaning of the constant m. We shall
presently see that in the physically significant ex-
amples the constant m represents the total mass of
the system and, consequently, m must be greater than
zero. No physical meaning, it seems, directly attaches
to the realizations for which m = 0. As for the real-
izations corresponding to m < 0, it can be shown
that they are convertible into the positive mass cases by
means of an anticanonical transformation. [A trans-
formation § = g(q,p), 5 = p(q,p) will be called
anticanonical if it satisfies the conditions {g;, §,},, =
{Pis P}, = 0, {§:, P}y, = —0y;. For instance §; =
q;s B; = —p; (i,j=1,-++,n).] In order to see this,
we note that

{4, B).. = —{4, B},,. (29)
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Because of the infinitesimal transformations of the
original variables

g =q; + 0a"{y,, 4} on>
Pi=1P;+ 6a"{y,, Pi}ew
it can be deduced that

(l’J =1--,n), (30)

q-zl = q-z - (sap{y;n q-i};a’
ﬁ; = pj - 5“"{}’,; ,‘1-7;'}55 (l:] =1, n)’
so that the new generators can be expressed as

(31

(p=1,"-,r).
(32)

From Eqs. (29) and (32) one readily ascertains that the
Poisson-bracket relations among the new generators,
with respect to the new variables, are given again by
Egs. (26) except for the last one, which is changed in
sign.

)-’p(q-’ P = —yp[q(q—’ 13),1’(9_’ 12}

4. CONSTRUCTION OF SCHEME A

Let us consider first the case m # 0. Direct inspec-
tion of Egs. (26) enables us to put

"BI=T1’ ‘Bz=Ty, $3=Tz9

K K
Q]':__Z_’DZ:___Z,Q:;:_&_
m m m

(33)
Then we look for a function of the canonical genera-
tors, say ® = ®(M, T, K, E), which has zero Poisson
brackets with all the expressions (33). This means that
® has to satisfy the following system of partial
differential equations:

20 20 30 | 20
K- 22k, - m@2 %1 _o, oy
oM, T, T ", T ee
50 20 20
T,——T =0, 1.
om, " am, T "k, ey
(34

One can easily verify (see Appendix A) that a system of
independent solutions is provided by the expressions

SEM+I£XT (35)
m
and
TZ
~-W=E+—, (36)
2m

which, moreover, satisfy the following Poisson-bracket
relations:
{8, S,} = €mst 37
{S;, Wy=0 (i,j,1=x,p,2z}. (38)
Let us remark that Eqgs. (37) are identical to the
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Poisson-bracket relations obeyed by the canonical
generators of the rotation group. Thus, finally,

5]32=T,,

¢
m

It will be apparent from the following that, within
the physical realizations, Q,, Q;, £, can be inter-
preted as the coordinates of the center of mass;
PBi, Pz, Ps as the components of the total linear
momentum; S;, S,, S; as those of the intrinsic
angular momentum; and W = —3, as the internal
energy. Let us remark, in particular, that the variables
appearing in the fourth and fifth columns represent
Scheme A for the little group of (E, T) (rotation
group).

Now, we want to discuss the occurrence of singular
realizations. The singularity manifold for the expres-
sions of Scheme A is related to the function Q, =
arctan S,/S,, which is singular for
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application of the results of II, Scheme A for the
Galilei group can be summarized in the form:

2
§B4=Sz 3]_=S2 32=~W=E+I.
2m
Sy
L, = arctan —* (39)

&

(From the point of view of the functions of two
complex variables, the function arctan z,/z, has the
two singularity surfaces z; + iz, = 0, z; — iz, = 0.
Such surfaces intersect at the point z; =z, = 0,
which is consequently a point of singularity for the
function.) However, this manifold is not an invariant
one for the Galilei group. The only singular invariant
submanifold belonging to the surface (40)-(41) is
provided by

S=0. (42)
The Scheme A for the singular realizations corre-
sponding to the condition (42) is obtained directly
from the scheme (39) by suppressing the fourth and

S, +iS, =0 (40) fifth columns. Thus, the scheme corresponds to
and for unfaithful (trivial) realizations of the little group.
S, —iS, = 0. (41) We have

Ty

P=T. Po=T, Po=T, I=-W=E+_>

2m
):;1:.-& 112:__51' Qa=——-—1& (39")

m m m

Furthermore, if the matrix defined by Eq. (44) of I
is constructed, one easily checks that, both in cases
S # 0 and S = 0, the rank ¢,’equals the order of the
group. Consequently, no unfaithful realization of the
particular kind studied in I, Sec. 4, exists for m # 0.

Next, let us consider the case m = 0. It is apparent
that in this circumstance there is a number of variables

"Bl=M5 $2=M2

Ql = tan—l _A&

1
Qp= ——tan™ -
i Y Vit Ly

MMxT),
(M-T)M, — M*T,

x -

P;=M.T

tan

of the scheme (39) which become singular. Therefore,
according to the prescriptions given in Sec. 2, one has
to refer back to Egs. (26), substituting for the fifth-

line Poisson brackets:
{T;,,K} =0, (i,j=x,y,2). (43)

Scheme A, in this case, can be constructed in the form
PB,=E I =KxT? 3,=T°

-1 K-T

TEKxT-M)

K xT)-(MxT)

(44)

where M = [M|, T = |T|. The detailed calculations are given in Appendix B.
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The invariant singular manifolds related to the scheme (44) and the corresponding Scheme A can be

summarized in the following table:

KxT=0
Bo=M, P = M* Bo=E N =M.T J=T>
D, = arctan % 8, = 2 arctan - 1‘2()1‘:4 "_T)MT BT (44')
T=0
Po= M, Py = M* 3 =M-K 3=K* 3 =E
£, = arctan %Ili Q= 511\—4 arctan ™ -A;I(()IJ\\{J,X—KI)CIZK, (44"
T=K=0
P=M, =M S,=E
L, = arctan J\MT:, (44")
M=T=K=0
S=E (4™

The realizations of the types (44'), (44”), and (44")
are the canonical analogs of the true unitary
representations of the second, third, and fourth
classes studied by Inénii and Wigner.® The realiza-
tions (44’) are faithful, while all the others are un-
faithful. In particular, within the realizations (44")
the translation subgroup corresponds to the identity.
If 35 is not fixed, such realizations are faithful
realizations of the homogeneous Galilei group plus
time translations. The realizations (44") are faithful
realizations of the rotation group plus time transla-
tions and those of the type (44™) are faithful realiza-
tions of the time translations group if, again, I = E
is not fixed. We remark that in the cases (44") and
(44") the time translation E becomes a commutative
subgroup. Consequently, if E reduces tosa constant, a
new cause of unfaithfulness arises (cf. I, Sec. 4) and
the realizations become faithful realizations of the
homogeneous Galilei group [isomorphic to the Eu-
clidean group in three dimensions E+(3)] and of the
rotation group, respectively.

5. THE IRREDUCIBLE REALIZATIONS

The irreducible realizations can be directly con-
structed according to the following procedure: one
starts from Scheme A and inverts the functions
(), B(y), I(p), obtaining the expressions

Vo =,(Q, B, J).

3 E. Inénii and E. P. Wigner, Nuovo Cimento 9, 705 (1952).

(49)

Then one introduces axiomatically a system of 2k
canonical variables ¢, p and sets

Q=q; By=p; Gj=1,--+,h). (46)
Finally, one prescribes certain definite values for the
canonical invariants in their accessible domain, taking
into account the results of I, Sec. 4.

In the case m #% 0 one realizes from the discussion
of the previous section that there are two kinds of
irreducible realizations: singular realizations, for which

S=0, @7
corresponding to systems with three degrees of
freedom, and regular realizations, for which S?
equals a positive constant s, corresponding to sys-
tems with four degrees of freedom. In the case m = 0,
according to the above, there can be five different
kinds of irreducible realizations, three of which are
unfaithful; moreover, the realization corresponding
to the scheme (44) is regular, while the other four are
of a singular type.

A. Irreducible Singular Realizations for m = 0:
the Free Mass Point

For the singular realizations, we have from (39),
(45), and (46)

T=p,

K= —mgq, (48)
so that Eqgs. (35) and (47) give

M=gqxp (49)
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Finally, from the actual structure of the invariant 3,
we deduce the Hamiltonian
2

H=—E=-2 + const. (50)
2m

Using Eqs. (48), (49), and (50), it is possible to
write down explicitly the infinitesimal transformations
of the various types:

(a) Pure rotations

{‘11{ = ¢; + dw€4dy,

p; = P; + 00€Dy; (51)
(b) Space translations
{ q; = g; — da;,
Py =P;; (517
(c) Pure Galilean transformations
{‘1:" =4y,
pj = p; — mdv;; (51"
(d) Time translations
t g 4 i
qi - qz + m 67’ (51//”)

p; = Pj> (i,j = x, 2).
An examination of the transformation laws (51),
along with Eq. (50), shows that the realization corre-
sponds to a free mass point with Cartesian coordi-
nates ¢,, ¢, , 4,; momenta p, p,, p,; and mass m.
In particular, from Egs. (51”) we observe that it
follows that, under the acceleration

X' =X — v,

(52)

the configurational variable q does not change,
exactly as x does not for # = 0. This is in agreement
with the fact that, as discussed in Sec. 1, the elements
of the realization provide a connection among the
canonical variables at time equal to zero. The trans-
formation properties for the canonical variables at
time ¢ have to be constructed according to Eq. (6)
as a product of a first time translation (—¢), the
transformation at time equal zero, and a second time
translation (r). Since the time translation commutes
with the pure rotations, the space translations, and,
obviously, other time translations, the transformation
properties of q(¢) and p(z), under such transforma-
tions, are directly obtained simply by replacing such
expressions for q and p into Egs. (51), (51”), and
(51™). As for the acceleration, Eq. (51”) has to be
replaced by

{ qi(t) = qt) — dut,

pi(t) = p,(t) — méu,, (53)
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in complete agreement with Eq. (52). Correspondingly,
the generators of such infinitesimal transformations
can be obtained from the time-independent ones by
simply reexpressing the old variables q and p in terms
of the new ones g(t), p(t). One obtains

T = p(0),
K= —mq(t) + p(1) - ¢,

M = q(t) x p(?), (54)
—E=H= P—z(t—) + const.
Zm

Going back to the original discussion, we recall that
Eqs. (50) and (54) provide the expression of the free
mass-point Hamiltonian, if m is interpreted as the
physical mass. In this connection, remembering what
was said at the end of Sec. 3, we remark that if one
performs the anticanonical transformation

g: = 9>
pi = _pj (la_l = X,)", Z), (55)
it follows that
T=-T@ -0 =5
K = —K(g, —p) = mgq,
=2
E=~E@—p) =~ +2T

Er—n"

so that, in the new variables, a new realization is

.defined in which the mass m and the “internal energy”

W = —3, are changed in sign.

In this case, we observe that the value of -3, = W
gives merely the zero-point energy. The physical
arbitrariness of this quantity is reflected in the fact
that the canonical realizations corresponding to
different values of 3, are identical ones. This case is
just an example of the more general situation discussed
in Sec. 4 of I [see also what was said in Sec. 2 of this
paper in connection with Eq. (27)].

B. Irreducible Regular Realizations for m # 0:
the Particle with Spin

We want to consider now the general irreducible
realizations of a regular type. In this case, J, = S?
has to equal identically a positive constant s2, and J,
can assume any real constant value as before. Such
regular tealizations can be explicitly constructed by
introducing two additional canonical variables. Indeed,
from the scheme (39) and Eq. (46), using now the
variables y and p, for g, and p,, one has

T=p,

K = —mq, 7
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and
S, = (s* — pd)cos y,
3

y = (s* — p}’siny, (58)
S,=p, SP=5
Consequently, one also has [see Eq. (35)]
M=gqxp+S5, (59)
and, finally,
p2
= —E = — 4 const. (60)
2m

Such a realization can be plainly interpreted as
corresponding to a free particle with spin s (see II,
Secs. 4, 5 where a discussion of the connections with
spinor theory is also given). The same remarks as
before hold true about the zero-point energy.

C. The Irreducible Realizations for m = 0

‘The irreducible realizations for m = 0 should be
obtained from Eqs. (44), (44'), (44"), (44"), and (44")
following the procedure already described. We shall
not do this in detail, but we want to make a few re-
marks. '

The realizations corresponding to Schemes A (44"),
(44"), and (44™), as we have already said, are
unfaithful realizations, i.e., realizations of factor
groups and, consequently, they are not interesting
for the Galilei group directly. The realizations corre-
sponding to the schemes (44) and (44') are instead
faithful ones and stand, in some way, in analogy with
the regular and the singular realizations for m 0.
Actually, they can be viewed as limiting cases of the
previous situations when the mass goes to zero and
consequently the velocity and the center-of-mass
coordinates go to infinity. In this connection, we can
see that there is no possible way to infroduce into the
framework of such realizations center-of-mass co-
ordinates and linear-momentum variables satisfying
reasonable physical requirements. As to the center-of-
mass coordinates, obvious requirements are that under
infinitesimal rotations, space translations, and accelera-
tions, they shall transform respectively as

Q=Q;+ 0w ;€5 Qx»
Q;=Q; — day,
Q; = Qf’ (]a Lk=x, y»Z)-

Consequently, Q; has to satisfy the following rela-
tions:

(61)

{M;, Qi} = € Qs
{Ti9 Qg} = “51';',
K, Q=0 (i,j,k=x,y,2).

(62)
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It is readily seen that a quantity obeying such equa-
tions cannot have zero Poisson brackets with the
canonical invariants appearing in the schemes (44)
and (44’) and so it cannot be a function of the in-
finitesimal generators alone. As for the linear momen-
tum, we should assume the following transformation
properties under rotations, space translations, and
accelerations, respectively:

P =P, + dwey P,

P;=P;, (63)
P;=P,-'—;uavj (.]’ l’k=x’y’ Z)’

where u should be the mass of the system, so that
{M;, P} = €4P,
{T;, PJ} =0, (64)

{K,-, P:I} = '—/'“sij (i,js k= X, ) 2).

Now, Eqs. (64) are incompatible with the schemes
(44) and (44') unless u = 0. This is straightforward, as
before, in the case of scheme (44). As for scheme
(44", from the first Eq. (64), we must have

M-T,P}=~TxP);=0 (j=ux,y,2), (65
so that
P, =AT; [with{M,,2} =0(=x,y,2)]. (66)

Moreover, in order to satisfy the remaining Eqs. (64),
it must be that

{T;, 2y =0, {K;, }T; = —pdy;. (67)
Taking j # i, the second equation gives, for any i,

{Kis 2 =0 (68)
and, consequently,
{K;, P;} = 0. (69)

In both cases (44) and (44'), if also we require that P,
be a constant of the motion {E, P,} = 0, we must have
Eq. (66) with 2 = const. However, such a momentum
variable does not correspond to a zero-mass system.

6. NONIRREDUCIBLE REALIZATIONS:
FREE RIGID SYSTEMS

We want to discuss, now, some simple classic
examples of mechanical systems corresponding to
nonirreducible realizations. In analogy with what was
done in the case of the rotation group, our attitude will
be to consider the transformation properties of the
canonical coordinates as already known on the basis
of their physical meaning; then to deduce the explicit
expressions of the generators of the infinitesimal
transformations; finally to construct the corre-
sponding Scheme B. In this section we shall discuss
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free rigid systems: precisely, the rigid rod, the spher-
ical top, the symmetrical and the asymmetrical top.

A. Free Rigid Rod

We intend for a rigid rod or linear rotator, in ana-
logy with IT, a system characterized by the coordinates
of a mass center q,, ¢, , g, , by two angular coordinates
@, 0 specifying an orientation, and by the conjugate
momenta p,, P, P23 Py> Po-

Under a pure rotation, the mass-center coordinates
and the conjugate momenta transform as vectors,
while the transformation properties of the angular
variables ¢, 6 and of p,, p, are those of the same
coordinates of the linear rotator [cf. II (Sec. 3, ii)].
Under a space translation all the variables remain un-
changed except for the mass-center coordinates which
transform according to thelaw q" = q — da. Under an
acceleration, in the time-independent image, only the
total momentum p transforms, according to the law
p’ = p — mdv. Finally, the transformation properties
under a time translation are obviously determined by
the structure of the Hamiltonian. Summing up, we
can write the following expressions for the infinitesimal
generators [see II (Sec. 3, ii)]:

T = p,
=—mq,
M=qxp+S8,

2

P | S
—FE = H =— 4 — 4 const
2m 21+

(70)

=L2+_1_ (pg+ 1 p2) + const
2m 21 sin 6" * ’
with
S, = —sin @p, — cot 6 cos 7}
S, = cos gp, — cot Osin ¢p,,
1
sin®

(70)

S,=p,, S'=p;+ j

where m and I are the mass and the moment of inertia
of the rod. The angular momentum in the center-of-
mass system is denoted by S.

In constructing Scheme B, the only variables which
are not trivially obtained from Eqgs. (70) and (70’) are
05 and P;. Using the results of IT (Sec. 3,ii and Appen-
dix A), one sees that a possible choice is provided by

1
sin? @

P5531=p§+ Pi,

petan 0

1
5 == — arctan , S =S| 71
Q o5 S S| (71)

Moreover, since the variables are ten in number, one
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of the invariants must be fixed. However, one directly
ascertains from Egs. (70) that this cannot be the case
for 3, itself. A correct choice for the second invariant
in the Scheme B is instead

J=3J+ 51}31 [see I and IT (Sec. 1)], (72)

which, again, gives the physically irrelevant zero-point
energy, with the same consequences as before. The
physical meaning of the variable Q; as a suitable angle
of rotation has been illustrated in II [Sec. 3, iil],
where its role was played by the variable Q,. The
Scheme B for this case together with the preceding
and the following ones is summarized at the end of the
paper (see Table I).

B. Free Rigid Body

The canonical coordinates in this case can be
chosentobeq,,q,,q.; .0, pand p,,p,,p.;p,,Ps> P,
as before, the g, g,, g,, are the center-of-mass co-
ordinates and ¢, 6, ¥ the Euler angles specifying the
body orientation. (The conventions used in Ref. 4
are adopted throughout.) Proceeding as in the
previous case and using the results of II (Sec. 3, iii),
the canonical generators can be written as

T =p,
K= —mq,
M=gxp+S§, (73)
2 2 2 2
P 25 2’] EC
—E=H=— 4 54 Z14 = t,
am oL Tar, T, Teom
where

sin .
S, = cos pp, + ~_—¢pw — cot 0 sin @p,,,
sin 6

. cos ¢
S, = sin — ——= p_ 4+ cot 0 cos R ,
VTP T Gng P PPe> (139
Sz = Py>
1 9 2 2cot
+ —_—_——
sin® 6 (Pe + Py) sin 8
where I,, I, I; are the principal moments of inertia
and X, X,, X, are the expressions obtained from
Sz» Sy, S, interchanging ¢ and y, p, and p,; they
represent the three components of the intrinsic angular
momentum S in the body system which we assume here
to be defined by the principal axes of inertia [cf. II,
(Sec. 3, iii)]. We recall also that

{Sz9zy}=0 (i=x7y32;j=§7nal)9

* H. Goldstein, Classical Mechanics (Addison-Wesley Publishing
Co., Reading, Mass., 1959), Chap. 4.

S*=pp + Doy >

(74
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and obviously

(2,2} = ey (Lj, k=§, 7, §). (75)
In order to construct Scheme B we need to discuss
different cases separately:
Spherical Top: I, = I, =1, = I
The Hamiltonian becomes

2 2
H-_—E—p—+s + const.

m (76)

Thus one sees that, as in the case of the linear rotator,
3=+ -2%31 = const an

is true. Then, using the results obtained in II (Sec.
3, iii and Appendix D), Scheme B can be completed
by setting

ot 0
P, =3, = w 5
Qs — —S.arctan M R
y 54
S — LePy_
Scos 6 (78)
Py =3,

Qs = arctan&.
§
In conclusion, there are two variables P, and Q,
in the second set [cf. I (Sec. 3)], one fixed invariant
3; and two inessential variables Pg, Qg in the
fourth set. We notice in particular that, for a time
translation,

Qs =0 + e (79)
is true in agreement with the fact that, according to the
discussion given in II (Sec. 3, iii), the expression
28Q; represents the angle of rotation around the
intrinsic angular momentum S—more precisely, the
angle between the half-planes from S to the z and

{ axes, respectively.

Symmetrical Top: I, =L, =1 # I
The Hamiltonian can be written

H E + b +22+ onst
= —E = cons
2m 21 21,
S - I
=2 const. (80
2m 21+ 211, Py + (80)

No function of the invariants can be constructed in this
case, which is identically equal to a constant; con-
sequently, the fourth set is empty. The invariant
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3, defined above becomes

13—

81
20,1 (81)

I P + const,

’—
5 =

so that it has zero Poisson bracket with the expression
of Qj already introduced for the spherical top. Thus,
we can set

— ot 6
P5=Sl=p3 3+pz)__ ne.pq) ("R
0, = L arctan —Petanb

28 —_ PoPs_ (82)
Scosf
I —1
Po=Sp==2—p2 |
o B

The variable Q, has to be, for instance, a function of
the quantities X, arctan %, /%, such that

{Qs, Pe} = 1. (83)
One readily finds
LI 1 %,
= . 84
0= oy 5 wenan (84)

Under a time translation, Q5 and Q, transform in
the following way:

Qs =05 + yE
Qe=Qg—. (85)

As to- their physical meaning, we assume that the
{ axis coincides with the axis of the symmetrical top;
then the expression 2SQ; provides, as before, the
angle between the two half-planes from S to the z
and the { axes, respectively, i.e., in this case, the
precession angle. The quantity (I — I5/I1,) X, Q, gives,
instead, the angle between the half-plane (S-{)
and (£-0), i.e., essentially, the proper rotation angle
of the body. Let us remark that a possible different
choice for the variables of the second set, precisely
that which retains the original form of the invariants
31, 3z, is accomplished by putting

P=P;=3,,

1
Qs = Qs + 5} Qs’ (86)

= 1
Pi=P;,——P.=3,,
[ TaL 2
QG-_"QG-

In this case Q; does not change under the time
translation, i.e., it is a constant of motion.
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Asymmetrical Top: Iy # I, I, # Iy, I) # I

In this case also there is no variable in the fourth
set. It is interesting to remark that the canonical
realization is canonically equivalent to the previous
one of the symmetrical top, as it can be easily seen.
For instance, if one puts

P 5 = Sl »

Py =3, (87N
all the canonical generators, in terms of the variables
of Scheme B, have the same form in the two cases.
In particular, the Hamiltonian takes the form

2

H=X _p, (88)
2m
for the asymmetrical top and [see Egs. (86)]
2
H=L _ B, (89)
2m

for the symmetrical top. On the contrary, the realiza-
tions for the symmetrical top and the asymmetrical
top are not canonically equivalent to the realization
corresponding to the spherical top. In addition, let us
stress that, since the differences between such realiza-
tions are of a strictly dynamical character, they do not
appear in the corresponding realizations of the
rotation group, as it is apparent from II (see also
footnote to Table I).

The actual construction of the variables Q; and Q,
for the asymmetrical top involves the solution of a
very complicated system of partial differential equa-
tions leading, as could be expected, to elliptic
functions. Though the system is solvable, we shall not
quote here the results and no further detail will be
added about this point. Of course, the physical
meaning of the variables Q; and Qg is no longer a
simple one: indeed, their transformation properties
under time translations remain very simple but we
know that in this case there is no significant angle
varying linearly with time.

7. NONIRREDUCIBLE REALIZATIONS;
SYSTEM OF MASS POINTS
Let us consider » mass points and denote with
g;, p; the canonical variables of the ith mass point and
with m, its mass; then consider the product of the
realizations corresponding to each mass point. In this

Case
T=2Pia
K=""'zmiqia
M=z‘1ixPi= (90)
—E=H= }_‘"‘ (=1, n).
12m'
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As for the constant m appearing in Egs. (22), one has

m=23m; (i=1",n). 9
The quantities
K 1
=“—=“zmiqc’»
m m3
P=T=ZP¢,
S=2(q~-Q xp; (92)
2
N — W= H,._.._z_l_(_ mip)
7 2m m
(i=1,"++,n)

are the coordinates of the center-of-mass, the total
linear momentum, the angular momentum, and the
energy taken in the center-of-mass frame. The realiza-
tion corresponds clearly to a system of free points.

In order to introduce an interaction, one can
proceed in the following way: The expressions for T,
K, and M are left unchanged, and the Hamiltonian is
modified as

2
H= —E= Z + U(q,, py)

i

(i’lﬂjzl’.."n)'

(93)
The requirement that the Poisson-bracket relations
(22) shall be still satisfied leads to

M, U}={T,, U} ={K,, U} =0 (I=x,y,2)
%4

Relations (94) imply that U must depend only on the
scalar products built up from coordinates q; — Q and
momenta p; — (m,/m)P (not all independent) in the
center-of-mass frame or, which is the same, from
relative coordinates q, — q; and relative velocities
pi/m; — p;im;. We remark that we could have
modified the expression of K as well, by setting

K=-3mq,+V(q,p) GLi=1-"",n).

(95)

However, with the aid of arguments parallel to those
given in the quantum case,® it can be shown that
V(y,;,p;) can be put equal zero without loss of
generality.

Here, we shall limit ourselves to discuss in detail
the case of two mass points. Let us introduce the
relative coordinate § = q; — q, and the conjugate

% L. L. Foldy, Phys. Rev. 122, 275 (1961); D. G. Currie, T. F.
Jordan, and E. C. G. Sudarshan, Rev. Mod. Phys. 35, 350 (1963),
p. 367.
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momentum
: my m,
P§=/‘g=_Pl"—P2a
m m
where p = mym,/m is the reduced mass and now,
obviously, m = m; + m,. The angular momentum

in the center-of-mass frame and the internal energy
can be written as

S=Exp;, (96)

1
W=-3,= 2 p: + UGEL Ipl. §- 29 (97)

If polar coordinates r, ¢, 0, rather than Cartesian
ones, are used to specify §, and the corresponding
conjugate momenta p,, p,, p, are introduced, one
obtains
8, = —sin pp, — cot 6 cos ¢p,,,
S, = cos gp, — cot 0 sin gp,,

9%
— 2 _ 2
Sz".ptp’ S —Po+sin20P;,
1 1 1
W= -3, =—(p}+ = i 2) U
2 2,u(p' r2p0+r2sin20p¢ +
s s
== 4u (99)
2u  2ur

Note that the expressions of the components of S ™

coincide with the corresponding expressions for the
intrinsic angular momentum of the linear rotator.

We see from Eqs. (98) and (99) that none of the
invariants reduce to a constant. Consequently, we can
put P; = J; = S% and Py = J; = — W. In order to
construct the variables Q; and Q4 of Scheme B, we
could apply the same procedure used in the previous
examples, which is directly based on the Theorem 2
of I. We do this in Appendix C for the case U = 0.
Here, instead, we want to have the opportunity of
introducing and illustrating a different approach
which displays general interest, since it shows the
connections between our group-theoretic formulation
and the classical formalism of Hamilton-Jacobi and,
in addition, it appears directly profitable for actual
calculations (for instance) in the case of purely
positional central interactions.

We observe that, in the case of the Galilei group,
the variables Q(q, p) and P(q, p) of the typical form
are essentially Hamilton-Jacobi variables in the sense
of the analytical mechanics. Therefore, the problem of
the construction of Scheme B is essentially reduced to
finding a suitable solution of the time-independent
Hamilton—Jacobi equation. Conversely, the knowledge
of Scheme B provides the solution of the equations of
motion.

M. PAURI AND G. M. PROSPERI

If we assume that we have U = U(r), and we
separate the center-of-mass variables, the time-
independent Hamilton-Jacobi equation can be written
in the form

1[(98¢ | 1 (98V 1 (98V

Zy[(ar) rZ(ao) + rsin 0(3(]))] W (100)
A complete integral of this equation is provided by
(see for instance Ref. 6)

0 o 3
8=oc,p<p+f de'{ag— 0 }
-2 Sil’l2 o’

2

+ f :dr'{2;t[w — U()] — °‘—0}§ (101)

’2

r
(«, , o, integration constants). Then, from the rela-
tions

_s s 28

o’ o’ o
one easily verifies that «, and o, are the z component
and the absolute value of the angular momentum in
the centre-of-mass frame and that w is clearly the
energy in the same frame (internal energy). Thus § can
be rewritten in terms of P,, P;, P, as

Do Po = (102)

(] P2 3
S(r,t;),B,P4,P5,P6)=P4<p+J. de,[P5_ : 24 /}
90 sin® 6

, }
+ f dr’{—2,u[P6 + U] — P—;} . (103)
To r
so that there follows
[} 2.2 07
Q4=—a—8—=¢p—fd6’ P,/sin® 6 .
aP4 () [P5 - P42/Sin2 0’]
]
0, =28 _ 1 [4o1p, — Prsinz o7t
aP5 2 8o
(109
1 TEJL, 2 P U ’ P5
=3 | Sl wpe+ (r)]—;z} :
28 v n Pyt
0, = 2 = _.Hfmdr{—zy[Ps + U()] — r—;} .

Evaluating the first integral, one obtains the expected
expression for Q,, namely,

€os @p, — cot & sin ¢p,

Q, = arctan —
—sin @p, — cot 6 cos ¢p,

= arctan Sy . (105)

z
The second and third integrals can obviously be
evaluated only for a definite choice of the interaction

§ L. D. Landau and E. M. Lifshitz, Mechanics (Pergamon Press
Inc., New York, 1960), Chap. VII, Sec. 48.
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U(r). For instance, in the case of free particles
U(r) = 0, one gets

1 petan 1 rp,
= — arctan ~¥——— — — arctan —
05 =352 s 25 s
=L octan Retenf =
7p,D tan 0 (106)
S+ 22—
S
0 =10 o _ PP
‘T 2py rpi+ S

which are to be compared with the same expressions
derived in Appendix C. In the case of the Coulomb
potential U(r) = —g/r, one gets, instead,

0, = L arctan potanf L arctan —2z ,
28 S 28 S gur
S
— 2urP
Qs = LS + g arctan - r ; , (107)
2Py 2Pg[2uP¢lt rp,2uPs]
where
pp, S g
—Py= =y =W="F4+— —~2. (108)
2u  2ur r

Let us remark that the first term in the expression of
the variable @g;, for any interaction, coincides with
the corresponding expression of the same variable
in the case of the rigid rod. It is also clear that the
above treatment contains both the bound motion case
and the unbound one through the sign of Py = 3J,.

In a forthcoming paper we shall discuss in detail
the canonical realizations of the inhomogeneous
Lorentz group.

APPENDIX A: SOLUTIONS OF THE
SYSTEM (34)

The system can be written more concisely as

o0 ob 00
= K, —m = + =T, =0,
€ alan 1 m o, + oF
od od .
€m‘“—an T+ méf,- =0, i=x,y,z. (AD

This is a linear complete homogeneous system of six
equations in ten variables, which must have four
independent solutions.

First of all, let us look for a particular solution
® = (T, K, E), independent of M. It follows that

o0 oo

Zr-—-mT =

GELT™ o1, = % (A2)
g——;i =0 (i=x,y,2). (A3)
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Using the method of the characteristics already used
in IT (Appendix D), we can write

10E _10E_10E _

T,oT, T,dT, T,0T,
from which we get

E=— - (T4 T+ TH+ 0, (A9
2m
Thus, the solution we were looking for can be written

T2
®,=— +E, (A6)

2m
which coincides with the expression (36). Then, let us
search for three other independent solutions, which
are functions of only M, T, and K. Direct irispection
of (Al) suggests a need for expressions linear in M
of the form

O=a-M+¥VYXK,T), (AT

a being a constant vector. Such an expression, when
replaced in (Al), leads to the total differential system

o

€0, K, — m 3_7; =0,
;T + mg—\i =0, (A®)
which gives
Y = -}:;ema,-Ta-Kl + const. (A9
Consequently, we obtain
<D=a-M+ia-KxT, (A10)

and finally, choosing a as the unit vector along the
three coordinate axes, we get the expressions (35).

APPENDIX B: CONSTRUCTION OF SCHEME
A FOR THE REGULAR REALIZATIONS
WITH m =0

As stated in Sec. 3, we have also in this case & =
4, k=2. Let us start with choosing P, = M,.
Then, the results of II (Sec. 2) enable us to put Q, =
arctan M, /M. The system

{sBl > (D} =0,

{2, (I)} =0 (B1)
is complete and admits eight independent solutions.
It is evident that any scalar which can be constructed
with the generators is a solution of the system. It can

be checked that a possible choice of the independent
scalars is

M2, T, M-T,K-T,E, T = [K x TJ2,

A=KxT-M. (B2
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A further independent solution remains to be deter-
mined, which, obviously, cannot be a scalar. Since
M,, T,, and the scalars (B2) are nine independent
variables which have a zero Poisson bracket with P, ,
in order to find the remaining solution it is sufficient
to look for a function @ of such variables having a
zero Poisson bracket with Q,. We must have
M-T— M,T,00 90

, 0} = — =0, (B3
@ M —m o, F oM, B3)
M= M|

Thus, ® can be assumed to be a function of only M,
T,,M? and M- T. Solving (B3) with the method of
the characteristics, we find

r _M-T
O F M T (M xT)xM],
MYV T YT R

Now, we can choose P, = M? and look for a func-
tion fQ, of M2, ®, and the remaining variables, such

that (Qy, MF) = 1. (B5)

It holds that

@m =2 Ml =ML, _, MxT - 5
’ Tomr— Myt T - M

while, obviously, all the scalars (B2) have zero
Poisson brackets with M2, As a consequence of the
Jacobi identity, the expression (B6) must be a solution
of the system (B1) [see I (Sec. 2)], and so it could be
reexpressed in terms of @ and of the variables (B2).
It is more convenient to denote the quantity (B6) by
2@’ and to notice that it holds true for

{®, M2} = 20,

{d', M2} = —-2M*Q, (B7)
Then, Q, can be assumed to be a-function of ®, @',
M2, and (BS) becomes

, 0Q, 2 P2
20 20 ZM(Daqy = 1.
A solution of the associate homogeneous equation is
readily found to be
Q = 0" + M2, (B9)
Then, using as independent variables @’ and € instead
of @' and @, we get

—2M(Q — @)

(B8)
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o’
from which it easily follows that

1, (B10)

L, = 1 arctan ( — -(—D—)
2M Mo

= L arctan (B11)
2M

MT,—M-TM,’

M. PAURI AND G. M. PROSPERI

At this point we have to look for six independent
functions of the variables (B2) and of ® which have
zero Poisson brackets with B, and Q,.

From the structure of Q,, one can readily check
that, among the variables (B2),

M- T,K.-T,E, T (B12)

have the above property, while for A the following is

true:

AT

{Q2sA} =- Pym—y 21
2[M°T* ~ (M - T)]

A sixth expression having zero Poisson brackets with

B, and Q, can be obtained by

{Qp, ¥(M2 TEM - T,K - T, E, T, A)}

T = [T]. (B13)

oY AT ¥
= - — =0. (B14
oM?  2[MP*T*— (M:T)%] A (Bl4)
A solution of this equation is
¥ = A[MT? — (M- T)*. (B15)

Then, setting P; = M - T, with the usual procedure
we find

Ly = L arctan TK x T-M) .
T KxT)-(MxT)
We are left with P, and Q;. It is readily seen that
T2, K- T, and I' have zero Poisson bracket with Q.
The same is true for E, since it is obvious that it has
zero Poisson bracket with K x T. Thus, if one sets
B, = E, an obvious choice for Q is

K-T

y i
The remaining quantities T* and I' can be directly
assumed as the two independent canonical invariants.

(B16)

Q= (B17)

APPENDIX C: DETERMINATION OF THE
VARIABLES Q, AND @, FOR THE SYSTEM
OF TWO FREE PARTICLES ACCORDING TO

THE CONSTRUCTIVE PROCEDURE OF
THEOREM 2 OF 1
The Variable Q5 We have to search for a function

Qs = Q4(r, pr» @, 6) such that
{QA’ Q5} = {Pd’ Q5} = O’
{05, 8% =1, {Qs,Pe} = 0. (&)

The result obtained for the rigid body suggests looking
for an expression of the form

petan @

Q; = 2—15 arctan s + ®(r, p,, S%. (C2)

The first three relations (C1) are then automatically
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satisfied. The last one gives
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In conclusion we have

{® 3}__}_5__.1__&@__&6_(1): Q5=~—1—arctan—h—tgl—g———1—arctanr-&
TVE 2ur*  u or ur’dp, 28 S S
(C3) ~ L arctan i’g_‘ﬂﬁ_:_’_lla _ ()
Putting & = rp,, # = r, this becomes S 4 [PePotant
S
(&% + Sz)@ + & oD + 1_ 0. (C4) The Variable Qq4: The variable Qg is easily deter-
Gl3 o 2 mined by observing that two independent functions

A particular solution of Eq. (C4) is easily found
by assuming ® to be independent of %, and the follow-

ing is obtained:

which commute with both P; and Q; are given by
& =rp, and J, itself. Then, for a function ¥ =
T(E, SZ)’ we have

{\Fy 32} =1, (CS)
ob ie.
2 o2 s 2 2
@+ 5=~ (C5) 32(_1’4_.5_) o
0& u urt 0
and so Thus, we conclude that
O =— 5'% arctan %’—' + const. (Co) Qs = %‘2 P, (C10)

TasLE 1. The variables of the typical form (Scheme B) for the physical n > 0) canonical realizations discussed in the present paper.

Free mass point
(3, =0, 3, = const).

P, =p,
1 P, =p,

Ql"—‘qz
Q2=qv
P8=Pz Qs=q2

Free

particle with spin

(3, = 52, I, = const).

P1=Pz Q1=‘Iz
I Py =p, 2 =gy
Py=p, Qs=gq.
Py=p, Q.=

Rigid rod (33

P1=Pa:
P, =p,
I P3=Pz
Py=p,

1
W Po=ps+ g e

Spherical top (3,

P1=Pz
P1=Pv
I P8=Pz
Pi=p,

1
3+ 37 3, = const).

Ql =4
Qz =4y
Qs =4¢. Ny
Q. = arctan —— 222 cot 0 sin gp,
—sin gpy — cot § cos gp,
. potan 6
Q=3 AL arctan ot

1
=3, + 3 3, = const)a,

o= g
G =gy
QS = qa
, cos ¢
Sin gpg — o P + cot 8 cos PP
Q, = arctan

sin @ .
cos gpg + ——p pp — cot O sin gp,

8 Note that, looking at Scheme B for the spherical top, the part corresponding to the internal motion can be considered as providing a particular class of realizations
(viz., the *“symmetrical” ones) of the group O(3) ® O(3), which is an “invariance” dynamical symmetry group for the intrinsic motion of the system, This is no
longer true for the symmetrical and asymmetrical top, in which the dynamical symmetry is broken.
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TABLE I (contd)

1 2cot B 1 tan 6
W Po=po+ Grg Gh +P) = g Pore Qs = jrpg arctan —E——
© 7 Potcosb
. cos
sin ypg — e 2 + cot 6 cos yp,,
v Py =p, Q¢ = arctan -
7 ., siny .
Cos yps + = pp — cot 6 sin yp,,
Symmetrical top (1st choice, cf. Egs. (72), (82), (84)).
P1 =P5 Ql = qz
2y =p, Q. =gq,
1 Py = Ps Qs = qs
. cos
sin gpy — 51—1%’ Py + cot O cos gp,
Py=p, @, = arctan S0 g
€os gpg + ey cot & sin gp,
1 2cot 6 1 po tan 6
—pt L (pd gy XY -
Py =p* + sin’ @ e + 2y sin § PoPv 0Os 2Py arctan "~ PePo
(Pt — (Ps)¥ cos 6
II
. cos ‘0
Is—1 n; 1 SInwpo—sinopq’-l-co €Os ¥py
Py = ——pj, Qs = — arctan -
201 IL—1Ip, sin y .
cos ypy + g Py — cot 0 sin yp,,
System of two free mass points
1
(Px =P, O = Z mg,,
%
1
Py=P Q.=;§i:m;q:,
I
1
Py, =P, Qa=;t§mm,
_ _ cos gpg — cot 0sin gp,
Pu=ro Qu = arctan —a5 @pg — cot 0 cos gp,,
1 1 Pe tan 0 1 Py
= p? . _ —_ i
Py =p; + st oPe Qs AL arctan Pt AT arctan ®
it
Y - L
Po=—%" 27  Qe=3p, P
System of two mass points interacting through a Coulomb potential: U(r) = —g/r.
(Pl =P, o= m ; myqy,
1
P,=P, Q.=;lzm‘q:,
12
! 1
Py =P, Qa=;§m¢q1,
_ cos gpg — cot 0sin gp,
Po=po Q. = arctan — e — cot B cos PPy
1 1 po tan 61 1 p,
= = 2 —-— -
Py =p; + st Pe Qs P TTAT arctan AL T arctan ot — 7
u (Pt
2 2 —_
“E_p_ S P BN g — 2urky
Po= =" 2ur @ =25, Guppl T ub
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It is shown that the general addition theorems of Gegenbauer, relating Bessel functions and Gegenbauer
polynomials, are special cases of identities for special functions obtained from a study of certain local
irreducible representations of the complex Euclidean group in 3-space. Among the physically interesting
results generalized by this analysis are the expansion for a plane wave as a sum of spherical waves and the
addition theorem for spherical waves. This paper is one of a series attempting to derive the special func-
tions of mathematical physics and their basic properties from the representation theory of Lie symmetry

groups.

INTRODUCTION

The cylindrical (Bessel) functions obey two distinct
types of addition theorems: those of Graf and
Gegenbauer.! Graf’s addition theorems are closely
related to the representation theory of the Euclidean
group in the plane and are obtained from a study of
the solutions of the wave equation in 2-space.>™* On
the other hand, the addition theorems of Gegenbauer
are usually considered as by-products of the repre-
sentation theory of the Euclidean group in n-space
and are ordinarily derived from a study of the wave
equation in n-space. It will be shown, however, that
the Gegenbauer theorems can be derived (and even
extended) from a study of certain representations of
the Euclidean group in 3-space alone.

The results presented here are part of a continuing
program by the author to uncover the relationship
between Lie symmetry groups and the special func-
tions of mathematical physics.’¢ In this program,
symmetry groups are considered as fundamental
objects, while special functions and their properties
are derived in a systematic fashion from the repre-
sentation theory of the symmetry groups. The special
functions associated with a given group arise in two
ways: as matrix elements corresponding to a repre-
sentation of the group, and as basis vectors in a model
of such a representation. To the extent that matrix
elements and models can be derived systematically for
a given group, a large part of special function theory

1'W. Magnus, F. Oberhettinger, and R. Soni, Formulas and
Theorems for the Special Functions of Mathematical Physics
(Springer-Verlag, New York, 1966), 3rd ed.

2N. Y. Vilenkin, Usp. Mat. Nauk. N.S., 11, No. 3, 69 (1956).

3N. Y. Vilenkin, Special Functions and Theory of Group Rep-
resentations (1zd. Nauka., Moscow, 1965).

4 E. P. Wigner, The Application of Group Theory to the Special
Functions of Mathematical Physics, Princeton Lecture Notes (1955)
(unpublished).

5W. Miller, On Lie Algebras and Some Special Functions of
Mathematical Physics, American Mathematical Society Memoir,
No. 50 (Providence, 1964).

8 W. Miller, Lie Theory and Special Functions (Academic Press
Inc., New York, 1968), Chaps. S, 6.

can be derived systematically from the theory of Lie
groups.

In this paper, we examine a restricted class of
irreducible representations of the complex Euclidean
group in 3-space and obtain identities relating Bessel
functions and Gegenbauer polynomials. In future
papers, we shall examine other representations of this
group and derive identities relating Whittaker func-
tions dand Jacobi polynomials.

1. REPRESENTATIONS OF THE EUCLIDEAN
GROUP
We denote by G, the 6-dimensional complex Lie
algebra with generators p*, p~, p3, j*, j=, and ;3
commutation relations as follows:
(%75 = /% [ 1= 2/5
P41 = (%41 = &%,
Ut pfl=Ump1=1/%p1=0,
Lt =1pt )71 = 2p%
(P pl = lpt.p1=0.
The elements j*, j~, j® generate a subalgebra of G,
isomorphic to s/(2), the Lie algebra of 2 x 2 traceless
matrices.® The elements p*, p~, p® generate a 3-dimen-
sional Abelian ideal in Gs.
Denote by T, the complex 6-parameter Lie group
consisting of all elements {w, g},

b
W= ((Z, /3’ IV) € ¢3’ g = (‘cl d) € SL(Z)’

1.1)

ad — be = 1, (1.2)
with group multiplication
w, gHw', g} = {(w + gw', gg'}, (1.3)

where “4* denotes vector addition in ¢ and
gw = (a®x — b8 + aby, —c®a + d?f — cdy,
2aco. — 2bdf 4 (bec + ad)y). (1.4)

Here w is a complex 3-vector and g is a complex
2 X 2 unimodular matrix. The identity element of
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T, is {0, e}, where 0 = (0, 0, 0) and e is the identity
element of SL(2), and the inverse of an element {w, g}
is given by
{w, g} = {-g7'w, g7}.

The set of all elements {0, g}, g € SL(2), forms a
subgroup of T, which can be identified with SL(2).
Similarly, the set of all elements {w, e}, w € ¢3, forms
a subgroup of T, which can be identified with ¢2.

It is straightforward to show that Gg is the Lie
algebra of T,. Indeed, the generators of G, can be
chosen so that

W, g} = exp (ap* + fp~ + ¥p®) exp [(—b/d)j*]

X exp (—cdj~) exp (—21Indj?), (1.5)
where {w, g} is defined by Eq. (1.2) and g is in a
sufficiently small neighborhood of e [in the topology
of SL(2)].® Here “exp” is the exponential map of a
neighborhood of O in Gy onto a neighborhood of
{0, e} in T,.7

The complex group Ty is closely related to the real
Euclidean group in 3-space®: the set of all pairs
(r, R), r a real 3-vector, R a proper 3 x 3 orthogonal
matrix, with group multiplication

(r, (@', R’) = (r + Rr', RR).
To see this we note that Eg, the real, simply connected
covering group of the Euclidean group, can be
defined astheset of all pairs (r, 4), wherer = (ry, 5, 73)
is a real column vector and A is an element of SU(2)
(the group of 2 x 2 unitary unimodular matrices).
The group multiplication law is

(r, (', A) = [r + R(4)', A4'],

where R(4) is a real 3 x 3 orthogonal matrix given

explicitly by
Mat—b2+a2—B2), %(d’+53—a2—b2), ab+-ab

RO=) L @opr—artbo, d@+B+atsy, d—abtad) |’

—(ab+ab), i(~—ab+-ab), ag—bh
when
a b - .
A= (—B d) e SUQ), aa+ bb = 1.

Now, E, can be considered as a real subgroup of
T - Indeed, it is easy to show that the collection of ali
elements {w, A}, where w = [§(—ry — iry), 2(ry — iry),
—irg) and A € SU(2) forms a subgroup of T isomor-
phic to Eg. The isomorphism is given by (r, 4) <>
{W, A}’ r= (rl: Ty, Is).

The real 6-dimensional Lie algebra &; corresponding
to Egis generated by elements j, p,, k = 1, 2, 3, with
commutation relations

Us> Jid = €mdi>  Ljss Pl = €aprs
[pi» px) =0, fik,1=1,2,3, (1.6

7S. Helgason, Differential Geometry and Symmetric Spaces
(Addison-Wesley Publ. Co., Inc., Reading, Mass., 1962), Chap. 2.
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where ¢, is the completely antisymmetric tensor such
that €5, = +1. We choose these generators so that
they are related to the finite group elements by

(r, A) = exp (r1py + raps + r3ps) €Xp @1 js
X €xp 0], exp @2 s,

where r = (ry,7;,r5) and ¢,, 0, @, are the Euler
coordinates for A. The formal elements p*, p?, j*, 3,
defined in terms of the generators (1.6) by

PE=Fpa+ip, pP=ips,

JE= et i, P =1,
can easily be shown to satisfy the commutation
relations (1.1) for the complex Lie algebra Gy. Thus,
we have explicitly determined &; as a real form of G,
and T, as a complexification of &. In this sense we
can say that 7 is a complexification of the Euclidean
group in 3-space.

Consider a complex vector space ¥V (possibly
infinite-dimensional) and a representation p of Gg by
linear operators on V.56 Set

p(p*) = P+, p(p) = P*,
p(j*) =J% p(j?) =J%
Then the linear operators P+, P3, J*, J® satisfy com-
mutation relations on ¥ analogous to Eq. (1.1), where
now [4, Bl = AB — BA for operators 4 and Bon V.
We define two operators on ¥ which are of special
importance for the representation theory of G,. They
are
P.P = —P'P — P3P3,
P.J = ¥(PtJ + PJH) — P3P,
It is easy to show that
[P-P, p(@)] = [P-J, p()] =0
for all « € Gy. Thus, if p is an irreducible representa-
tion of G, we would expect P-P and P-J to be
multiples of the identity operator on V.

The irreducible representations of G which are of
interest in special function theory have been classi-
fied.5¢ Among these representations we single out the
following two classes related to Gegenbauer poly-
nomials and Bessel functions:

0)) Po().
There is a countable basis {f{*'} for ¥ such that m =
u,u—1,, —u+1, —y,and u=0,1, 2,---,
(@ pu(w), (0 < Reu <1and2unotan integer).
There is a countable basis { £} for ¥ such that m = u,
u—1, u—2,---, and u=pyu + n, where n =0,
:tl’ :|:2’ e,

These representations are defined for any nonzero

complex number w. Furthermore, corresponding to
each representation, the action of the infinitesimal

(1.7)
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operators on the basis vectors f* is given by
Jf(u) m 7(nu), J+f(u) — (m — u)f(u+)l,

JfW = —(m + w ¥, (1.8)
P ~ (W) 4 o(u + m)u — m) =
2u + lf 2u + 1 In
(1.9)
- —m—1)
prw — (u+1) oy —m)u—m (u—1).
=5 + 1f 2u + 1 Fmia
(1.10)
) O Flutn o+mu+m—1)
m T m—1 m—1
2u + 1 2u+4+1
(1.11)
P-Pfi¥ = -\, P-JW =0. (1.12)

[If a vector f{* on the right-hand side of one of the
expressions (1.8)-(1.12) does not belong to the
representation space, we set this vector equal to zero.]

It is easy to verify directly that the infinitesimal
operators given by these expressions (1.8)-(1.11) do
satisfy the commutation relations (1.1) and define
an irreducible representation of Gg. Furthermore, the
vectors {f{*}, corresponding to some fixed value of
u, form a basis for an irreducible representation of
the subalgebra s/(2) of Gg. Each such induced repre-
sentation of s/(2) associated with py(w) has dimension
2u 4+ 1 and is denoted by D(2u). Each such induced
representation of s/(2) associated with p, (w) is
infinite-dimensional and is denoted by |u. The rep-
resentations D(2u) and |u have been studied in detail
elsewhere.5:¢

Our aim in this paper is to examine the relationship
between the representations py(w), p,(w) and special
function theory. In particular, we shall be interested in
the following two aspects of this relationship:

(1) We can look for models of the abstract repre-
sentations py(w), p,(w) such that the infinitesimal
operators p(a), x € Gy, are linear differential operators
acting on a space V of analytic functions in n complex
variables. In this case the basis vectors f!*) will be
analytic functions and expressions (1.8)~(1.11) will
yield differential recursion relations obeyed by these
“special” functions. For n = 1, 2, all of the possible
models have been constructed.® In particular, for
n = 1 it is known that no models exist. For n = 2,
there is Model A:

J3=t—q, J+=—t—a—,
ot dz
J = rl[(1 ~ 22) g _ 2zt9—] (1.13)
0z ot
Pt=ot, PP =o(l -z, P?®= wz.

Corresponding to this model, the basis vectors £
are uniquely defined by relations (1.8)~(1.12) up to an
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arbitrary multiplicative constant and may be given by
fi)z,8) = T(u — m + DL(m + HCE(z)2n™

(1.19)
Here I'(x) is the gamma function and C2(z) is a
Gegenbauer polynomial defined by the generating
function (1 — 20z 4 ¥4 = 3 CAZn.

n=0
If the representation under consideration is p,(w),
then m takes the integer valuesw, u — 1,--+, —uand
u runs over the nonnegative integers in Eq. (1.10).
However, if the representation is p,(w), thenm = u,
u—1, u~—2,---, and u takes all values such that
u — w is an integer. Substitution of Eq. (1.13) and
(1.14) into expressions (1.8)—(1.11) leads to some well-
known recursion relations for the Gegenbauer poly-
nomials:
L i) = 22C34(2),

o 4 A
[(1 -~ 2+ z]cn(z)
_ (n+ D + 24 —

i )i, (18)
2C(z) = 5("7%—) Cha(2) + (—2%’5—” Ciy(2),
(1.9
Ci(z) = /Tj?; (CHI(z) — CY),  (110)

20— 1)1 — P)Ciz) = %_9 Cie)
4t 22 ;( ;)if‘n“; 2 =2) iy a1y

valid for nonintegral 2 € ¢,n=012---

There is another useful model of the representations
pol®), p,(w) which can be constructed in terms of
differential operators in three complex variables.
This model (Model B) is closely related to the separa-
tion of variables method for solution of the wave
equation in spherical coordinates and is determined
by the operators

J3=t-Q, Jt = —t—a—
ot 9z’
J = t"((l - 22) 9 2zt —a~),
0z ot
PP = w[z—— 1-zH9 _ g_t_@_]
or r 9z raot
e z0 i 0
Pr=ofs-22_ 1% :
wt(ar r 0z rat)
2
P~ = wt”l[(l z%) o _M=2)0
or r 0z
2
+(i—+—l)r3]. (1.15)
r ot
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Notice that the J operators in expressions (1.13) and
(1.15) coincide. Thus, to finish the construction of
Model B based on operators (1.15), we look for basis
vectors f¥[r, z, t] of the form

f50r, z, 11 = ZW@) 79z, 1), (1.16)
where the functions f}¥(z, t) are given by Eq. (1.14).
A straightforward computation shows that the. basis
vectors (1.16) and infinitesimal operators (1.15) satisfy
relations (1.8)—(1.12) if and only if the functions
Z)(r) satisfy the recursion relations

(Z% B E) Z() = 2,

(d + u—+ I)Z(u)(r)
dr r
for all values of u such that both sides of these ex-
pressions are defined. The solutions of these recursion
relations are well known to be cylindrical functions.!
For simplicity we shall primarily restrict ourselves
to the solutions
Z(u)(r) = r_%]u+é(r)’
where 1,,,(r) is a modified Bessel function
0 A+2k

I;(") = z __(_ZBl____ .
=okIT(A+k+1)
Thus the basis vectors for Model B become

f(u)[r’ z, t]

= (u— m)! T(m + Hr ¥, rCmi@eom. (118)
As before, in the case of the representation py(w), m
takes the values u, u — 1, -+, —u and u runs over
the nonnegative integers, while, in the case of the
representation p,(w), m takes values u, u—1,
u—2,--+,u—pis an integer, 0 < Reu < 1 and
2u is not an integer. (Note that as far as special
function theory is concerned, the above results are
independent of w. Hence, in the remainder of this
paper, we shall always set w = 1.)

(2) Each of the representations py(1), p,(1) of Gg
induces a local representation of the Lie group Ty
defined by linear operators T(h), 4 € Ty, acting on
V.6 These operators satisfy the group property
T(A)T(h') = T(hh') for h and A’ in a sufficiently small
neighborhood of the identity. The general theory
relating local representations of Lie groups to repre-
sentations of Lie algebras will not be repeated here.®
We shall limit ourselves to construction of the
operators T(h) and computation of the matrix elements
of these operators with respect to the basis {f{'}.
The results when applied to Models A and B con-
structed in (1) yield addition theorems and other
identities relating Gegenbauer polynomials and
cylindrical functions.

2%V,  (1.17)
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2. COMPUTATIONAL IDENTITIES

In this section we collect together several computa-
tional results which will be needed later to extend the
Lie algebra representations py(1) and p,(1) (w = 1)
to local group representations of Tg. Assume that the
operators J*, J3, P+, P? and the basis vectors f{¥
satisfy relations (1.8)-(1.12) and that they define
either of the irreducible representations po(1) or
p.(1). (Formally, the results for both representations
look the same’ The difference lies only in the allowable
values of ¥ and m.)

Lemma 1:
ot GV

min (2, 4—m)

= > Am+3}Lu—m; k)fr(nzH-l—Zk)’
=0
where "

AR L, s; k)
_s'T@A+s+1— LA+ 1= BTG4+ k)
(s — kNI =K KITQA+ s + 1 — 2k)
xTA+s+1—k+1)

FrA+s—Kk
ING)
if 0<k<min(l,s)
= 0, otherwise.
Here, 1€ ¢ and /, s, k are nonnegative integers.

Proof: Straightforward induction on /, using the
recursion relations (1.9) and (1.9").

Lemma 1 is a consequence merely of the abstract
definition of the representations po(1) and p,(1).
Hence, the lemma must be valid for Models A and B.
In Model A, P? = z and f is given by Eq. (1.14).
We immediately obtain the known result:

Corollary 1:

CiDICH2)
min (1,s) l k!
=% a5 ST )

For Model B, we obtain

Corollary 2:
o (1—-z%ad z(A— l)) m(r)

Cilz— Pl — Gy
,(z or + r 0z r Jr Ci(a)
min (1,s) _

z A(A; 1, 55 k) s+ 11— 20 ' 2k)!

s!

I 1rs—2iralT) Cl+s—2k( 2).

Jr
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When s = 0, this expression simplifies to the identity

(1 -2z o _Za )I A(r)
( or T r oz r( b \/
I 4(r) s
= === C/(2).
\/r l( )
Lemma 2: Letve ¢ and / be a nonnegative integer.
Then

[i/2]
CV(PS)f(u) kzo B(’V, u + l k)f(u+l—2k)

where
B(v, ; 1, k)
(l F+1=20T(v+ 1 — k(v — A + k)F(l)
(=20 k') —ATA+ L —k+ 1)
Proof: Induction of / using (1.9) and (1.9").

In the remainder of this section, 4 is any complex
number not an integer, such that 24 is not a negative
integer.

Corollary 3: Lety e ¢ Then
1y2l
Ci(z) = 3 B(v, 4; 1, k)1 — 2k)! Ci_(2).
k=0

Corollary 4: Let v, 2 € . Then

[0, 0=90 _z, _ L0)

Cl[ or r 0z r( Z)J Jr
v L odr) 2

=k§oB(v, A L k(1 — 2k) == G p(2).

Jr

Lemma 3:
UR(y +1—2k+ )
2 .
E=0 2
Ly + P! (2e-+1-2k)
D+ 1—k+ k! -2k
Proof: Relation (1.9) and induction on /.

(PS)f(u)

Corollary 5:
(2z)) A A+ 1-=2000) .,
T Cioal(2).
I 2Zel(A+1—k+ k!
Corollary 6:
I(r)

(1 —z )__a_ —Z—-1 l
[Z or r 0z "( Z)J VT

QL — 20T Ly anlP)

S0 2T+ 1~k + Dkl Jr

Cl—2k(z)
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Lemma 4:

I (u) l

(P4 go(k)

(= u —mTu+3—ku+i+1-2k
AAu—m—2k+Du+1—-—k+4+3

(u+1—-2k)
m+1 N

Proof: Relation (1.10) and induction on /.

X

Lemma 5:
ey =3 ()
=0 \k
(=D T(u + m + 1)
XTu—k+3}u+1—-2k+1})
2TMu+m—=2k+DI'u+1—k+3%
xf(u+l—2k)
Proof: Relation (1.11) and induction on /.

We can use the above lemmas to compute the
action of the operators exp (aP?%), exp («P*), and
exp («P~) on V. [If P is a linear operator on ¥ and
%, € ¢, we define exp («P) to be the formal sum
>0, (a/k!)Pr.] Although these results will be of only
formal significance for the abstract representations
po(1) and p,(1), we will soon see that when applied
to Models A and B they can be rigorously justified.

Lemma 6:
Pl i(u +tk+d (g) ™
£=0 k! 2
X Ly (00T + P,
Proof: This result follows directly from Lemma 3.
Assuming that Lemma 6 is valid when applied to
Model A, we find:

Corollary 7: If «, A € ¢, then
e = (z)}(&)éo(l + DL (0)Ci(2)-
Corollary 8:
P = (i)lr(z)éu(a + ), ()CH(PY).

3. DETERMINATION OF THE OPERATORS
T(h)

The differential operators (1.13), which define
Model A, satisfy the commutation relations of the
Lie algebra ;. Hence, according to standard results
in Lie theory,® these operators uniquely determine a

8 H. W. Guggenheimer, Differential Geometry (McGraw-Hill
Book Co., New York, 1963), Chap. 7.
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local representation of T by operators T(h), he€ T,
acting on the space of analytic functions in two com-
plex variables. The computation of T(k) is straight-
forward,®® and we merely give the results. Due to the
group multiplication law (1.3), we can write

T(h) = T(w, g) = T(w; &)T(0; g),
where

h={wg}, w=(« 8. 7) E¢a’

g = (‘c’ Z) € SL(2).

If fis defined and analytic in a neighborhood of some
point (z,¢) € ¢2 (t # 0), then we have
[T(w; e)f1(z, 1) = [exp («P* + P~ + yPO)f1(z, 1)
= exp [at + (1 — 2Bt + yz]
x flz,1). (3.1)

Furthermore,

[exp af1(z, 1) = f(z, te"),
[CXP a]+f](2, t) = f(Z — at, t)’

(1 -z

[exp aJf1(z, ) =f(z + 522 (32)

t—2az—oc2£1—:L2)).
t

Combining these results, we obtain

[T(0; &)f )z, 1)
= [exp (—b/dJ") exp (—cdJ") exp (—2 In dJ?) f1(z, £)

2—.
=f(z(1 + 2bc) + abt + 951(—27—1),

2 —
a’t + 2acz + ¢ —Z—t—i)), 3.3)

where

b
g = (z d), ad — be = 1.
By construction, the T operators satisfy the group
multiplication property

Thh')f = T(WH[TH)f], 3.4)

whenever both sides of this expression are well defined.

In the same way, the differential operators (1.15),
which define Model B, can be used to construct a
local representation of T by operators T(4) acting on
the space of analytic functions in three complex
variables. As before, we write T(h) = T(w;g) =
T(w; e)T(0; g). Standard techniques in Lie theory®
give

{exp aPHf1(r, z, 1)

(e R |
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P ﬂ;(f(]ir:’zg(1 - 22))!: (1 N 26(1 — zz))—&
= fir —_—,z — ]

rt rt

(t + 27’3) (1 4 20— 2) 22))4),

rt
[exp yPfX(r, z, 1)

2 2

22\t 2pz2\t
=f(r(1+y—2+—”—z),(z+z)(1+—7—2+—ff) ,
r r r r r

2 —4
t(l +Z 4 2—75) )
r r
Thus,

[T(w, e)fl(r,z, t)
= [exp aP* exp BP~ exp yPf|(r, z, t)
=f[rQ, (z + y/NQ7, (t + 26/Q7'], (3.5)

where

+ 5+

r r

3.6)
Here fis defined and analytic in some neighborhood
of the point (r, z, £) € ¢2. Exactly as in the computa-
tion (3.3) we find

[T(0; &)f1(r, z, 1)
=f(r,z(1 + 2bc) + abt + cd(i——t_l),

Q=[1+M+25(t+2r—’3)

rt r

,}/2 2,szr

2
a’t + 2acz + ¢* (_zt;lz) 3.7

Again, we have the group multiplication property
T(hh)f = THITH)],

whenever both sides of this expression are well

defined as analytic functions of r, z, and ¢.

4. MATRIX ELEMENTS OF p((1)

We will now compute the matrix elements of the
group representation of T induced by the Lie algebra
representation py(1) of G,. The restriction of this
group representation to the real subgroup E; of T,
is well known (it is a member of the so-called principal
series of representations of FEg) and the restricted
matrix elements have been computed.>* We carry
out the computation for T here to motivate the more
complicated work to follow in the next section and also
to point out the increased information about special
functions obtained by studying the complex group.

In the remainder of this section, u and v will
be nonnegative integers, while m and n will be inte-
gers ranging over values' from —u to u and —v

9 N. Y. Vilenkin, E. L. Akim, and A. A. Levin, Dokl. Akad.
Nauk SSSR 112, 987 (1957).

10N, Y. Vilenkin, Translations of the Moscow Mathematical
Society for the Year 1963 (American Mathematical Society, Provi-
dence, 1965), English Transl., pp. 209-290.

11 W, Miller, Commun. Pure Appl. Math. 17, 527 (1964).
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to v, respectively. We define the matrix elements
{v, n|w, gl u, m} of the representation py(1) by

T(w, g)f "Z Z {v.nlw, g lu, m}f32,

=0 n=—v

4.1)

where the operator T(w, g) and the functions f*
refer either to Model A or to Model B. It is known'?
that the functions f{* for both Models A and B form
an analytic basis for the representation space in the
sense of Ref. 6, Chap. 2. In particular, the functions
T(w, g)f ¥ can be expressed uniquely as linear com-
bination of basis functions uniformly convergent in
suitable domains. The coefficients in this expansion
are bounded linear functionals of the argument
T(w, g)f{¥ (in the topology of uniform conver-
gence on compact sets). Since these conditions are
satisfied, it can be shown that the matrix elements
{v,n| w, g lu,m} are model-independent: They are
determined uniquely by the infinitesimal operators
(1.8)-(1.11) and are the same for every model of py(1)
for which the functions f{* form an analytic basis.®
Thus the matrix elements can be computed directly
from expressions (1.8)-(1.11) and they will be valid
for both Models A and B.
Furthermore, the group property

T(w, g)T(W, g") = T(w + gw', gg')
leads immediately to the addition theorem

Z Z {o.nlw, g v, w'}{o, w'i W, g’ lu, m}

v'=0 n'=—p"
= {v,n|w+ gw, gg’' lu,m} (4.2)

for the matrix elements.®

Matrix elements of the form {v,n| 0, g |u, m} are
determined completely by the J operators (1.8) and
depend only on the representation theory of SL(2).
In fact, for fixed u, the functions f{*’ form a basis for
the (2u + 1)-dimensional irreducible representation of
sI(2). The matrix elements of these irreducible repre-
sentations are well-known.® We quote the results:

{v,n| 0, g lu, m}

_dv et e ™y — m)!
- (u — n)!
xF(n—u,——m—u;n—m+1;bc/ad)(s
I'm—m+1) o
_dvma e (u 4+ m)!
N (u + n)!
9 F(m — u, —n—u;m—n+1;bc/ad)(S
Tm—n+1)
(4.3)

12 F. W. Schifke, Einfiihrung in die Theorie der Speziellen Funk-
tionen der Mathematischen Physik (Springer-Verlag, Berlin, 1963),
Chap. 8.
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where
g.—.(“ b)eSL(Z), ad — be = 1.
c d

These expressions make sense even when the gamma
function in the denominator has a singularity, since

F(a, b; c; x)

lim
cr—n F(C)
_a@a+---(a+mbb+1---(b+n)
(n+ D!
MFa+n+1L,b+n+1;n+2;x),
n=0,1,2--. (4.4)

The hypergeometric functions in Eq. (4.3) are
Jacobi polynomials.
It follows immediately that the identity

T(0; g)f," = E {u, n} 0, g lu, m}f"

n=—u

must be valid for both Models A and B. Substituting
expressions (1.14) and (3.3) for Model A into (4.5)
and simplifying, we easily obtain the identity

kI T(u — k+ 3) (X3
(2u — k)! (2)
X [22—z—14Qz—1D/x+ 1/x%]

(4.5)

u—k+¥
k

x (1 + 2xz + X2 — D) F
X 1
zzo(Zu — 1)' - %)(5)
F(=k, =2u+5L;l—k+1;1—=x) ., .4
% Tl —k+ 1) @
(4.6)

When k = 0, this identity reduces to a simple gener-
ating function

[1 4+ 2xz + x*(z* — D]*

5007

for the basis vectors (1.14). Model B gives no new
results.
Combining Lemma 1 and Corollary 8 we find

T(O, 0, 7; €}/ = exp (yP“’)f‘“’
- (73})7" T(m + %)f(m +1+13)
x I,,.+l+§(y)cm+*(P3)f‘"’

= (f)m+ Tn+3) 3 79

xZA(m +3J+ 2k u —
%—0
X (m+j+ 2k + ¥ Lnijiori ().

m; k)
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Therefore,
{v,n|0,0,y;e|u,m}
= 8, n(2/7Y™ T (m + )
X>Am + 30— u+ 2k, u — m; k)

k=0
X(m4+v—u+2k+ Do urady). @7

[Due to the properties of the symbol A( ), defined
by Lemma 1, this sum is actually finite.] When
m = u, we have the special case

{v,n]0,0,y;elu,u}
= 8,2 /y)“** Tut+tHv+d

(v — uw)!
=0, if v<u,

which also follows directly from Lemma 6.
The matrix element

{u,m| o, B, y; €10, 0}
can be computed by making use of the identity
{u, m| ab&, —cd§, (1 + 2bc)é; e |0, 0}
= {us ml 0’ g Ill, 0}{14, OI O’ 0: £a € lO, 0}3 (4'9)
where g € SL(2). This identity is a special case of the
addition theorem (4.2). In terms of new variables
o =abf, f=—cdé, y= 1+ 2bc)s, and p?=
9% + 4af, the matrix elements on the right-hand side
of Eq. (4.9) are given by
{u, m| 0; g |u, 0}
— U'(im| + Hu! (ﬂ)lmla(|m|+m)/z(_ﬂ)(1m|—m)/2
ﬁ(u + [m])!\p ;
Clrile),

(,010,0, & ¢10,0} = /9 D2 (u + DI,
(4.10)

I,H_é(‘y), if v2u;
4.8)

Therefore,

{u, m| «, B, ;¢10,0}
= @[pH/p)maImH I gy Imimre

L(ml+ D + B ~imp+1
(u + Iml)' C lm|(‘}’/P)Iu+i(P)' (4'11)
There is an ambiguity in the signs of expressions (4.10)
since p = +[y* + 4. However, a close inspection
of (4.11) reveals that the final matrix element is a
function of p* so the ambiguity in sign causes no
harm. Furthermore, the matrix element is an entire
function of «, §, and .
Applying the identity

T(w, B, 7 15" —E E {u, mla, B, ;¢ 0,0} 1"

u=0 m=—u
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to Model A, we obtain

exp [at + B(1 — 2D/t + yz]

m Tm 4+ 1)
- (Z ) 3, Z @yt pu—mi Y
X L.{p)Crdylp)Crtiz)
2 T i‘ [} u°
+ (P ) 3 3 Bltew + B
x L (p)C™ /0 Camdz). (4.12)

This formula is the complex generalization of the
well-known formula

‘} w 1

enr = (*‘p’:) 3 3 U, YNO,, YO, 9,)
for the expansion of plane waves into spherical waves.
Since the left-hand side of Eq. (4.12) is an entire
function of the variables at, §/t, y, and z, it follows
from standard expansion theorems for Gegenbauer
polynomials?® that the right-hand side must converge
for all values of these variables. Furthermore, the
expansion coefficients {u, m |«, 8, y; €| 0, 0} on the
right-hand side must be entire functions of «, B,
and y.

At this point, we can fill a gap in our derivation of
Eq. (4.11). This derivation was valid only for p # 0.
However, using Model A, we have seen that the
required matrix element is an entire function of «, §,
and y. Thus to compute {u, m |x, 8, y; | 0, 0} for
2 + 40 = 0 we need only find the value of Eq.
(4.11) as p — 0. The result is

{u, m|a, B, y;¢|0, 0}
(u + m)!(u—m!’
_ (_2ﬂ)—myu+m
(u—m(u+m’

1=0k=~1

if m>0, p=0,

if m<0, p=0.
(4.13)

We are now in a position to calculate the general
matrix element {v, n |, £, ¥; €| , m}. Using Model
A, we find
T(x, B, v e)f(u)

= (u — m)! T'(m + H2O™
x exp [at + (1 — 2Bt + yz]C™L(2)
= (@u—m!I(m+ %)Z 2 {r, k| a, B,7;¢]0,0}

r=0k=—r1
x CmiZ)CHZ)t™Hr — k)1 T(k + ).

From the connection between Gegenbauer poly-
nomials and the representation theory of SL(2), it
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follows that
(u — m)! (r — ! T(m + H(k + Heriz)cidz)
= [m(u—m)! (r — K)! (u + m)! (r + )1 .
2min (u,r) (u 4+r—s—m— k)!
x Dlm + k+3) sgo [(u+r—s+m+k)!:|
X Cu,0;7,0|u+r—s,0)
X Cluym;r k|u+r—s,m+kCHEL, (),
(4.14)
where the C(.;.|.) are ordinary Clebsch-Gordan

coefficients.513
Thus,

T(“: ﬁa Vs e)fr(nu) = 2 2 {D, nl *, ﬁa Y€ lu9 m}fr(tv)s

where e

{U, nl o, ﬂ’ Vs e Iu’ m}

=3 au—mlu+mllv—u+s+n—m!

- [ (w—=n)!(v+ n)!
x(v—-u+s+m—-n)!]

X Cu,0;v—u+ s,0|v,0)

X Clu,m;v—1u+s,n—m|v,n)

x {v—u+s,n—mla, B y;el0,0}, (4.15)
and s ranges over the finite set of nonnegative integer
values for which the summand is defined.

Now that all of the matrix elements of the represen-
tation po(1) have been computed, it is a simple task
to substitute these expressions into the addition

theorem (4.2) and obtain identities for special func-
tions. This will be left to the reader.

5. MATRIX ELEMENTS OF p,(1)

The task of computing the matrix elements of the
representation p,(1) is analogous to that for py(1) but
somewhat more complicated. In this section, 4 and v
will be arbitrary complex numbers such that 2u and
2v are not integers and such that ¥ — v is an integer.
The variables m, n will take values m =u, u — 1,
u—2,--;n=v,v—1,v—2,---,

As in Sec. 4, we define the matrix elements
{v, n|w; glu, m} of p,(1) by

Tw; g)f ¥ =33 {v,nlw; g lu, m}£, (5.1)

where the operator T(w; g) and the basis functions
Sl refer either to Model A or Model B. Again, it
follows that the functions {f{*'} for both Models A
and B form an analytic basis for the representation
space.!? Thus the matrix elements are well defined and
are uniquely determined by the infinitesimal operators
(1.8)-(1.11).

18 G, Y. Lyubarskii, The Application of Group Theory to Physics
(Pergamon Press, Inc., Oxford, 1960), English Transl., Chap. 10.

8

1n

Under the action of J+, J-, J, the vectors {f{*'} for
fixedu,m=u, u~—1,u—2,---, form a basis for
an irreducible representation of s/(2). This repre-
sentation, denoted by |u, was studied in Ref. 6, Chap.
5, and the matrix elements were computed to be

{v,n]0, g |u, m}

_ .du-nau+mbn—m(u — m)'

(u — n)!
. F(n——u,—m——u;n—m+1;bc/ad)6
n—m+1)
_ du—mau+ncm—nP(u + m + 1)
I'u+n+1)
F(m —u, —n — u;m — n + 1; bcfad)
X 0p,u»
I'm—-—n+1 ’
(5.2)

where
a b
g= (C d) €SL(2), ad — bc =1,

These matrix elements define a local representation of
SL(2): they are well defined and satisfy the group
representation property only in a sufficiently small
neighborhood of e. Note, for example, in Eq. (5.2)
that (erig)utm 3 e2rilurmigutm A precise definition
of this representation is worked out in Ref. 6 and will
not be repeated here.
The identity

TO, ) f ¥ =3 {u,n|0, g |lu, m} ¥
n<u

is valid for both Models A and B when g is in a
sufficiently small neighborhood of e. Substituting
expressions (1.14) and (3.3) for Model A into this
identity and simplifying, we obtain

kT — k 4+ 1) (xN
TQu — k + 1) (2)
x CoHze 2 1 4 (22 — 1)x + 1x7]

X (1 4 2xz + x*(z2 — 1))**
2T —1+ 1})(5)’

TS TQu—I1+D\2
x F(_ks —2u + la I—k+ 1; 1 — x) C;‘—H_%(Z),
Il —k+1)

[2xz + x*(z* - )| < 1. (5.3)
The computation of the matrix element
{v,n10,0, y; e u, m}

is carried out exactly as for the corresponding element
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(4.7) of pe(1):

{0,110,0, y; e fu, m} = 8, I%%y) = 8, n2fy)y"+
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(u—m'!@+d

I'(m

+ Pl +m+1)

% i(m+v—u+2k+1})l"(v+m+k+I)F(v——u+m+k+§)

k=0

The difference is solely the domain of definition of
u, v, m, and n. Note that the sum in Eq. (5.4) contains
only a finite number of nonzero terms and that the
matrix element is an entire function of y.

The functions I%*(y) form a natural generalization
of the ordinary modified Bessel function.’® In fact,
if m = u, we have

) = @y SR 140,
ifo—u2>0,
=0, ifv—u<0. (5.5)

The addition theorem
{v,m| 0,0,y + ¥'; e |u, m}

= 3 {o,m|0,0,p;e|u+ k, m}

k=—aw

x {u + k,m|0,0,%'; elu, m}
implies the identity

Ly +9) = 3 IR O™ ).

k=—00

Moreover, the identity

(5.6)

0
T(O, 0, Vs e)f::) = E {u + k"m' 0,0, yse Ju, m}f(#.”k)

k=—

applied to Model A yields
11 e*C(z) = 3 k! I o) Crti(z). (5.7)
k=0

The right-hand side of this expression converges for
ally,ze .

Using standard techniques from special function
theory, we can apply relations (1.8")-(1.10) to the
generating function (5.7) and derive recursion relations
for the generalized Bessel functions. Among the results
which can be obtained in this way are

(k ;': 1) Iﬁ+k+1’m+l(’y)

— 1 Im+k,m+l(,y) _ (k + 1)(k + 2)
2m+2k+1 " 2m+2k+5

x mpriamiy) + L),
14

wu—m—-—kNw—u+kNkTo+k+9
x T(m + k + HLW — k + Dl ipurons i)

(5.9
d 1
Phadil I;nn+k,m+l = I;nn+k,m+l+l
2 » T A4 1 )
ICm + 1D o miemiia
+ »
my2A+1 " @
1
— Im+k—1,m+l
mt2k—1" ®
(k+DCm+k+1) [rrELm )
2m + 2k + 3 " ’

k,1=01,2---.

Rather than compute directly an expression for
the .general matrix element {v, n| «, 8, y; e |u, m} of
p.(1), we will derive this result indirectly by deter-
mining a relation between the matrix elements of two
different representations p,(1) and p,.(1). Denote the
matrix elements of p,.(1) by {v/, n'| «, B, 7; e |u/, m'Y’
to distinguish them from those of p,(1). (Our results
will be valid even if 4’ = 0 or & = 0.)

Using Model A and Corollary 3, we find

1("1»)(2’ t)
= (2t)m—m’ (u - m)!
I'(m — m')
><[(u—m)/Z] (u + m —m — 2k + %)
¥=0 k'(u — m — 2k)!

y T'u—k+H(m —m' + k)
I'm—m+u—k+ %)
= (20™™ 3 D(u, m, m', k) f 7 ++""(z, 1),
k

S Tz, 1)

where the basis functions f!*(z, t) are given by Eq.
(1.14). Applying the operator
T(x, B, v; €) = exp [at + B(1 — z)/t + yz]

to both sides of this equation and using Eq. (5.1) to
expand each side in terms of its corresponding basis
functions, we obtain the identity

S{v,nla B, y;elu, myfi(z, ) = @™
, x > {v,n'|a, B, y;elm +u—m—2k m}

kyv',m

x D(u, m, m', k)f\7(z, 1).

Finally, using Corollary 3, again, to express the
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functions f{?"(z, t) as linear combinations of functions cients of f{’(z, t) on both sides of the identity, we
9z, t), m=m—m +r'), and equating coeffi- derive the equality

u—m!@w+3

(m — mHI(m" — m)(v — n)!

{onlo Bryselu,m) =

X

[‘"‘Z':”’/z] m+u—m—=2k+Po—n+2)Tu—k+4%)
k=0 s Klstu—m—=2kT(m"+u—m—k+ 2

XF(m—-m’+k)I‘(m’+v—m+s+%)F(m’—m+s)
Flo+s+ 9

x{m +v—m+2s,m +n—mla,f,y;elm +u—m— 2k, m'}. (5.8)

Here s ranges over all nonnegative integral values such that the summand is well defined.

Formula (5.8) can be employed to evaluate the matrix elements of p,(1). For example, set m = u,
m’ =0, and use expression (4.11) for the primed elements on the right-hand side of Eq. (5.8). The
result is

ot (2 A DI+ D)
{U, n] &, ﬁ! Vi€ !u’ u} - (P»n—) (p) (U - m)F(_u)

X F(ln _ “l + %)“(|n—u|+u—n)/2(_ﬂ)(|n——u|+u—n)/2

><z:(v—u+25+%)(v—n+25)!F(v—u—f—s+12‘)l"(—u+s)
s sSITw 4 s+ 3)(|n —ul+ v —u+ 29)!

X Cfl:ﬁzzll:éuI+25('}//P)Iv—u+23+%(P)’ P2 = y2 + 4“/9 (59)

Forthecasea = 8 = 0,n=m = u,Eqs. (5.8) and {4, n|0, 8, 0; e |u, m}
(55) y1€1d (ﬁ)m—n (__1)(m—1z—u+v)/2
12 1,() (m —n+u— v)!(m —n—u+ v)!

2

2 2
2T+ )y — A+ 5)(» + 25)
= I\' 8 ki )'7 E 4 -_
2T aTe TG gsqn e by ¢ F(u+m+1)r(" ’"+2“+”+1)(u+%)
(5.10) X PTE—— ,
In addition to the general result (5.8), we list two L +n + DF( 2 )

special classes of matrix elements whose forms follow

; . if m — n — |lu — v| is a nonnegative even integer
immediately from Lemmas 4 and 5: ! | & Beh

= 0, otherwise. (5.12)
{v,n|«,0,0;e|u, m} . . .
By construction, the matrix elements of p,(1) satisfy
_ (/™™ (u—m! the addition theorem:
(v — n)! (u—m+n——v)!
2

{v,n|w+ gw'; gg' lu, m}

=> S{vo,nlw,glu+ku+k~—1I}
)(D+ %) k=—00 1==0

(_1)(u—m+n—v)/2l-w(1 +m—n+o+u

9 2 X {u+ku+k—1Uw,g lum} (513)
(” tn—u— m)! p(_m tut+tntovt 3) for all w, w' ¢3 and for g, g’ in a sufficiently small
2 2

neighborhood of e € SL(2). (In any given example the

o — o — uli . . restriction on g and g’ can usually be determined by

ifn —m — |v — ul is a nonnegative even integer, inspection.) We will list a few special cases of this
=0, otherwise. (5.11) theorem.
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Whenm=u,g=g'=e,w=(,5,7),and w' =
(«', 0, 0), relation (5.13) simplifies to
{v,nla + o', B, y;eu, u}
3 (] b
=o\2/ K!T'(u +k+ %)

X {v,nla, B, v;elu+ k,u+k}, (5.14)
where the matrix elements on both sides of this ex-

pression are defined by Eq. (5.9).
The relation

{v,n| abp, —cdp, (1 + 2bc)p; e |u, m}
=3 {v,n]0, glv,s}{v,5]0,0, p; e|u, s}
) x {u,s]0, g7 |u, m}
leads to the identity
{D, nl o, ﬁa y;e |u’ m}
_ ® /1 + '}’/P 2u+v—-n—k 1 — '}’/P m—u+k o
=5 () @w
><I"(u+m+1)(v—u+k)!
I'Cu — k 4+ 1)(v ~ n)!

F(n—v,—u—v+k;n—u+k;u)
% y+p
'n—u+k+1)

F(m—u,—2u+k;m—u+k+1;u)
N Yyt e
I'm—u+k+1)

x L%5(e), (5.15)
valid for |1 — z/p] < 2. Here, p = z[1 + 4xy/z2]%.
In case y = 0, the identity becomes

{v,nla, §,0; elu, m}
= > @/ ™ u + m + D — u + k)!
k=0
Fom —u, —2u+kim—u+k+1;-1)
XFn—v,—u—v+kin—u+k;—1)
FQu—k+ D@ —n)!m—u+k+1)
xI'm—u+k+4+1
x I2%(2/af), if v+ n—u—mis even,
= 0 otherwise.
Finally, we note the result

{v, n| gv; g u, m}
= {v,n|0, g |v, m}{v, m| v, e |u, m}
=2 {v,nlgy;elu, s}H{u, 5| 0; g |u, m},

where
y=1(0,0,%), gy= [aby, —cdy, (1 + 2bc)y],

_fa b _ 0nd
g._.(c d)’ p = z(1 + 4xy/z%)?.

WILLARD MILLER, JR.

If u > n and u = m, this implies
Pu+v+ DI'(u + H+ %)
(v +n+ D)w—u)(u—n)

(e

X F(u—-v, —n—v;u—n+1;z_—P)I,,+,}(p)
z4+p

=Y {v,nla B, y;€luu—k}
¥=0

9 (z + p)“‘""‘(—y)" TQu+1)
2 k! TQu—k+1)"

There is a similar result for n > u.

6. APPLICATIONS TO MODEL B

Now that we have succeeded in computing matrix
elements of the representations p,(1) and p,(1) we can
apply our results to any model of these representations
and obtain identities for special functions. As an
illustration, consider Model B.

According to the work of Sec. 1, the basis vectors for
Model B take the form

W, 2, 1] = Z90)u — m)! T(m + PCIEA(20™,

where the Z)(r) satisfy recursion relations (1.17).
Both the functions

Z(r) =r 3, () and ZW() =r3L, ()
(6.1)

separately satisfy Eq. (1.17). Similarly, any linear
combination of these functions satisfies Eq. (1.17).
For purposes of illustration, we will use only the first
of solutions (6.1). Recall that corresponding to the
representation py(1): u=0,1,2,-"+; m=u, u—
1,-++, —u; while corresponding to p,(1): u = u +
k; k=0, £1, £2,- - s m=u,u—1, u—2,"*;
0 < Re u < 1 and 24 is not an integer.

Since the functions f!¥[r, z, t] form an analytic
basis for the representation space, we have immedi-
ately

[X(w; &) lr, z, 1] = 3 {v, n| w; g lu, m} f'r, z, 1],
" (6.2)

where the operators T(w; g) are given by Egs. (3.5)-
(3.7) and the matrix elements {v, n| w; g |u, m} are
those computed in Secs. 4 and 5. The operators
T(0, g) yield no information which could not have
been obtained from Model A. Therefore, we restrict
ourselves to operators T(w, e). In this case, Eq. (6.2)
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yields
(u — m)! D(m + $)I,.3(rQ)
x Cri(z + yIn@ ™ H2(1 4 26/
= > {v,n{w;elu,mi(v —n)!T(n + %)

x Lg(Ci@enr, (6.3)
where
—_ 2 2 2 9 %
Q=[I+M+2—°‘(t+—é) +y—2+—”—z}.
rt r r r r

When applied to the representation po(1), Eq. (6.3)
constitutes a generalization of the so-called addition
theorem for spherical waves.’* We will list a few
special cases of Eq. (6.3), treating the representations
po(1) and p,(1) simultaneously.

If « = f =0, Eq. (6.3) yields

(@ — m) 1, 4rRYCTE(z + y/RIR™F

= 3 (u+k—m! IS, (NCE (2),

k=m—u
(6.4)
where

R=(1+4+2yzjr + yz/rz)%, 2yzir + yEr?| < 1.

When m = u, this expression simplifies to the well-
known addition theorem of Gegenbauer:

I,a(rR)QRy ™t

=D+ H3(+k+ DLyt (OCH ).

4 B. Friedman and J. Russek, Quart. Appl. Math, 12, 13 (1954).
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There is an interesting special form of Eq. (6.4),
obtained by setting z = 1:

A + iy a0 + )

S Tu+m+k+1) [EHES()T
Pu+m+1 "

w3 )

lyfrl < L.
When m = u, the above identity simplifies to

(4 + 7 +9)

k=m—u

'Cu + 1)
xéﬁl‘@u +k+ ;?(u +k+3) RRTCY )

If 8 = v = 0, Eqs. (6.3) and (5.11) give

L3 (rS)Crtizs st
_ [{(u—m)/2} (ott)k(—l)jr(u —j+PDu+Ek—-2+D
_go S u—m—=2Dj1k—)NTu+k—j+%
—m—29)0m + k+ B,

X utr—2i+3(F )

I(m + %)
x CmEh (), (6.5)
where
S = (1 + 2atfr)t, [2atfr| < L.
When m = u, Eq. (6.5) reduces to
) k
Loslr(L + 2690 + 20y F =3 = L),
2efr| < 1.
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This paper, is the second in a series devoted to the derivation of identities for special functions which
can be obtained from a study of the local irreducible representations of the Euclidean group in 3-space.
A number of identities obeyed by Jacobi polynomials and Whittaker functions are derived and their

group - theoretic meaning is discussed.

INTRODUCTION
Much of the theory of special functions, as it is
applied in mathematical physics, is a disguised form
of Lie group theory. The symmetry groups, which are
built into the foundations of modern physics, deter-
mine many of the special functions which can arise

in physics, as well as the principal properties of these
functions. It is the author’s opinion that a detailed
analysis of this relationship between Lie theory and
special functions is of importance for a good under-
standing of both special function theory and the laws
of physics.
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This paper is the second in a series analyzing the
special function theory related to T, the complex
Euclidean group in 3-space. In the first paper® (which
we shall refer to as I), it was shown that an important
class of identities relating Bessel functions and
Gegenbauer polynomials had a simple interpretation
in terms of certain local irreducible representations
of T,. In the present paper, which generalizes the
results of I, a similar interpretation will be given for
identities relating Whittaker functions and Jacobi
polynomials.

Most of the identities for special functions derived
in this paper are well known. We will be more
interested in systematically deriving and uncovering
the group-theoretic meaning of known identities than
in the derivation of new identities.

Just as in I, the special functions obtained in this
paper will arise in two ways: as matrix elements
corresponding to local representations of 7, and as
basis vectors in a model of such a representation.
Once the matrix elements of an abstract representation
have been computed, they remain valid for any model
of the representation. Only two models will be
considered here, but the results of this paper can easily
be extended to any other model which occurs in
modern physical theories.

Finally, the reader will note that the algebraic and
group-theoretic aspects of special function theory are
emphasized at the expense of the analytic aspects. In
particular, the order of summation of an infinite series
will often be changed without explicit justification,
and the convergence of the infinite series will not be
verified. Such justification exists, however, and can be
found in Ref. 2.

1. REPRESENTATIONS OF G,

Just as in I, we study irreducible representations of
the 6-dimensional complex Lie algebra G4. This Lie
algebra is defined by the commutation relations
Uo7 = x5 Uhy1=2%%
(/% ¥l = [P, j*] = £p*,
Grptl=10p1=1%p1=0,
[t p 1= [p*j] = 2%
% p*1 = [p*. p1=0.

Here, the elements j*, j~, j® generate a subalgebra of

B isomorphic to s/(2), while pt, p~, p* generate a 3-
dimensional Abelian ideal of Gg.

(1.1

1 w. Miller, J. Math. Phys. 9, 1163 (1968) (preceding paper).

2 F. W. Schifke, Einfihrung in die Theorie der Speziellen Funk-
tionen der Mathematischen Physik (Springer-Verlag, Berlin, 1963),
Chap. 8.
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The 6-parameter Lie group T consists of elements
{w, g},

w = (a,8, y) € ¢8,
a b
g= (c d) € SL(2), ad — bc =1,
with group multiplication

{w,gH{w, g’} = {w + gw, g5}, (12

where
gw = (aPa — b8 + aby, —c*« + d?f — cdy,
2aca — 2bdf + (bc 4 ad)y). (1.3)

The identity element of T is {0, e}, where 0 = (0, 0, 0)
and e is the 2 X 2 identity matrix. As mentioned in 1,
T, is the Lie algebra of T and a neighborhood of
O in G, can be mapped diffeomorphically onto a
neighborhood of {6, e} in 7, by means of the relation

{w, g} = exp (ap* + fp~ + yp®) exp (—b/dj*)

X exp (—cdj~) exp (—21Indj®). (1.4)

Here “exp” is the exponential map from G, to 7.
Let V be a complex abstract vector space and p a
representation of Gq by linear operators on V. Set

P =P, p(p7) = P,
p() = £, p(j%) = J*.

The linear operators P+, P3, J*, J® satisfy commuta-

tion relations analogous to Egs. (1.1), where [4, B] =

AB — BA for linear operators 4 and B on V. The
operators
P.-P = —PtP~ — PP3,
P-J=—}(PtU 4+ PJt)— P33
on V are of special interest, since they have the
property
PP, p()] =[P:J,p(0)] =0
for all « € Gs. These two operators turn out to be
multiples of the identity operator whenever p is one
of the irreducible representations of Bg to be studied
in this paper.
Let w 7 0 and ¢ be complex numbers. Among the
known irreducible representations of Bg,%* we shall
examine the following:

(1) Ts(w,9)

There is a countable basis {f{*'} for ¥ such that
m=u,u—1l,u—2,"";u=—q,—q+1, —q+
2,- - ; and 2g is not an integer.

3 W. Miller, On Lie Algebras and Some Special Functions of
Mathematrical Physics, American Mathematical Society Memoir,
No. 50 (Providence, 1964).

8 W. Miller, Lie Theory and Special Functions (Academic Press
Inc., New York, 1968), Chaps. 5, 6.
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There is a countable basis {f{*} for ¥ such that
m=uu-—1,"-,—u+1, —u;u= —q, —q +
1,---;and —2q is a nonnegative integer.

(3) Rs(w, q, “o)

Here ¢ and u, are complex numbers such that
0 < Reuy <1, and none of uy, + g or 2u, is an
integer. There is a countable basis { i} for V such
thatm =u,u—1,u~2,---,and u =y, uy + 1,
Uy 2,

Corresponding to each of the above representa-
tions, the action of the infinitesimal operators on the
basis vectors f{* is given by

JB '(nu) = mf(u) J+f(u) (m _ u)f(lle,

JFW = —(m + w)f¥, 1.5)
3plu) ( q + 1) f(u+1) qu f(u)
" T QuA D41 u( + 1)
_ o+ @u + miu — =1
uu + 1) f (16)
rotw _ O — g+ D) iy _ (—mog
™ T Qut D+ )™ u(u+1) ™

_ o+ Pu—m@u—m-—1) e
QQu + Du ’

1.7
w(u — 4 + 1) (u_+1) (u + m)C‘)qf(u)

P =~ m—1 m—1
" (2u + D(u + 1) u(u + 1)

4 Ut Ot mutm— l)f 1)
QQu + Nu me
(1.8)
P.P (u) 2 (u) ; 0,
P-J 'g‘u) wgf!; (u) (19)

[If a vector f* on the rlght-hand side of one of the
expressions (1.5)-(1.9) does not belong to the rep-
resentation space, we set this vector equal to zero.]

The reader can verify that the operators defined by
expressions (1.5)-(1.8) do satisfy the commutation
relations (1.1) and determine the irreducible rep-
resentations of Gg listed above. Corresponding to a
fixed value of u, the vectors {f'*} form a basis for an
irreducible representation of the subalgebra s/(2) of
Bs. Each such representation of s/(2) induced by
T4(w,q) has dimension 2u + 1 and is denoted by
D(2u). Each irreducible representation of s/(2),
induced by fs(w, g) or Ry(w, g, 4,), is infinite-dimen-
sional and is denoted by |,. The notation for the
representations in classes (1)-(3) is taken from Ref. 4.
A detailed analysis of the representation D(2u) and
1, is also given in this reference. Note that the rep-
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resentations  py(w), p,(w), studied in I, are
identical with the representations {,(w, 0), Ry(w, 0, )
presented here.

In analogy with the procedure carried out in I, we
will analyze the relationship between the representa-
tions in classes (1)-(3) and the special functions of
mathematical physics. That is, we will look for models
of these abstract representations p such that the
infinitesimal operators p(«), « € Gy, are linear differ-
ential operators acting on a space ¥V of analytic
functions in n complex variables. The basis vectors
{flw} are then analytic functions and expressions
(1.5)-(1.8) are differential recursion relations for
these “special” functions. In addition, we will extend
each of our Lie-algebra representations of Gg to a
local group representation of T,. Each such local
representation is defined by linear operators T(h),
h € T, acting on V and satisfying the group property
T(H)T(H) = T(hh') for h, A’ in a sufficiently small
neighborhood of the identity. We will compute the
matrix elements of T(#) with respect to the basis
{f\»}. The group property then immediately yields
addition theorems for these matrix elements. The
addition theorems so obtained provide identities
relating Bessel functions, Whittaker functions, and
Jacobi polynomials.

2. MODELS OF THE REPRESENTATIONS

All possible models of the Lie-algebra representa-
tions in classes (1)-(3) are known in which the basis
space consists of functions of one or two complex
variables.* In fact, there is only one such model
(n=2):

Model A J3—-t§- Jt = t2
3 oz’
=1t ((1 2) 9 _ 2ztaa + 2q) 2.1)
Pr=owt, P"=o( — zz)t_l, P? = wz.

Here z, t are complex variables, and o, g are fixed
complex constants, It is easy to verify that operators
(2.1) satisfy the commutation relations (1.1). Further-
more, we have

P.-P=—0? P-J=—owq.

Corresponding to this model, the basis vectors /* are
defined up to a multiplicative constant by expressions
(1.5)-(1.8), and may be given by

f(u)(z, t)
_(u=—m!Tu+m<+1
T Tu—gq+ 2"

where I'(x) is the gamma function and P{*# is a

Pimm(z)m,

(2.2)
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Jacobi polynomial.? The possible values of u, m, ¢,
depend on the representation in classes (1)-(3) with
which we are concerned, and these values have been
listed in Sec. 1.

By substituting the Model A operators and basis
vectors into expressions (1.5)-(1.8), we obtain the
following well-known recursion relations obeyed by
Jacobi polynomials:

d
— PlaB)z) =
@

[(1 — )L Pzt a]Psf-'”(z)
dz
= —2(n + DPITP(2),

o+ B + n + PEE(Z),

(1.5)
zPP(2)
2n+ Do+ +n+1)
T+ B+2n+ D+ B+2n+2)
: (ﬂz_ 2) P(:.ﬂ)(z)
(@+B+2n) e+ pf+2n+2)
2(n + )(n + B)
c+B+2n)+8+2n+1)
PiP(z)
_(la+p+tn+Da+B+n+2)
(@+pB+2n+D(a+p+2n+2)
(a—B)a+B+n+1)
(x+B+2n(e+ B+ 2n+2)
(@ +n)B +n)
(°€+/3+2n)(°t+ﬂ+2 +1)

11 - HPFP(2)
_ (n + 2)(n + 1)
GAB+2n+Detp+2n+2)
(a=BHn+1)
(oc+,3+2n)(oc+ﬂ+2n+2)
+ (x +n)B+ 1)
(x+B8+2n+D@+p+2n+2)

( )
)

P, (16)

(:+l.li+1)(z)

P (2)

(a+1 ﬂ+l)(z)

(1.7

(—1 —1)
'n:-2 g (Z)

)

P(a—l,ﬂ 1)(2)’

(1.8")

valid forn=0,1,2,---,and a, f €
Those representations of Gg, for which ¢ =0,
have a model (Model B) in terms of differential opera-
tors in three complex variables. Model B was con-
structed and studied in I. If ¢ £ 0, there is no model in
three complex variables. However, in Sec. 8 we will
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construct a model (Model C) in terms of differential
operators acting on spinor-valued functions in three
complex variables. The special functions obtained
from Model C are closely related to the spinor-
valued solutions of the wave equation in 3-space.

3. ANALYSIS OF THE MODELS

The following section contains several auxilliary
lemmas which will enable us to extend the representa-
tions T4(w,q), 1a(®,q), and Ry(w,q, u;) of B to
local group representations of Tg. Throughout this
section it is assumed that the operators J*, J3, P%, P3
and the basis vectors f{*' correspond to one of the
irreducible Lie-algebra representations listed above.
The results will be formally the same for all of these
representations, the only difference being the allow-
able values of 4, m, ¢, and w.

Lemma 1: Let I be the identity operator on V:
( Ps)kf(u)
QR T —qg+k+DIQu+1)
B T(u—q+1)
y i (—=D)"QQu +2n + 1) (k)
nmon!l(k—nm)!TQu +n+k+2)
Proof: Use of expression (1.6) and induction on k.

Corollary 1: Let «, B e¢ and k a nonnegative
integer:

(1;2)k=k!p(k+a+l)

x% P+ f+n+ e+ 8+ 2n + D(=1)"
mo(k—m)!Tn+oa+Dl(a+F+n+k+2)
x P*f)(z),
Proof: This is the content of Lemma 1 when it is
applied to Model A.

As is well known,® the Jacobi polynomials are
related to the Gauss hypergeometric functions by the
formula

P(z)
= (""‘7) 2F1(—n,'y+6+n+ 1;y+1;1'2'z).
n
(3.1)

From this expression and Corollary 1 it is a straight-
forward computation to obtain the identity

Ty +0+n+k+Dl(a+B+k+ DIy +n+1)

PY@ =3

im0 D+ B+ 2k + DI'(y + d + n + DIy + k + D(n — k)!

x3F2(k—n,y+6+n+k+1,oc+k+1;y+k+1,oc+ﬁ+2k+2;1)P,‘c“’”’(z), (3.2)

expressing an arbitrary Jacobi polynomial P{-9(z)
as a linear combination of the polynomials P{*#(z).

3 W. Magnus, F. Oberhettinger, and R. Soni, Formulas and Theo-
rems for the Special Functions of Mathematical Physics (Springer-
Verlag, New York, 1966), 3rd ed.
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Passing from Model A back to our abstract representa-
tion, we obtain:
Lemma 2: Lety,d € ¢ and n a nonnegative integer.
P(y,é)(w—lps)f;u)
_QTQu+ Hu—qg+k+1)
Kn—-kTu~q+1
Py +6+n+k+ D0 +n+1)

k=0
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Although the function ,F,(1) appears complicated,
it can be explicitly evaluated in several interesting
special cases. If =y in Eq. (3.2), then ,Fy(l)
reduces to the form ,F,(1). Using the well-known
formula®

I'ec — a + n)l(c)
I — aT(c +n)’

oFy(a, —n;c; 1) =

TQu+2k+ DIy + 6+ n+ DIy + k+ 1) n=01,2""",
X gFlk —n,y+o0+n+k+lLu—qg+k+1;
y 4+ k+1,2u + 2k 4+ 2; DfP, we find
P‘”‘"”(z)-—-i To+d+n+k+Da+B+k+DD(@+n+1)
" ST+ d+n+ Do+ k+ De+p+k+n+2)
(@tBtdk+ 1) T—6+1)
(n — k)! T'g—5+k—n+1)
x Pl*(z), (3.3)
If § = 4, then F, is Saalschutzian® and 4F,(1) can be explicitly evaluated to yield
P;y,p,(z)=§_ Py +f+n+k+Da+p+k+ DB +n+1)
70 Fy+B+n+Da+B+k+n+2)
(e + B +2k+ D= Ta—y+ 1
TE+k+Dn—~kNla—y+k—n+1)
X PP(z), (3.4

Finally, if « = § and y = §, we can use Watson’s theorem®

TR + %)F(

a+b+1)1-,(1—a—b+2c)
2 2

sFs a,b,c;l+g+l—),2c;1) =
2 2 2 r

(a +1
2
with the result

)F(b 42- 1)F<1 ~ c¢2+ 20)1.,(1 —~ b2+ 2c)’

po(yy =3y L@y tnt k+ DIy + «+ k+ DI + n + DIG)

k=0 I'Qo+ 2k + DUy + n 4+ DI + k + D(n — k)!

T + k + DIy + k + Do — y + DPEY(2)

. (3.5

T
P(‘"
2 T2 2

Since I'[(k — n)/2 4+ }] occurs in the denominator
of the right-hand side of Eq. (3.5), the coefficient of
P{»*(z) is nonzero only if n — k is an even integer.
Because of the well-known identity®

TG+ DLCA + 1) podah
POATGL+n+3) "

expression (1.16) is readily seen to be equivalent to
Corollary 3 of 1.

Ciz) =

(@,

$ L. J. Slater, Generalized Hypergeometric Functions (Cambridge
University Press, Cambridge, England, 1966), Chap. 2.

+1)F(2y +n+ k+Z)P(2a+n+k+3)r(2cx—2y+k—-n+2)

2 2

In the following sections we shall find it useful to
expand the product P!»/(z)P*#(z) as a linear
combination of Jacobi polynomials P{*#'(z):

n+l
P‘:’”)(Z)sz’ﬂ)(z) = zEa,ﬂ(n, [; k)P,(:’m(Z). (3.6)
k=0

The coefficient E*#(-) can be obtained by first using
Eq. (3.1) to express the left-hand side of Eq. (3.6) as a
polynomial in (1 — z) and then using Corollary 1 to
write the resulting polynomial as a linear combination
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of P{*#)(z). The result is

E""(n,l;k)=i éF(a+n+I)P(a+l+1)r(a+ﬂ+k+1)
=0 5=0 Fae+B+n+Da+B+1+1)
Na+f+n+r+Dla+f+l+s+Dla+r+s+1) x(—l)*(a+ﬂ+2k+1)(r+s)!
Pla+k+D0a+r+Dl@+s+Dla+B+r+s+k+2) rin=DIstI—)(r+s—k)
(3.7

This is not a very enlightening expression. However, in certain special cases, the coefficients can be evalu-
ated very simply. For example, as was shown in I, if « = 8 = A4 — 4, then Eq. (3.6) becomes

, , _min(n,l)(n + 1 =20 (A+n+1-—2k)
Ci(2)Ci(2) = kgo kl(n — k)1l — k)!
o QA+ n 41— BTG + 1 = BTG + WA + 1 — k)

TQA+n+ 1= 20T(A+ n + I — k + DI%A)

X Coyi-a2)-

The reader can undoubtedly derive other formulas Lemma 3:
for E*#(-), some of which are more transparent

{m—g,m .
than Eq. (3.7). In particular, it is not difficult to A C T

show [by means of the recursion relation (1.6)] that ="+‘I!I“(2m + I+ DI(m—g+k+1)
Ea.n(n',l; k) =0, uplcss n+12>k>|n—I. Here i kIT@m + k+ Dl(m —q + 1+ 1)
we will merely point out the connection between x Emomian [k fm 10,12,

these coefficients and the representation theory of G,.

Expression (3.6) has been established by direct Corollary 2:
computation for Model A, but itimplies the existence = _ . .
of a similar expression obeyed by the abstract rep- P @™ P f

resentations of Gy and by any model of these _TI@m+Dlm —g+nr+1) (mm
representations. nTCm +n+ DI(m — g +1)°"
Lemma 4:

(%P+)ff'(m+") = o < nMIm—q+1+k+DI'Cm+n+k+1)
" k=max 2,0 k! (n — K)!T(m — g + k + HDTCm + 21 + 2k + 1)
X gFak—n2m+n+k+t,m—qg+i+k+1;m—q+k+1,2m+ 20+ 2k +2; 1) fim,

Proof: 1t follows from Eq. (3.2) that the lemma is Proof: This is a direct consequence of Lemma 1.
true for Model A. Hence, it must be true for any
model.

Let P be a linear operator on V-and a € ¢. Define
exp (aP) as the formal sum X2 (a*/k!)(P)*. We will
use our lemmas to compute the operators exp (aP%), ~ Corollary 3: Leta, f,a ¢ ¢. Then
exp (aPt), and exp (aP~) on V. These results are ot — (2 1letP)2
purely formal when applied to the abstract representa- ¢* = (2a)
tions of Gy. However, when applied to models of w
these representations, they have a rigorous justification. I‘(a_+ Brnt1)

e+ 8+2n4+1)

It will be shown later that Lemma 5 is valid for
Model A. Thus, we have:

M, (2a)P&P(2),

Lemma 5:
h =(ax—PR2, u=n+ («+ g+ 1)/2, and
exp (a(P® — wl)f¥ where y = (x = B)2, p=n+ (@ + f + 1)/
— @ I‘(2u + I)F(u +n—q+ 1) (Zaw)" Mz,u(a) = ea/2all+§1Fl('u + ¥ + %; 1+ 2”; __a)

" #Zon!T(u — g+ DIQu + 204+ 1)
X Fi(m—q+n+1;2m+2n+2; —2aw)ff*t™,  is a Whittaker function.®
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Corollary 4:
exp (aP) £,
= Qaw) ® TQu+DWNu—g+n+1)
amon! T —q + DCQu +2n 4+ 1)
X M_a,u+n+§(2aw)f,i“+"’.
Corollary 5:
exp (awP?)

= (zaw)—l—(a-l—ﬁ)/Z o I1(“ + ﬂ + n + 1)
ST+ B+ 2n + 1)

M, (aw)

X PE(P?),
x=@=P2 p=n+@+p+ D2
4. LOCAL REPRESENTATIONS OF T,

Since the Model A operators (1.10) satisfy the
commutation relations of Gy, they induce a local
representation of T, by operators T(h), he Ty,
acting on the space of analytic functions in two
complex variables. The details necessary for the
computation of T(#) have been listed elsewhere.*” We
present only the results. According to the group
multiplication law, it follows that

Ty = T(w; g) = T(w; e)T(0; g),
where

h={wg}, W= (B p)els,

g= (‘c' Z) e SL(2).

Let f be an analytic function defined in a neighborhood
of some point (z, t) € ¢‘2 (t # 0). Then
[T(w; e)fi(z, t) = [exp (P + P~ + yP¥) f(z, 1)
= exp w[at + (1 — 22 + y21f(z,¢), (4.1
[T(0; 2)f1(z, )
= [exp (—b/dJ*) exp (—cdJ™)
x exp (—21ndJ?) f1(z, )

_ f{at + c(z — DY
~ (—_—__at g l))f (z(l + 2bc) + abt

2
+ Eté(z2 — 1), a®t + 2acz + E{ (* — 1)). 4.2)

These operators satisfy the group property
TGk f = THITE)f], “4.3)

whenever both sides of this expression are well
defined.

7H. W. Guggenheimer, Differential Geometry (McGraw-Hill
Book Co., Inc., New York, 1963), Chap. 7.
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5. MATRIX ELEMENTS FOR 1,(«, )

We are now able to compute the matrix elements of
the group representations of T, induced by the
representations 14(w,q). The restrictions of these
representations to the real Euclidean group in 3-space
are known to be unitary and irreducible, and have
been studied in detail elsewhere.*8:?

Throughout this section, u, v = —¢q, —q¢ + 1, " ;
and —2q is a nonnegative integer. Furthermore, m
and n will range overthevaluesm = —u, —u 4 1,---,
u—~l,u;andn=~v, —v+4+1,---,v—1, v. The
matrix elements {v,n|w,glu,m} of f,(w,q) are
defined by

Tw, 3 =3 3 {v,nlw, glu, m}f¥,

2v=—2q n=—v

(5.1)

where the operator T(w, g) and basis functions f{*
refer to Model A. According to Ref. 2, the Jacobi
polynomials (2.2) form an analytic basis for the
representation space. That is, the functions T(w, g)
S can be expressed uniquely as a linear combination
of basis functions ' uniformly convergent in a
suitable domain. The coefficients in the expansion are
bounded linear functionals of the argument T(w, g) /1’
in the topology of uniform convergence on compact
sets.

Under these conditions, the matrix elements (5.1)
are model-independent: They are uniquely deter-
mined by relations (1.5)-(1.8) and are the same for
every model of 1,(w, g) which has an analytic basis.4
We can compute the matrix elements using either
(1.5)-(1.8) or Model A and our results will auto-
matically be valid for any other model of 1,(w, ¢q).
Moreover, the relation

T(w, 9T(W', g") = T(w + gw’, gg")
implies the addition theorem?

@«

Sy {o,njw, glv', w}H{v', n'| W, g’ lu, m}

20 '=—2g¢ n'=—v
= {v,n|w+ gw, gg'lu, m}. (5.2)

The matrix elements {v, n| 0, g |u, m} are uniquely
determined by the J operators (1.5) and depend
entirely on the representation theory of S/(2). Indeed,
for fixed u the vectors f{* form a basis for the
(2u 4 1)-dimensional irreducible representation of
SI(2). The matrix elements of these finite-dimensional

8 N.Y. Vilenkin, E. L. Akim, and A. A. Levin, Dokl. Akad. Nauk
SSSR 112, 987 (1957).

? W. Miller, Commun. Pure Appl. Math. 17, 527 (1964).
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representations are well known?:
{v,n)0, g lu, m}
_ du—-nau+mbn—-1n(u - m)g
(u — n)!
< sFl(n —u,—m—u;n—m++1; bc/ad)a“
T'n—m41)
— du—mau+ncm—n (u + m)!
(u 4+ n)!
< oFim ~u, —n—u;m~n+ l;bc/ad)(s
'm—n+1) o

a b
g = (c d) eSL2), ad—be=1. (53)

Because of the relation
. oFia, b;¢c; 2)

I e
_aa+ D@+ b+ b+ b
- (k + 1)
X 2, Fla+k+1,b+k+ 1 k+2;2),

k=0,1,2,---,
expressions (5.3) make sense for all permissible values
of m and n. Note that the hypergeometric functions
can be expressed in terms of Jacobi polynomials.
In terms of Model A, the identity

T(0; &)f s = i {u, n]0, g |u, m}fi¥
implies e
[at — oz — DI™[at + c(z + D]
X [z(l + 2bc) + abt + c—t‘é(f — 1)]

(5.4)

w

=3

— !
du—mau+n(2c)m—~n (u n) .

o {(u — m)!
JFi(m — u, —n — u; m — n + 1; befad)
X
'(m—n+1)
x Prgmta(zrem,
D) 1 gd—be=1. (55)
at

When u = m, Eq. (5.5) simplifies to
[1 — ez — DI*T1 + c(z + D]
=3 o*"PIEm(z), ez £ D] < 1.

n=—u

Since the Model A functions f¥(z,¢) form an
analytic basis, Lemma 5 and its corollaries are
rigorously true for Model A. Thus,

T(0, 0, ¥; €) fu”

= exp (YP*) [’
me TOm+ k4 1)
= 2 1—m i St A
@2, TGm + 2k + 1)
% Plim—q,m+q)(w—1P3)f£’1:)

M_ g i 3(27)

MILLER, JR.
e B in s TQm 4k + 1)
— (i by A2 T T T L
@Y 2 I om 26+ 1)
(= m)! (@ + m)!(u — g + ))!
X M_ m 2
RS ¢ 7)(u_m+j)_v(u+m+j)-’(u—11)!
x Em_q,m+a(k, U—m;u—m +])
and
{v,n]0,0, y;elu, m}
= 0, (2p)y
o5 Qmt Rl = m! @t m)l (0= gt

t Cm+ 2D (v—m)! (v + m)! (u - q)!

X E™ Uk — ;0 = MM s d(29), (5.6)
where the sum is taken over the finite number of
values of k such that the summand is defined. In the
special case m = u we obtain
{v,n]0,0,y;elu,u}
2u)! (v — !

= 67! U 2 i M-- - 2 £
w(27) TN = =t e +#(2y)

if v>u,

=0, if v<u (5.7

To compute the general matrix element

{v.nl o, B, y; € lu, m},
we make use of the identity
exp wlat + p1 — 28 + yz]

= % Z]: (ﬂwp/z)—%(4/P)lkl(a)(lka)/z(_ﬂ)qkl—k)/z

§=0 k=—3
o LUkl + DTGk + DG = B! G + 1)
(j + kD!
x L) CEIpCH@@?,  (58)
which was derived in I. Here p? = 92 + 4af, C}(2)
is a Gegenbauer polynomial and

I(z) = (z/2y*
(1 + 4)
_ oyt
T+ A)
is a modified Bessel function. The right-hand side of
Eq. (5.8) is an entire function of az, f/t, y, and z.
Furthermore, it is a function of p2.

The second identity we will need is related to the
representation theory of SL(2):

R OY s ©)
2min {(u,v)

> D, m,m';v,n,n';s)
§=0

X Clu,m;v,nlu+v—s,m+n)
X Clu,m';o,n' |u+v—sm +n)

X Ppmom i), (5.9)

oF (A + 1; 22/4)

M o,z(zz )
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Here,
D(u, m,m';v,n, n';s)
_ [ wu—mtu+m!@—n!{@+n)!
u—m)(w+mH)@—n)(@+n)!
(u+v—s—m —n M u+v—s+m +n)‘:|
wut+v—s—m—m)!u+v-—s+m-+n)!

and the C(- ;- ] -} are Clebsch-Gordan coefficients.
(For a group-theoretic proof of this result see Refs.
4, 10, 11.)

Now, making use of Model A, we have

T(e, B, v; &) fu’(z, )
_z{v,nla:ﬂ vielu, m}f('”(z, 1)

= exp [w(at + p(1 — 2%)]t + y2)]

(v—u+s)
(v—u+s+|n—m))!

G(u,m;v,n;q,s) =
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(u - )' (u + m)‘ (ﬁ—q.m-i-a)(z)tm
@—gr2m "
Applying the two identities to the right-hand side of
this expression, we obtain
{U, nl *, ﬂ: )’, € lua m}
= (mwp/2y 4] p)l"

% (4l In-ml+n-mre (:ﬁ)”"""'*”"” :
4
T = ml & DIn = m + 0~ m)!

(2n — 2m)!
X ZG(u,m;v,n;q,s)C(v— u+s;u,q|vq)

(5.10)

><C(v—u+s n—m;u,m|v,n)

X Iv—u+s+i(wp)ch—l—;1‘l:%n ml(y/P), (511)

where

(u=! (v—k—m)! (v+k+m)! (v+9)!

% [(u+q)! (v—uts—n+m)! (v—u+s+n—m)! (u—m)! (u+m)! (v——q)!:r .

The sum is taken over the finite set of nonnegative
integral values for which the summand is defined.
These matrix elements are entire functions of «, S,
and y.

By substituting expressions (5.3) and (5.11) for the
matrix elements of T4(w, ¢) into the addition theorem
(5.2), the reader can derive a number of identities
relating spherical Bessel functions and Gegenbauer
polynomials.

6. MORE MATRIX ELEMENTS

The expressions for matrix elements of T4(w,q)
were rather complicated, and the expressions for
matrix elements of T4(w, ) and Ry(w, q, 4,) are even
more complicated. Nonetheless, these representations
are closely related to a number of important identities
in special function theory. In order to keep the compu-
tations as simple as possible, we compute directly
only a few interesting special cases of the matrix
elements of T3(w,q) and Ry(w,q,u,). (In Sec. 7,
however, we obtain expressions for the general matrix
elements by relating them to matrix elements of other
representations of Gg.)

The matrix elements {v, n| w, g |u, m} of Ts(w,q)
and Ry(w, g, u,) are defined by

T(W g)f‘“)(z, )= Z Z {Us nlw; g |u, m}f#’)(z, 1,
v (6.1)

10 G. Y. Lyubarskii, The Application of Group Theory to Physics
(Pergamon Press, Oxford, 1960), English Transl., Chap. 10.

11 N. Y. Vilenkin, Special Functions and Theory of Group Rep-
resentations (Izd. Nauka., Moscow, 1965).

where the operators and basis functions refer to
Model A. [Corresponding to 14(w, ¢), the variables
assume values u, v=—gq, —q+1, —g+ 2,
m=uu—l,u—2,""-,n=v,o—1,v~—2,"+,
where 2g € ¢ is not an integer. Corresponding to
Ry(w,q,uy), uv =1y, w1, wut2,---;
m=uu—l,u=2,"-;n=v,o—1,0—=2,"+,
where q, u, are complex numbers such that 0 < Re u; <
1, and none of u,, %4, or 2u, is an integer. The formal
expressions giving the matrix elements are identical
for both classes of representations; the difference
between them is merely the different range of values
assumed by the variables u, v, m, n, g, 4y, w.]

It is well known? that the Model A functions
fiw(z, t) form an analytic basis for the representation
space. Hence, the matrix elements are well defined
and uniquely determined by the Lie-algebra relations
(1.5)-(1.8). Moreover, Lemma 5 and its corollaries
are valid.

The action of the operators J*, J® on the basis
vectors {f(»} for fixed u, m=u, u— 1, u—2,--
defines an irreducible representation |, on s/(2).
This infinite-dimensional representation was studied
in Ref. 4, Chap. 5. Its matrix elements are

{v,n|0, g|u, m}
= Jungutmpn-m (u —m)!
(u — n)!
oFiln —u,—m—u;n—m+41; bc/ad)(s
I'm~m+1)

X




1184
— du—mau+ncm—n P(u + m + 1)
'u+n4+1
» JFm—u, —n—u;m-—n+ l;bc/ad)(s
[(m—n+1) o
g= (‘; Z) e SL(2), ad — be = 1. (6.2)

The matrix elements define a local representation of
the group SL(2). That is, they are defined and sat-
isfy the group representation property only in suitably
small neighborhoods of e. These neighborhoods have
been determined elsewhere? and are usually evident
by inspection.

Substituting expression (6.2) into the identity

T(0, g) (2, 1) "E{u u — k|0, glu, m} £z, 1),
we find

e

x Pf]ﬁ;{"’"*”’[z(l +2b6) + abt + 2 - 1)}

!
du—-ma2u—k(2c)m—u+k k ‘
0 u — m)!

oFi(im —u, —2u+ k;m —u + k + 1; bcJad)

X
I'm—u+k+1)

X P](cu—k——q.u—k+a)(z)t—k’
c(z£1)

at
When u = m, this relation becomes
1 —e(z ~ DI*[L + c(z — D]

= ()P v D(Z), o(z £ 1)] < 1.
k=0

Matrix elements of the form {v, n| 0, 0, y; e |u, m}
can be computed directly from Corollary 5 and
Lemma 3. The result is

Ms

k

<1, ad —bc=1. (6.3)

{v,n]0,0,y;el|u, m}
= 0y, mMmi(270)
— Qyey F'u+m+ DHu—m)!’w—qg+1)
IF'e+m+Do—m!I'u—qg+1)
2 I2m+n+1)
nm ['Cm 4+ 2n + 1)
X E™™9(n, u — m, 0 — mM_y 427 0).
(6.4)
(The sum actually contains only a finite number of
nonzero terms.)

The functions M?;*(y), defined by Eq. (6.4), form a
generalization of the Whittaker functions M, (),

WILLARD MILLER, JR.

since
M) = y7 % TQu+Dlv—q + 1) (
e (v —u!lQv+ Du~q+1) Mourt )
if v—u>0,
=0, if v—u<O. (6.5)
Furthermore,
M o(2y) = IM(y), (6.6)

where I2;%(y) is the generalized Bessel function defined
in L

We list a few properties of the generalized Whittaker
functions. The relations

T(0, 0, y; €) f3
z {u+k,m|0,0,y,elu, m}fio

k=—o0

{v,m| 0,0,y + »; eIu,m}
Z {v,m|0,0,y;elu + k, m}

k=—o0

x {u+k,m|0,0,y"; e|u, m}

imply the identities
I'Cm + 14+ DI

Pm4+1—q+1)
_ < kIT(k+2m + 1)

_k=0F(m +k—q+1)

YzP(M—q,m+a)(z)

Mo em () pim—am+d) ),
(6.7)
My +9) = T MuZ M), (6.9)

convergent for all values of y, y

By applying the recursion relations (1.5')(1.8') to
expression (6.7), we can derive recursion relations for
the generalized Whittaker functions:

(k + 1) M:rnn?;zk+l,m+l( ) Mm+k+1 m+l( )

m+1;q

_ (m+k—q+1)
T @m + 2k + D2m + 2k + 2)
_ 2(k + 1)g
(2m + 2k + 2)2m + 2k + 4)
k- DEA2Ym+qg+k+2)

M EE™ o)

k
M ()

m+k+2,m+ l(y)
s

@2m + 2k + H02m + 2k +5) ™
d Mm+k m+1 (69)
2y Mmia »
_ m+1l—qg+1) MemLG)
2m+ 1+ D2m+ 20+ 1) Moe
mq m+k m+l( )

Toxmt Dm It D
I+ m + Cm + )
(2m + 21+ D2m + 2))

::L‘—;{;k,m+l—l (7)
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— (m+k—29q) m'+k-1,m+l(y)
Q@m + 2k — D2m + 2k) ™
mq Mr’:-;l;k,m+l(y)

2m+ kY(m+ k+1)
k+D)k+2m+Dk+m4+q4+1)
Cm + 2k + 2)(2m + 2k 4 3)
X MmHELmGy k1=0,1,2,- .
The matrix elements {v, n| «, 0, 0; e |u, m} can be
determined easily from Lemma 4:

{v,n|«,0,0;e|u m}
_ Qo) ™u—m)!'v—qg+1)
- n—m'!u-m+n—no)l
TMu+m4v—n+41)
'm—-q4+v—n4+DI'Qv+1)
XFlv—n+m—uu+m+v—n++1,
v—qgq+1lim—g+v—n+1,2v+ 2;1),
if n—m>|v—ul,
(6.10)

=0, otherwise.
The addition theorem

{v,n]a + «,0,0; e|u, m}
= Y {v,n|«,0,0;e|u, m}u’, m'|«’, 0,0; e |u, m}

leads to an identity for the functions ;F,(1) which the
reader can derive for himselif.

The matrix elements of the operators exp (BPt)
and exp (BP~) are very similar. In fact, if we rewrite
expression (1.8) in terms of basis vectors f{* =
(=¥, we see that Eqs. (1.7) and (1.8) become
formally identical. Therefore, the matrix elements of
exp (BP-) can be obtained from the matrix elements
(6.10) by formally replacing «, n, m by 8, —n, —m,
respectively, and multiplying the resulting expression
by (—1)r—*:

{v,n|0,p,0; e|u, m}

_ 2Ba)™"T(u + m + (=)

m—ntu+m-—n-—yv)
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>(I‘(u—m+v+n+1)1‘(v--—q+1)
Thn—q+v—m+ DI+ 1)
X Fo—m+n—uu—m+v+n+1,
v—gq+lLin—q+ov—m+1,20+2;1),
if m—n>|v—u,
= 0, otherwise. (6.11)
Another identity for the functions ,F,(1) can be
derived from the addition theorem:

> {v,n|a,0,0;e|u, m}u’,m0,B,0;e|u, m}
= 3 {1,n|0,8,0;e|u',mHu’, m'|,0,0;e|u, m}.

u',m’

In general, the matrix elements satisfy an addition
theorem

{v,nlw+ gw'; gg’ lu, m}
= {v,n|w, glu’,m'}Hu',m'|W, g |lu,m}, (6.12)
u,m’

for g, g’ in a sufficiently small neighborhood of
e € SL(2). This theorem can be used to derive identities
relating the special functions constructed above.
Several of these identities have been proved in L.

7. RELATIONS BETWEEN MATRIX
ELEMENTS

We now investigate the relationship (for g = e)
between corresponding matrix elements of two differ-
ent representations of Gg, p, and p’. We suppose, first
of all, that p and p’ are distinct representations in the
list (1)-(3), Sec. 1, except that they have the same w.
The representations may lie in different classes and
may have different parameters g, #y; ¢’, u,. Denote the
matrix elements of p by {v, n| «, B, y; e |u, m} and
those of p’ by {v',n'| o, B, y; e |u’,m'}.

Making use of Model A and expression (3.2), we
can express the p basis vectors as linear combina-
tions of the p’ basis vectors:

u—m

‘Nz, f) =3 H(u,m, q;m’, ¢', k)™ ™ fim+0(z 1y,
k=0

(1.1)

2"y —m) Tw+m+ k+ DIm' —q + k+ 1)

Hu,m,q;m',q'; k)=

Klu—m—ITCm +2k+4+ DI'm—q+k+1)
XsFm—u+t+kudtmt+k+1,m —qg+k+1l;m—qg+k+1,2m +2k+2;1). (7.2

Application of the operator

T(x, B, 75 ) = exp [o(at + B(1 — 22)/t + yz)]
to both sides of Eq. (7.1) yields the identity
2 {vnla py;elu, mf"(z, 0

v,n
u—m

= "™ > H(u,m, q; m’, q'; k)

k=0

x> {v,n'le, B, y;e|lm + k, m'Yf¥)(z, t).
v ,n’

The vectors f2”(z, t)' in this last expression can be
expanded as linear combinations of vectors f{(z, t),
where n=m —m' +n' [use (7.1), interchanging
primed and unprimed quantities]. Equating coeffi-
cients of f{"’(z,7) on both sides of the resulting
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identity, we find

WILLARD MILLER, JR.

w—_mlo—g+1

{v,nle, B, y;elu, m} =

u—m oo

wW—n!TRuv+DI'v—m+m —q +1)
Fu+m+k+D0m —q +k+1)

x 2

Eti=vm k!(u — m — kY I'2m’ +2k+ DI'(m — g+ k+ 1)
><(m-—n+l)!l‘(2m’+v—m+l'+ 1)

(m—v+ D!

XgFsm—ut+ku+m+k+1i,m—qgd +k+1;m>=q+k+1,2m +2k+2;1)
XgFo—m—-L2m+v—m+I+Lo—g+1i,m+v—m—q +1,2v+2;1)

x{m+i,m+n—mla,B,y;e|m +k m}, 1l k, integers.

Equation (7.3) is a generalization of a number of
important identities in special function theory. For
example, if « = =0; n=m =u =10, then this
equation becomes

m'—v

4 —.ot3(¥)
_ 2 (m —g + 1),
=l 2m + 14 1),
X sF(—0L2m + 1+ 1,v—qg+ 1;
m —q + 1,20+ 2; DM_p ppy113(y), (7:4)

(), = T(u + DT ().
In case ¢’ =0, m’ = v — ¢, identity (7.4) simplifies
to

where

yot
—_— M_ v
Tw+2) +1()
— 22v—2q+lr(v —q+ %)

Q=D w—g+1+38,
20 T g1t -2+

X (v = Q=20 y—g4143(/[2)-

(7.5)

(7.3)

Next, the most general case, we will determine a
relationship between the matrix elements of the
representations p and p’ when these representations
correspond to different values of the nonzero param-
eter w. The representation p has parameters g, ,, ®,
while p’ has parameters ¢', #,, »’. There will be no
loss of generality, if we assume @’ = 1. As before, the
matrix elements of p will be denoted by

{v,nla, B,y;elu,m}

and those of p’ by {v',n'| «, B, y; e |u', m'}.

If 8 =y =0, it is obvious from expression (6.10)
that the matrix elements of p depend on w according
to the multiplicative factor o™ ™. If a =y =0, it
follows from Eq. (6.11) that the matrix element varies
as w™ " However, if a = =0, y#0, the w
dependence of the matrix elements is much more
complicated.

To uncover the @ dependence we need a slight
generalization of the identity (3.2):

Lemma 6: If 1 — x = w(l — z), then

'y+do+n+k+DIe+ B+ k+ DIy +n+1)

PI¥() =3

i D+ B+ 2k + DIy + 6+ n+ DOy + k + D(n — k)!
X Fak —n,y+0+n+k+Loatk+1y+k+1o+p+2k+2; 0 )PE(x).

This lemma is proved in exactly the same way as
the identity (3.2). Making use of Model A again, we
observe that

T, 0, y; e)f;u)(z’ )]
= " fn"(z, 1)
= exp [(w — )y + yx}/n’(z 1)

u-—m

= exp [(w — 1)y + px] Zo Hu,m,q;m’, q';k)
k=

X AR (e 1), (7.6)

where H®(-) is defined by Eq. (7.2), except that the

function 4F,(1), occurring in Eq. (7.2), is replaced by
2Fa(w™). Thus,

> {v,n]0,0,y;eu, m}f(z, 1)

u—m
— e(m—l)ytm—m’ z Hw(u’ m, q; m’, qr; k)

k=0

X 3 {v,n']0,0,y;e|m + k, m}f¥(x, 1),

Expanding the right-hand side of this expression in
terms of the basis f(z,t), n=m — m’' + n’, and
equating coefficients of the basis vectors, we obtain
the identity
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M3t (yw)
(u—m)!T — g + 1) exp [3(w — Dyl
T w—mITQv+ Do —m+m —q +1)

u—-m o0
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Tu+m+k+DIm —q¢ +k+DNTCm +v—-m+1+1)

x2 2

ok w—m—=ITCm +2k+ DI'm—g+ k+Dm—v+ D!
x3F2(m-u+k,u+m+k+l,m’—q’+k+1;m—q+k+1,2m’+2k+2;w‘1)
X Fo—=m—1,2m +v—m+1+1Lv—qg+1;m +v—m—q + 1,20+ 2; QM ™ ). (7.7)

If m = u = v, this identity becomes
P TM g o7 ) )
fral ! —_ ’ +
= Yo — 1 o1 (1 q l
exp [h(w ~ Dylo’™ 39Tt
X F(—=0L2m +14+1L,v—g+1;

m —q +1,20+2; )M _gp4(»). (7:8)
When v — g = m’ — ¢’, Eq. (7.8) simplifies to

. 1—-£
Y 7 S | (V ""“‘)

2
— o[- w1+ 5)} (5 5)”“
4 2
<(m —4q +1) 1
S Qu+2), Qm +1+ 1),

x PERAN W DEM k), (19)
where § = 20 — 1.

8. MODELS IN THREE COMPLEX VARIABLES

It was shown in I that the representations 1,(w, 0),
Ta(w, 0), and Ry(w, 0, 1) have models in terms of
differential operators and analytic functions in three
complex variables. Those representations for which
g # 0, however, have no such models. On the other
hand, we will show that the matrix elements

{v’ nl a’ ﬂ’ 7"’ e lu’ m}
of the representations 1,(w, q), 15(w, q),and Ry(w, q,uy)
themselves define models in terms of differential
operators acting on vector-valued functions of three
complex variables. To see this, we consider a represen-
tation p from one of the classes listed above and note
the relation
{ws g} = {0’ g}{g_lw’ e} = {W, e}{o’ g},

which leads to the addition theorem

2 UL (@){v, n' g7'w, e |u, m}

=2 {v,n|w,elu, m}UL .(8) (8.1)
for the matrix elements of p. Here,
Uz,n'(g) = {U, nl 0, g |l), n,}
and g is in a small enough neighborhood of e € SL(2)
so that all terms in Eq. (8.1) make sense.
Fix v, and consider the vector-valued function
Xg;u,m(w) =({U, nl w,e lu, m}) (82)
Here, n runs over the valuesn = —v, ~v 4+ 1, -+, 4+
v, if p=1Tw,q) and n=v, v~1, v -2, -+ if
p = Ts(w, q) or p= Ry(w,q, uy). Define the action

T of T on X(w) by (in matrix notation)

[T(a, £)XZ,., W) = UA(®)Xu,ng” (W + ). (8.3)
Clearly,

T(ga' + a, gg’) = T(a, g)T(a', g).
According to Eq. (8.1), the vector-valued function
X2, (W) transforms like the basis vector £ under-
the operator T(0, g). Furthermore, it is easy to verify
the relation

[T(a> e)Xg;u,m](w) = z {U') n'l a e ‘u’ m}X:;v’,n’(w)'
o (8.4)
It follows from these expressions that the operators
T(a,g) and the vectors Xf (W) =f{* define a
model (Model C) of the abstract representation p.
Standard methods in the theory of Lie transformation
groups®? can be used to compute the infinitesimal
operators corresponding to this model. The results
are 3 7
JV=y—+28—+ 5%,
Y 3 B P» +
0 0
—y— + 20— + 8,
"o oy
0 0
Pr=—a—+ =+ 5
Ot p op +
o, ol
Oo. op
where

S*o,nllu, m} = (&n — o, n F 1w, m},

S¥v, n || u, m} = n{v, n|-|u, m}.
It is an immediate consequence of these results that
the vectors X2, (W)= f'* and the infinitesimal
operators (8.5) satisfy the recursion relations (1.5)~
(1.8). Lemmas 1-5 can now be used to provide
additional information about the Model C basis
vectors. For example, Corollary 2 yields the identity
P§m~—q,m+q) (w—l __a__) XP. (W)

ay vim,m

Fem +DI'm —q+1+ 1)
= X mir,m(W). (8.6

Nrm4+ 1+ Hm — g + 1~ """ ). (3.6)
This identity, as well as all others obtained from
Lemmas 1-5, constitute generalizations of the

“Maxwell theory of poles” for solutions of the wave
equation.1?

J =
8.5)

p=l
ay’

12 A. Erdelyi, W. Magnus, F. Oberhettinger, and F. Tricomi,
Higher Transcendental Functions (McGraw-Hill Book Co., Inc.,
New York, 1953), Vol. 2, Chap. 11.
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The degenerate, irreducible, unitary representations of the compact group Sp(n), characterized by
one and two invariant numbers, are considered. The explicit expressions for the basis functions spanning
the corresponding representation spaces and the decomposition with respect to the maximal subgroup

are given.

1. INTRODUCTION

Many attempts have been made in the last few
years to understand the properties of physical systems
such as elementary particles, the hydrogen atom,
nuclei, etc., using the theory of representations of the
underlying symmetry group. The main effort was
devoted to the rotation and unitary groups, while the
class of symplectic’ groups did not receive much
attention. This may be due to the peculiar property
of these groups, that of conserving an antisymmetric,
bilinear form.

Some interest in symplectic groups was raised by
remarks of Lipkin! on possible applications of the
group Sp(n, R) to systems of bosons which do not
conserve the number of particles. Budini® has pointed
out that, using Sp(6, 6) as a higher symmetry group,
it is possible to obtain a mass formula for elementary
particles without symmetry breaking. The questions
of the symplectic symmetry of hadrons and of the
embedding of the harmonic oscillator in the sym-
plectic group have been discussed in Ref. 3. On the
other hand, the theory of the degenerate representa-
tions of the rotation and unitary (both compact and
noncompact) groups has been developed in a series
of papers.? In this work we present the extension of
that approach to the unitary symplectic groups, i.e.,
those which conserve both symmetric and anti-
symmetric bilinear forms.

In general, the irreducible unitary representations
of a semisimple Lie group G are realized as mappings
of a Hilbert space J(X) into itself, the domain of

* Present address: Nuclear Research Institute, Re?, Czecho-
slovakia.

1 On leave of absence from Institute of Nuclear Research,
Warsaw, Poland.

1 H. . Lipkin, Lie Group for Pedestrians (North-Holland Pub-
lishing Company, Amsterdam, 1965).

2 p, Budini, private communication.

 H. Bacry, J. Nuyts, and L. Van Hove, Nuovo Cimento 35, 510
(1965); R. Hwa and J. Nuyts, Phys. Rev. 145, 1188 (1966).

4 N. Limi¢, J. Niederle, and R. Rgczka, J. Math. Phys. 7, 1861,
2026 (1966); J. Fischer and R. Ra}czka, Commun. Math. Phys, 3,
233 (1966); 4, 8 (1967).

corresponding functions being some homogeneous
space X of the type

X = G/ GO’
when G, is a closed subgroup of G.

Gel’fand® has proved the important theorem which
states that the number of independent invariant
operators in the enveloping algebra acting in the
Hilbert space of functions ¥(X) with domain X* is
equal to the rank’ of the space X (and is therefore
independent of the rank of the fundamental group G).
Since we are primarily interested in construction of
representations characterized by the minimum number
of invariants, we can use this theorem to select an
appropriate domain X, namely, that of rank one.

In order to select the proper invariant operator we
can use the theorem of Helgason,® according to which
the ring of invariant operators in the algebra R of the
group G, realized on the space of rank one, is gener-
ated by the Laplace-Beltrami operator

(1.1)

1
A(X) = —— 8,85 (X)(1g))* 1.2
)= oo’ 12
on X. Here g**(X) is defined by
g (X)gp(X) = &3, (L.3)

where g,,(X) is the metric tensor on the space X and
lg] = Idet {g,,(CO}-

Then the problem of construction of the most
degenerate, irreducible, unitary representations is
reduced to the problem of determining eigenfunctions
and eigenvalues of the Laplace-Beltrami operator on
the appropriate symmetric space X = G/G, of rank one.

We select a suitable domain X and solve the eigen-
problem of the Laplace-Beltrami operator on it in
61, M. Gel'fand, Am. Math. Soc. Transl. Ser. 2, 37, 31 (1964).

¢ Note that sometimes in the set of invariant operators there

appear operators which are not elements of the enveloping algebra.
(For an explicit example see Ref. 4.)

7 The rank of a space X = G/G, is defined as the number of
invariants of any two points x, y € X with respect to the action of the
fundamental group G on X.

8S. Helgason, Differential Geometry and Symmetric Spaces
(Academic Press Inc., New York, 1962), Chap. 4, p. 397.

1188



REPRESENTATIONS OF THE SYMPLECTIC GROUPS. 1

1189

TasLe 1. Homogeneous spaces connected with symplectic groups.

Cartan’s list: G, compact Rozenfeld’s list: G, noncompact
X= g; Rank of X D'mension X —% Rank of X Dimension of X
gae n nn + 1) %%-Z—; P+q (P +9p+q+D
S_’L(‘lﬁn)@ n n(n 4 1) ‘%qq)__ﬁ?) p+q P +9p+q+1)
S;—fﬁ%—% min(p,9)  4pg SP(:” (g) ;"_’qu)’ =y min (p, ¢) 4pg
%%___% min (, 9) 4pq Sgképég(p, «Z) - min [((1; " r;z),— - “ 4= "Ilc) — m)
kg

Sec. 2. Section 3 is then devoted to the study of the
properties of the most degenerate representation of
the group Sp(n) obtained in this way. In Sec. 4 we
discuss some aspects of the determination of the
series of less degenerate representations of Sp(n)
characterized by two independent numbers. Thus in
the present paper we deal only with the case of
the compact group Sp(n). We shall, however, use the
results obtained here in forthcoming papers, in which
we would like to solve the following problems:

(i) The construction of a representation space for
(most) degenerate irreducible unitary representations
of the noncompact, unitary, symplectic group Sp(p, q)
determined by a discrete or a continuous invariant;

(i) The decomposition of the tensor product of
two representations of Sp(p, g) group into irreducible
components and the decomposition of the irreducible
unitary representations of Sp(p,q) with respect to
compact and/or noncompact subgroups.

2. CONSTRUCTION OF THE
REPRESENTATION SPACE

According to Gel'fand’s theorem,® the properties
of the irreducible unitary representations of a group
G realized on a Hilbert space J¢(X) are determined by
the geometrical properties of a domain X of functions
S(X) € ¥(X), the domain X being some homogeneous
space.

Symmetric spaces of the type (1.1) with a compact
stability group G, have been classified by Cartan,
whereas those with noncompact stability group have
been listed by Rozenfeld.® We reproduce in Table 1
Cartan’s list of symmetric spaces (see Ref. 8) for the
fundamental group G of the symplectic type. There
also is collected the spaces from Rozenfeld’s list,
together with their ranks and dimensions.

? B. A. Rozenfeld, Dokl. Akad. Nauk SSSR 110, 23 (1956).

We see that the only suitable candidate for a space
of rank one on which the compact group Sp(n) acts
transitively is the space

_ Sp(n)
"TSpin — D ® Sp(1)

This space is known to be a quaternionic projective
space.®® But it is rather difficult to construct a
convenient and simple geometrical model for it.
Fortunately, we may use for our purposes the space

an1 _ _ Sp(n) ® Sp(l) ~ 3P
Sp(n — 1) ® Sp(1)  Sp(n — 1)’

which is evidently closely related to the space (2.1).
Furthermore, the space X**~! is isomorphic to the
unitary sphere in the n-dimensional quaternionic
unitary space Q™, defined by the equation

(2.1)

(2.2)

> Gy = 1. 2.3)
k=1
It has been proved by Chevalley!® and Hsien-Chung!
that the group Sp(n) ® Sp(1) acts transitively on
(2.3) and that its stability group is Sp(n — 1) ® Sp(1).
As is well known, the noncommutative algebra of
quaternions Q is defined as an algebra of dimension 4
over the field R of real numbers with a base composed
of four elements 1, #, j, kK whose multiplication table is

1 ik
11 i ok
ili =1 k —j
ilj ~k =1 i

klk j o—i —L 2.4)
i C. Chevalley, Theory of Lie Groups (Princeton University
Press, Princeton, N.J., 1964), Vol. 1.
11 Wang Hsien-Chung, Ann. Math. 55, 177 (1952).
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Then any quaternion g € @ may be expressed either in
the form

g = X1 + Xof + x3] + xk, 2.5)
where x; ({ = 1, - + -, 4) are real numbers, or
g = z; + 23, 2.5)

where z; (i = 1, 2) are complex numbers. The qua-
ternionic conjugation is the mapping

g—>§ =X — Xpl — X3f — Xk =z} — z,j (2.6)
of Q onto itself. (For a detailed treatment of properties
of the body of quaternions, as well as for the questions
about the relation of symplectic groups to the vector
spaces over the body of quaternions, see, for example,
the book of Chevalley.!?)

It is important that the n-dimensional quaternionic
unitary sphere (2.3) is homeomorphic to the usual
sphere in 4n-dimensional Euclidean space R*". Be-
cause of it, its properties are rather simple.

Now let us introduce an inner coordinate system on
the sphere (2.3). Let us suppose that we have defined
a coordinate system on the quaternionic unitary
sphere (2.3) of dimension p < n. Let these coordinates
be denoted bygq, (k = 1, - - -, p). Then the coordinate
system on the “sphere” of dimension p + 1 will be
defined by

q4y=4qpsiné&,,, for k=1,--,p, 2.7)

Qpi1 = (6®°+1c0s D,y + €¥7+1sin 8, 1 j) cos &,,4.
(2.8)
Now starting from
41 = (" cos B, + €¥'sin 9,)), 2.9
we get the coordinate system for an arbitrary dimen-
sion of the quaternionic unitary sphere (2.3) using
recursive formulas (2.7) and (2.8). This choice is
convenient because there appears [in parentheses in
(2.8) and (2.9)] a general expression for a quaternion
of modulus equal to one. The ranges of variables
@r> Yi> U, and &, must be chosen so that the co-
ordinates (2.7) cover the space X**! only once. In
this way, on the space X*"~ we introduce

n variables ¢, €[0,27) (k=1,---,n),
n variables v,€([0,27) (k=1,---,n),
n variables &, €(0, #/2] (k=1,--",n),
and
(n — 1) variables &, €[0, 7/2] (k=2,-"",n),
(2.10)

i.e., 4n — 1 variables altogether.

The metric tensor g,z(X*"1), induced by the metric
tensor of the quaternionic unitary space @™, is given
by the symmetric part of the tensor g,, defined by

g;ﬂ(X4n—1 = z st( (n)) aqs aQt

2.11
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where
a = (s, 0'), ﬂ = (t, T)
and
Q(s,l) = P> Q(a,2) = Ys» Q(a,a) = 193’ Q(3,4) = 'fs'

In our parametrization the metric tensor g,,(X*"?)
is diagonal, and therefore the Laplace-Beltrami
operator (1.2) can be represented in the form

A( X4n—1)

L 3 an—5 a
(cos £,)(sin &,)"" 9E, (00s &,)%sin &,) aE

! 1 4(n—1)—-1
¥ (cos &,)° Kt (sin &,)? A »

where

(2.12)

K, = S —a—smﬁ cos 9, 2
sin #, cos &, 89, 0%,
a1 P 1@
(cos #,)* 092  (sin 9,)% 092
and A(X*"—-1) js the Laplace-Beltrami operator on
the quaternionic unitary sphere embedded in the
space Q1. For n = 1 we have

A(XY) =K, (2.19)
To find the basis functions for the Hilbert space

J(X) on which the representations of the Sp(n) group
may be realized, we have to solve the equation

A QM) = Ay Vi (QT), (2.15)

where Q™ stands for the set of variables {Q;, - - -, Q,}.

Representing solutions ¥, _ (Q‘™) of (2.15) in the form
V}.(”)(Q(M) = (Dn(wn)‘yn('/%)®n(ﬁn)

X B &V, Q" Y), (2.16)

we obtain the set of ordinary differential equations
of second order:

(2.13)

‘f:q); m20, = 0, 2.17)
Pn
2
‘;f’z + A2, =0, (2.18)
1 d
—_— 2, Dy ——
Iism #, cos &, dz? sin &, cos dﬁn +
mk2 m2
e T @ (9)=0, (219
(cos 9,)° (sin 0,,)2] (&) (2.19)

1 - 3, An—5 d
l:(cos £,)(sin &) dE, (Cos £, )(sin &,) dg

Anp) Kn ]
— A - E (&) =0, (220
@t GnEy  os bl =0 220
A(X4(n—1)~1)Vlm_-l)(Q(n—l)) _ }“(n-l)Vi.(,._l)(Q(”_l))°

(2.21)
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General solutions of Egs. (2.19) and (2.20) are given
in terms of hypergeometrical functions as follows:

0,(,) = (tan #,)/™I(cos &,)"
X 2F1(lfﬁnl - ln + lmn| Im'nl - ln - lmn| .

) >

2 2
/i) + 1; —tan® 0"), (2.22)
E,(£,) = (tan £,)'"1(cos £,)""

F L,,—L,+1, L,,—L,—1,—-2
o'y 5 - ’ 5 2

L, + 2(n — 1); —tan® 5n), (2.23)

where the eigenvalues m,, and 7, are integers and the
spectrum of remaining eigenvalues is given by

k,= 1,1, +2) (2.24)
and

A = —Lo(Ln + 4n — 2) (2.25)

with positive integers /, and L,,.

These solutions are square-integrable with respect
to the ‘measure du(X) if the following restrictions on
eigenvalues are satisfied??:

|, + \m,| =1, —2k, k=0,1,---,{./2]
(2.26)
and
L,,+1,=L,—2', k'=0,1,---,[L,/2].
2.27)

The solutions (2.22) and {(2.23) are expressible in
terms of the usual d functions of the theory of angular
momenta.!? Then the eigenfunctions of (2.15) are
explicitly given by

Lz l,,
ymy;fins

= YL yLi; lz(Q(n))

My Mg

— (Nn)_% z(m1¢1+m1!P1)d71 1(2191)

LuLn-1,
Yo

il (Q(n))

X ﬁ Silmprtmepy) d”‘ (29, (Sln Ek)

felic ks br Ek

ak B k(sz)

(2.28)
where

@, = §(Imy| — 1), by = 3(iml + |my),

ot = 3(f — Lyy + 4 — 2K), (2.29)
ﬁk = %(lk + Ly, + 2k — 2),
and
B = 3L + 2k = 2), j,=1/2 (2.30)

2 Here [a] means the integral part of a defined as usual.
'3 M. E. Rose, Elementary Theory of Angular Momentum (John
Wiley & Sons, Inc., New York, 1961).
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The normalization constant N, is then
N,=m" + DT+ DL + 2k —1). (2.31)
k=2

The functions (2.28) with a given value L = L, are
square -integrable with respect to the left-invariant
measure

dp(Q™) = [lgx*HFdQ™» (232
on the domain X**-1, The explicit expression for the
measure du is

du(Q'™) = cos &, sin 9, de, dy, dd,
X H cos 9 sin B(cos §,)°(sin &)

k=2
x do, dy, d0, d&,. (2.33)

Hence, the set of functions Y-k 4(Q™) span the
Hilbert space JL(X*"1) with ‘the scalar product
related to the left-invariant measure (2.32) by

) = [, 7A) HQ) du( @), (234

for any #, y € X (X*"1). In fact, the space JeL(X4 )
is a representation space of the group Sp(1) ® Sp(n),
which occurs as a fundamental group of the space
(2.2). However, a closer study of the properties of the
Lie algebras of Sp(l) and Sp(n) groups reveals that
we can realize irreducible unitary representations of
Sp(n) on certain subspaces of the Hilbert space
JCL( Xin-1),
3. MOST DEGENERATE
REPRESENTATIONS OF Sp(n)
A. Structure of the Lie Algebra

The group Sp(1) ® Sp(n) which acts on the mani-
fold (2.2) is a direct product of two simple groups.
Therefore its Lie algebra R decomposes into two
commuting subalgebras which we call R; and R,
respectively. The algebra R, of Sp(n) is then formed"
by the n(2n + 1) generators

Wf;, Wy, Uy, and U

0,40

i,j=1,---,n (3.1
which have the symmetry properties
Wiy = Wsi, VU, =Vf,, and Vg, = —Vj,.
(3.2)
The commutation relations of these generators are

%
[%i i Cu’l:,l] _ _ _ _
= i%{‘-’sgkcuii,z'*‘ 6:il(1'7:,:k + 5ik‘U‘}il+ 5ucufk}, (3.3)
[CUI 230 Cl)'—- l] _
= +é{61k‘U§l$ 3 CUz:tk:T: 5 chzf 5ucu k} (3 4)
[Cll"; je Cljk I.]

= +§{51k TI:WE’ 6:LCU% P 6zkcu’i iF 621(11’1 e (3.5)
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In Appendix A we have collected the explicit ex-
pressions for the generators (3.1) as linear differential
operators in quaternionic and complex variables as
well as their connection with the generators of the
group W.(2n).

The algebra R; of Sp(l) is generated by the three
operators W, (/ =1, 2, 3) which, on the manifold
X4 have the form

W, = S, W= DUz, Wy=3UVf. (3.6
k=1 k=1 =1

There is a close relation between the operators Wz,

‘INJ,;;, and W2, U . It is easiest to see from expres-
sions (All) and (Al8) of Appendix A, which
define the generators in terms of complex variables.
The meaning of the tilde in Egs. (3.6) then consists in
the substitution z, s z¥ for only k = —1, -+, —n,
while remaining variables are unchanged (z, — z,
and zf —zf fork =1,-+-,n).
The commutation relations for the generators (3.6)
are
[W,, W,] = 2¢,;, W, (k=123). (3.7

Throughout this paper we often use, instead of (3.1)
and (3.6), the set of generators of the complex ex-
tension of the real Lie algebras R, and R,. These are
especially convenient when dealing with the basis
functions (2.28) and can be normalized in such a way
that they form the Weyl’s standard basis. We define
these operators by

Esae, = 278U, £ 1U50),
E:i:ekiez = (cu”lt,l :t lcu’;,l)7
Esepre, = (U, £ iU7),

(3.8)
(3.9)

(3.10)
and

H, = —iUt,. (3.11)

In Appendix A we give their commutation relations
and their explicit form as linear differential operators
on the manifold X**! in the parametrization (2.10).

B. Properties of the Generators

As we are using the quaternionic unitary sphere
(2.3) instead of the quaternionic projective space
(2.1), we must be aware of the fact that the irreducible
unitary representations of the group Sp(1) ® Sp(n) are
directly realized on the space JL(X**1) spanned by
functions (2.28). Nevertheless, the space JEL(X*")
should be reducible with respect to the action of the
group Sp(n). To show this, we use the formulas for the
action of generators of algebras R, and R, of Sp(n)
and Sp(l), respectively, on the basis functions (2.28).
They are collected in Appendix B, and one can easily

P. PAJAS AND R. RACZKA

see that the generators have the following properties.
(i) The generators H, (p=1,--+,n) form the

Cartan subalgebra of R, and are diagonal in para-

metrization (2.10). They have the eigenvalues

Mt = m, + . (3.12)

(ii) The generators Ey, (p=1,:--,n) conserve
all numbers L, and /; and also the value of

M7 =m, — m,. (3.13)

(iii) All remaining generators conserve the value of

M~ =iM; =i("‘lzJ — ).

p=1

(3.14)

The last property is simply a consequence of the fact
that the generator W, of Sp(1), which has the eigen-
value (3.14), commutes with the algebra R, of Sp(n).
Therefore, the space JXL(X**~1), spanned by functions
(2.28), ‘decomposes into subspaces JE-(X*1) of
simultaneous eigenfunctions of the Laplace-Beltrami
operator A(X*"?) and of the generator W; of Sp(1).

Now, the value of M~ is restricted by the conditions
(2.26) and (2.27), so that

M- < L. (3.15)

The structure and properties of subspaces L, -(X4*~1)
strongly depend on the value of M. In the case when
|M~| = L, the subspaces X% ,(X*"?) are irreducible
underthe action of the group Sp(n), and therefore
they can be considered as representation spaces for a
unitary, irreducible representation of Sp(n). Because
these representations are characterized by a single
number L, we call them “most degenerate representa-
tions.” They will be treated in detail in this section.
In the case when |[M~] < L, the situation is not so
simple. The space J¢&,-(X**~") is in this case reducible
with respect to the action of the algebra of Sp(n),
and, to obtain its irreducible components, one needs
further investigation. We have devoted Sec. 4 to
these questions.

C. Unitarity and Irreducibility of the most Degenerate
Representations of Sp(n)

The condition M— = + L' reduces the two sets of
equations (2.26) and (2.27) to

(m,—my)y=1, (p=1,---,n) (3.16)

and
L,s+1,=L, (p=2,---,n). (317

14 We are limiting ourselves only to the case M~ = 4L because the
choice M~ = —L leads only to the change of sign in the right-hand
side of Eq. (3.16), which means changing the sign at any j’s in lower
indices of functions (3.18). The corresponding representations are
equivalent.
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These are strict conditions on the eigenvalues, and
they select from the set of eigenfunctions (2.28) of the
Laplace-Beltrami operator the subset of functions

vLg; )
Y L L,,(Q('n )
LL FURREY % %1 PYSEESS 11 (n)
‘LAI:++JVH T ,#M1++51;§NIH+~—3’", i .’%A‘Il“h"‘jl(g)

= (N,,ré exp {ilBM (g, + w0 + j(er — w1}
X dfir+ ;2%

X I_-_]; eXp {l[%M:_((ps + ‘/)s) + js((ps -

(sin &)*2

v,)1}

%M, ,i(28,) dJ'—zJ,_,,J (2&). (3.18)
os &,
Here we have introduced the notation
js = %(Ls - Ls—l) (3~19)
and
J, = 3(L, + 25 — 2). (3.20)
In the special case s = 1 we have
h=3iL==/. (3:21)

We have alsoput L= L,,.

In the considerations which follow a key role is
played by the second-order invariant operator [(®
which is proportional to the second-order Casimir
operator of the group Sp(n). We have found the
following connection of this operator with the
Laplace-Beltrami operator A(X**~) and the second-
order invariant operator [ of the Sp(1) group which
enters the direct product Sp(1) ® Sp(n):

¥ =3A + 1), (3.22)
Here we define
i,:?) =ZH32 - z [EaE—-a + E——aEa] (323)
s=1 a>
and ’
3
= _z‘wg, (3.24)
s=1

while A is defined by Eq. (2.12).

The functions (3.18) are simultaneous eigenfunctions
of the operators A and [{?, and therefore also of /2,
the eigenvalues being L(L + 4n — 2), L(L + 2), and
L(L + 2n), respectively. They span a Hilbert space
JL(X4"—1) defined by the scalar product (2.31) with
the left-invariant measure (2.33).

a. Unitarity

The space JL(X*"~?) creates a representation space
for the group Sp(n) because, for any generator

Z,eR, and any 5 € KE(X*"?), we have

4,2 =0, [[’,Z,In=0
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and
[W,, Z,In = 0. (3.25)

We shall denote representations of the group Sp(n)
related to this space by D[Sp(n)] or simply D%.
They are realized by associating to any element
g € Sp(n) an operator T, in (X *"~?) such that

(T PND) = 7'P(g7Q) (3.26)

for any %'P(Q) = ZL’ EM;, c(Ly, M) Y5E5(Q) of
JeL(X4n1). Here Q is a point of the mamfold Xan-t,
and g7 is its left translation by the element g1 of
Sp(n). Then unitarity of representations DE follows
immediately from the left invariance of the measure
du(€2).
b. Irreducibility

From the explicit form (3.18) of the eigenfunctions
Y7yhs we see that the structure of the Hilbert space
J(‘ZL(X 4n-1) js relatively simple. Namely, we can
decompose JKL(X* 1) into the direct sum of sub-
spaces as follows:

EX" N = @ @ REL-yx*"T,

Lp_y Myt

where the direct sum over L, ; and M} is extended
through

3.27

L,;=01--,L, (3.28)

and

My = =2, =2j,+2,",2,

respectively. Each of the spaces Jeiifz-*(X*"*) forms
a representation space for an 1rredu01ble unitary
representation of the Sp(n — 1) subgroup of Sp(n).
We see that any representation of the maximal
subgroup Sp(n — 1) occurs only once in the decom-
position (3.23). This is illustrated diagrammatically
in Fig. 1. To each point (L,_,,/,) in the diagram
Fig. 1(a) there corresponds a diagram Fig. 1(b) which
gives the possible values of m,, and 7, for a given /,,.

Now, to prove the irreducibility of representations
DE of Sp(n), it is sufficient to prove that, starting from

(3.29)

£n

(b}

FiG. 1. The most degenerate representation of Sp(n). (a) Decom-
position with respect to the subgroup Sp(1) ® Sp(n — 1). (b)
Possible values for m, and 7, ata given [, in the case when M~ = L.
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any point in diagrams (a) and (b) of Fig. 1, we can, by
successive application of the generators of the algebra
R, of Sp(n), reach any other point in these diagrams.

It is simple to prove this for Sp(1) (n = 1) because
the algebra of Sp(1) is formed by the three generators
E . and H,; the former act as step operators, while
the latter is diagonal. The presence of the “stopping”
factor [ FmF M in the formula (B3) of
Appendix B for the action of the generators E,,
assures us that, starting from some point of Fig. 1(b),
we can reach any other point on the diagram and only
these points. This means that the irreducibility of
representation D% (L = 1)) of Sp(l) is proved. Simi-
larly, one proves the irreducibility of the most
degenerate representations for the Sp(2) and Sp(3)
groups. Now let us assume that we have proved the
irreducibility of D% for the group Sp(n — 1). It
means that the spaces Jeff{“;"‘i(X 47=1) are irreducible
with respect to the action of the generators of the
algebra R,_; of Sp(n — 1).

Now, to prove the irreducibility of JE(X* ) space
with respect to the actions of the algebra R, of Sp(n),
it is sufficient to consider only the action of generators
E venr Erepten  andE , - (seealso Appendix B).
The corresponding formulas are formulas (B11)-
(B14) and (B3) of Appendix B. We see that the
considered generators conserve the conditions (3.16)
and (3.17). Moreover, the stopping factors are always
combined in such a way that relations

[,20; L,;20
and

Imn + rﬁnl _.<_ lna ‘mn—-l + ﬁin—ll S ln——l

are fulfilled. This procedure enables us to prove the
irreducibility of representations D% of Sp(n) by full
induction,

D. Properties of the Most Degenerate
Representations of Sp(n)

The basis functions (3.18) of the Hilbert space
JE(X*m1) are characterized by n numbers L, and n
numbers M (s = 1, -, n). The former are related

to the eigenvalues of the set of the second-order
invariant operators [®® of the chain of subgroups

Sp(n) = Sp(n — 1) = --- 2> Sp(l).  (3.30)
These eigenvalues are
Ay = L(L, + 2s). (3.31)

Numbers M are then eigenvalues of the generators
H, of the Cartan subgroup of Sp(n).
Therefore, the set of commuting operators is

P. PAJAS AND R. RACZKA

explicitly formed by 2n operators:

(P H,, I H,,, -, [ H}. (332

Their number is reasonably small compared to
the corresponding number in the case of a nondegener-
ate series of representations of Sp(n), in which case
itis gn(n + 5) — 1. This may be of particular interest
from the point of view of physical applications
because we would usually like to have the smallest
possible number of invariants for characterization of
a given physical state. The fact that all Cartan sub-
group generators are diagonal, which is due to the
parametrization we have employed, is also convenient
because it makes it possible to relate each of these
generators to an additive conservation law,

Another property which is a direct consequence of
the choice of the parametrization of the domain
X1 jis the pattern of the decomposition of
the Hilbert space JZ(X*"') into the subspaces
JGiﬁ;;i(X 4-1) on which the subgroup Sp(n — 1)
acts irreducibly. One can easily find a parametrization
in which the representation DL of Sp(n) decomposes
similarly with respect to a subgroup Sp(n — k) with
arbitrary k (n > k > 1).

In Appendix C we give the detailed calculation of
the highest weight of the representation of Sp(n).
From it, it follows that the representation DE corre-
sponds to the representation D(L,0,---,0) in the
notation used in Ref. 15, or it can be represented by a
one-row Young tableaux (see Ref. 16) and therefore
may be interpreted as a fully symmetrical representa-
tion of Sp(n).»”

4. LESS DEGENERATE REPRESENTATIONS
OF Sp(n) AND THE REPRESENTATIONS OF
THE GROUP Sp(1) ® Sp(n)

A. The Less Degenerate Representations
of Sp(n)

The condition
[M—| = const < L

imposes a restriction on the eigenvalues, which can
be conventionally written as

IM—I S ln + Ln——l' (41)
But from (2.27) it follows that
M| < L — 2k, 4.2)

15 M. Konuma, K. Shima, and M. Wada, Progr. Theoret. Phys.
(Kyoto) Suppl., No. 28 (1963). )

38 M. Hamermesh, Group Theory and Its Applications (Addison-
Wesley Publishing Company, Inc., London, 1962).

17 The explicit examples of lowest representations of Sp(2) and
5p(3) have been published in Appendix IV to the preprint [IC/66/77,
ICTP, Trieste (1966)) of this paper.
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FiG. 2. Diagram of the structure of the space JC4—.

where now k may be one of the numbers

4.3)

k=0,1,---,[£—_——[—MJ].

2

We can again represent the possible values of L, ;
and /,, by points in the net of Fig. 2. From the formula
(B13) of Appendix B we see that the operator
I!® and (therefore also) the second-order invariant
operator {'® of Sp(n) are not diagonal on the space
J&-(X*1), Generally, the operators [® and [,
when acting on functions (2.28), conserve, besides
all the numbers L, and [, (s =1, -, n), also the
numbers M} (s = 1,-++,n) and M~. Generally they
change the values of M (s=1,--+,n). The last
numbers are eigenvalues of operators H, which do
not belong to the set of commuting operators of the
algebra R, of Sp(n). Therefore, it is necessary to
diagonalize the operators [{¥ and /¥ on the subspaces

Jefiks p- (X1, This leads to the usual procedure of

Loy

ALn-
1
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diagonalization of matrices which represent the
generators on a given representation space.

In order to see the structure of the space &, -(X*"),
let us first investigate the points for which L,_; = 0.
Then we have all numbers equal to zero except [, and
M} . The value of M7, is fixed by

M, =M". (4.4)
Therefore the condition (4.4) defines the function
YL om0 20 Q). The eigenvalue of [2 will
then be

I® =11, + 2). (4.5)

This means that functions with L,_; = 0 and different
values of [, in J¢&,-(X*"?) belong to different irreduc-
ible representations of Sp(n). We denote the eigenvalue
of [® by L(L + 2), and then from (4.5) and (4.1) we
get

L=|M|,{M|+2,---,L. (4.6)

Now taking into account the generators of the algebra
R,, we see that to the same representation as the
point (L, 0) in diagram (L,_,,[,) must also belong
the points (L & 1, 1). Proceeding in this way, we get
the following decomposition of the space J¢%,-(X*»2)
into the subspaces which are irreducible under the
action of Sp(n):

4n—1

L
Fei-(x" T = @_]Je%,M{X““). (4.7

I=1M

This is illustrated diagrammatically in Fig. 3. Of
course, the set of functions which span the space
561%,1\1— is obtained by the diagonalization of the
operator [’ in all subspaces JGILW’?”JI\}— . Therefore, the
function f;’;s Z’L{?I*(Q) is the simultaneous eigen-
function of the set of 4n — 1 operators

{ws;A(XMz—l)’ i1(L2), Ie", Hn;A(X4(n—1)-1)’
" jl(z): Hl} (48)

2
e Kn—laH'n.—-la'

n~11

A'—n-l Lo

-

L L
L L-2;M" L8 MM

FiG. 3. Decomposition of the space J¢4,_ into the subspaces irreducible under the action of the algebra K, of Sp(n).
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and is generally expressed as a certain linear com-
bination of functions which span the space JCII,}'L:]’,'F
It will be given explicitly in the forthcoming paper on
noncompact groups.

On the spaces J(’,% 2-(X**7") one can introduce the
irreducible unitary representations of the Sp(n).
Unitarity of these representations can be proved in
the same way as it was in the case of the most de-
generate representations.

The highest weight of a representation D% realized
on the space J(i% u-(X*"1) is calculated in Appendix

C. Then the representation Df can be denoted,
according to the notation of Konuma, Shima, and
Wada,'s by

. L—L ) 49)

D£~=D(L,—2—-,O,-~,0

which corresponds to the Young tableaux with two
rows defined by the symmetry scheme'”

l:_I_‘_'t_Z‘ l_‘____f‘ 0.--- 0}
2 M 2 s Vs » .

. . L
The representations realized on spaces X7 ), - and
L
K5 31,,,-» Where

(4.10)

M(—l) # MrZ) ’

are equivalent because they have the same highest
weight.

B. Representations of Sp(1) ® Sp(n)

Finally, we should remark that the full set of
functions (2.28) spans a Hilbert space JCL(X*"Y)
which acts as a carrier space for irreducible unitary
representations of the group Sp(1) ® Sp(n). The
corresponding decomposition of the Hilbert space
JeE(X*) into subspaces is then given by

X = @ @ ® @ KEL (X, (@11

Lpoy In ™y g

where the summation is restricted by conditions (2.26)
and (2.27). There is no need to repeat the same kind
of considerations as above to prove the irreducibility
and unitarity of the representations D¥ of Sp(l) ®
Sp(n) on this space. Since Sp(1) ® Sp(n) is a direct
product, and we have treated Sp(n) in the previous
sections, it is only necessary to use generators from
both R, and R, algebras of Sp(1) and Sp(n), respec-
tively, to prove the irreducibility of representation
DY, Representations DL of Sp(1) ® Sp(n) decompose
into the representations of the subgroups Sp(1) and
Sp(n) according to the formula

DY[Sp(1) ® Sp(m)] = & {DY[Sp(1)] ® DFISp(m]},
L

(4.12)
as may be easily verified.

P. PAJAS AND R. RACZKA

§. CONCLUSION

The main results can be summarized in the following
way.

(i) A set of harmonic functions which span the
representation space for the most degenerate unitary
irreducible representations of the compact symplectic
group Sp(n) has been found. These representations
are characterized by a single number which is related
to the eigenvalue of the second-order Casimir operator
of Sp(n). They can be also described by a one-row
Young tableaux.

(i) Besides this, the series of unitary irreducible
representations of Sp(n) characterized by two inde-
pendent numbers L and L has been obtained. These
numbers are related to the eigenvalues of the Laplace-
Beltrami operator A(X*"~*)on the quaternionic unitary
sphere X"~ and of the second-order Casimir operator
of Sp(n), respectively. To these representations corre-
spond the Young tableaux with two rows.

(iif) The number of operators in the maximal set
of commuting operators, the eigenvalues of which
characterize the basis functions of the representation
space, in the case of the most degenerate representa-
tions is

Nl = 2n’ (5.1)

and in the case of the less degenerate representations
it is
Ny =4n — 1. (5.2)

These numbers are sufficiently small when compared
to the corresponding number in the case of non-
degenerate representations of Sp(n):

N,=%n(n+5)— 1. (5.3)
This underlines the importance of the degenerate
representations for physical applications.

(iv) In the parametrization introduced on the
quaternionic unitary sphere X**, the generators
H, which form the Cartan subalgebra are all diagonal,
which, again, is useful for applications.

(v) Finally, the patterns of the decomposition of the
given irreducible representation of Sp(x), with respect
to the maximal compact subgroup Sp(1) ® Sp(n — 1)
of it, occur because of the parametrization.
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APPENDIX A: ALGEBRA OF Sp(n) AND OF Sp'(1)

In order to obtain the algebras of Sp(n) and Sp'(1)
groups, let us comsider an infinitesimal symplectic
transformation in the unitary n-dimensional quater-
nionic space Q™:

Ag-—~q for q,q €Q™, (AD

The necessary and sufficient condition for the n X n
matrix of quaternionic elements 4 to be symplectic is

AT = A4 =1, (A2)
where

(4h),, = 4,,. (A3)
We point out that the “plus sign” here represents the
quaternionic conjugate defined in Sec. 3 and the
transposition of matrix 4. Representing any element
of A4 in the form

Ay = ag + iby, -+ je,, + kd,, (A4)

and considering the real parameters a,,, b, ¢, and
d, (s, t =1, -+, n)asinfinitesimally small quantities,
we obtain, imposing condition (A2),

a4,=1 (=1,---,n), (AS5)
gy = —dys (S # 1),
bst =bts,
Co = Coo» (s0=1,-,m), (A6
dst =dts’
or

Ay = —A,, for szt

Let us now define four formal, linearly independent,
quaternionic quantities:

Gep = a, + b, + je, + kd, = z, + z_j,
q,_ = a, + ib, ~ je, — kd, = z, — z_,j,
q:+ = a, — ib, + je, — kd, = z} + z*.j,
q:: = a, — ib, — je, + kd, = zF — z*j.

(AT)

We define the representation of the group Sp(n) as a
transformation in the space of functions of these
variables determined by

(Taf) a5 15 3 s 5 a0
= f[(A-1‘11)+, T (A_lfh)t; Yy
(A7'q,),, . (47g,)%1 (A8)
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for any 4 € Sp(n). Defining the formal derivatives by

5. -0 _1(o .9
o q8+_2(azx }az—s)’
3 1/0 3
o, =2 L(e ; 9}
oq,. 2 (azs+J82_s)
g @ 1[0 .a) (A9)
”‘aq:‘fz(az:‘ Tor)
1

* d 0 . 3
=5 T2 (az;‘ +J azts)’
we can expand the right-hand side of Eq. (A8) into
a Taylor series. Then the generators of the Sp(n)
group are obtained if we consider the one-parameter
subgroups of Sp(n). This procedure leads to the follow-
ing set of generators:

Lo, = g0+ + + +) — g0+ + + +)] =27,
Ly, = ilgd(+ + — —)] =V,
L, = il4d(+ + — =) + a0+ + — —)] =2V,
L, = jlagd(+ — + —)] = U,
L., =jla.0(+ — + =) + g2+ — + =) = U},
Ly, = klad+ — — +)] = U

88

Ly, = Kad(+ ~ = +) + ¢+ — = )] = Wy

(A10)
Here we have introduced the notation that, for ex-
ample, 4,0,(+ — — +) represents the expression

qe10py. — s 0, — q;:»a:}— + Qf-af--

The commutation relations (3.3)-(3.5) of the genera-
tors WE and UZE, which are given in Sec. 3, are
easily verified either by using the definition of quater-
nionic derivatives (A9) or by expressing generators
W and VE in variables z,, z__, z¥, and z* as
follows:

1 0 0 0
U == z,— -z,
T2 l:z oz_, T 0z_, : 0z,

d . i
— z_ta—— + complex conjugate |,

8

a 1

I | 0 d G,
Uy == | 2,0+ 2y 2y b 2_ = — e
‘ 2i[: 0z_, Ztaz~s+z 8Z,+Ztazs CC_’
i d d d d 7
V,==lz,—~4z,——z7 — ~27 -2 _coc.
’ 21{ bz, oz, e, anl %)

_ i a8 @ 2 )
Vy=-|z,——z,—+2z_,— —z_,—+cc.|.
t z[z oz, “an, T e TR, +°°]

-8

(A11)

Now we may express these generators through those
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of W(2n) given in Ref. 4 as

0 0
— = —~] —_— —_— — C.C. |- A12
L, z[z, 7, tz5-—c c:l (A12)

We see that

W, = 3L, + L),

VU, =4L], F LI, )

Because the algebra R, of the Sp(n) group is the
compact real form of the algebra of the complex
group C,, we can easily find the Weyl’s standard
basis Hy, gy Evgpie Erave of C, by using the
generators (A10). This relation is given by formulas
(3.8)-(3.11) of Sec. 3.

The commutation relations of these generators are

(A13)
(A14)
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2 2 2 2 4
C%T a2 a.(i ———————— atn-i an
FiG. 4. Dynkin diagram of the group C,.
where e, ---,e, are unit vectors which form an

orthonormal basis in the root space.

Generators E, play the role of raising and lowering
operators when acting on the basis functions (2.28)
of the space JeL(X**-1), while the generators H, form
a Cartan subalgebra. In the following we present
explicit expressions for these generators as linear
differential operators in the parametrization of the
manifold X% which we introduced in Sec. 2.
Similarly, the three generators of C; which correspond
to the Sp’(1) group are defined by

noo - n
E.ine, = 2—*’; (Ui, £ iUy = 2-*);1 Ely,»

. Hy= —iW, = -g‘ﬁ;k, (A17)
[Ea’ E—-a] = kglmka’ where
{Ee» Egl = Ny pEosp (A15) g, = [zk o 2. c]
[Hka Ea] = _“kEas aZ 3 aZk 3
[H,, H] =0, Wy, = —i[zkgz—*' + ka-a; —_ C.C.], (A18)
—k k
where « and g are roots and where N, s = N_, _5 # 0 Tt = KA x« 0
only if « + B is also a root. We obtain a Dynkin k= l:zka 5 e T C'C':l'
diagram (see Fig. 4) of the group C, if we put
In the parametrization of X**~! we now have
u(l) =e,—€,,
' {9 2
H, = ,(a—- - 5—), (A19)
(A16) X . Pr Ve
(;_1) —e — e E 5, = 27" exp {xilgr — v}
* m v X [?itan & — 9 Ficot 29ki + —a-:l (A20)
a(") = 201, a(pk a aﬁk
For k < I we have
15  tilpp—yp SID Py O ; ed:i(m—wk)c_os_ﬂli
Esopser = 2 ( * [:Fle cos O, 09, ¥ sin &, Oy
+ (X190 cos B, cos B, + P ¥ sin §, sin &) 33 ]
k
Se [ titorvo S0 %% O sitopn 08 By O
__:Feﬂ:ka___.____;Fle =
+ fi [ : cos &, dg;, sin &, Oy,
+ (e:i:i(‘l’k——w) cos ﬂk cos 0l + e:i:i(sz—Wk)sin 191: sin 19‘) a%]
12
— (41099 in 9, cos F, — 1PV 005 9, sin 'ﬂl)Gl,k} (A21)



REPRESENTATIONS OF THE SYMPLECTIC GROUPS. I 1199
and
Eepio = 1 {-_f_l l::tieii(fm—%) M _a_. F ie:Fi('Pl_Wk).s_in__’ﬁli
A2 § 4 cos ¥, 0, sin 9, 0y,
+ (€599 cos 9, sin &, — eV ¥ sin &, cos B,) a%:l
k
+ fic I::b jetiloi—or) M _a_ F jeTilwi—vr) M _a_
; cos ¥, 0p, sin 4, 9y,
— (e"®* sin ¥, cos &, — €TV cos B, sin B,) £-:|
11
+ (X9 cos 9, cos B, + e ¥¥ gin §, sin ﬂk)Gl,k}. (A22)
Here APPENDIX B: ACTIONS OF GENERATORS ON
f cos & BASIC FUNCTIONS
F= - l ; (A23) To prove irreducibility of the representations
Je cosé&sing, ;- -sin g, I -
and DE(X4"1) and DF(X*"') we need explicit formulas
cos &, sin &, ] for the action of different generators of the algebras
ve = o Eprq ' esin &, 9E, R and R, of Sp’(1) and Sp(n), respectively. However,

’g cos &, cos &, sin &, -+ sin &,_; cos &, 0
sin, ;- -siné, o0&,

(A24)

r=k+1

. : g
—cos & sin &y - - sin &y, a_é'l

The algebra of Sp’(1) in Sp’(1) ® Sp(n) is formed by
the three generators
— 2—% < +ilortyy)

0 0 0
X i tan 9, — F icot ¥, — 4+ — A25
[il o ka%c:F Heo kawk+aﬁk:| ( )

Ed:2e 0

and

(0 . 0
H0=+1z(—+——). (A206)
¥=1\0g, Oy,
It is rather easy to show that these generators com-

mute with the algebra of Sp(n).

m, ,=m', m, =m, and m,_;, = m’. Thus we have

we do not need to know this action for all generators
of Sp(n) because, if we know, for instance, the action of
Eieove,,»Ese ge, »and Ey foranyp=2,---,n,
we can use the commutation relations (AlS5) to get,
for example, E,, ..  for any k < p. For this reason
in this appendix we give the formulas for the action
of the generators E,, ;. ., E,e ze,_,> and E,, on
the basis functions (2.28).

As may easily be seen from the explicit expressions
of the generators in Appendix A, the generators
E 5, donot change values of either L, (k = 2, - - -, n)
orh(k=1,---,n),whileE,, ..  and E o ve, i
these sets of eigenvalues change only L, ;, /,, and
[,1. All the generators, except those of H, which
form the Cartan subalgebra, change the values of
m,, m,, m, ;,and /m,_;. Therefore, in what follows,
we label the eigenfunctions only by the eigenvalues
L,=L, L,,=L, I,=1, I,,=I, m,=m,

H,YLIM = (m — mYEELY: (B1)
H Y omisle = (m + mYLLuy - (B2)
Epoo YELIVS = 27U F m &£ M) &£ m F i+ DPYRELY, (B3)
oY EEE =2 U F mE M £ m £ i+ DIYEEES, (B4)
Epepue, YEELES = 16[(1 + 1)(I' + (L + 2p — 3)]

x 2 3 2

OL'=+1 8l=x1 8}'=%

m,m’L1;7F1, %

+5F L, L'+6L,1481,1'+81"
+C¢Slddl’Ym:b1,m’;7ﬁ,m’3Fl ), (BS)

; / ~F J+t vL,L4+3L ;151,141
151311 (5L)aaL',azbaL',az'(C;;daz'Y i

2 = 16[( + DA+ (L + 2p — 3

X 333 sign (OL)ass sbsp s (ciidly VEE S VY — 63 YL Loy

OL =21 61=14151"=+1

m=l,m' FL;d,m’ m,m"mFL, M 1

(B6)
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Here
G =[L—L—=IL+L+1+4p-2P,
8gm=[L—L+1+4(L+L~1+4p—6)J, (B7)
G a=[L—L+14+2(L+LFI+4p—
b =L +2p =L =L + '+ L+ L +1' + 4p — 6),
b =[L+2p—2)L —L =1+ 2L+ L =1+ 4p — 8)]},

by =[L+2p — 8L — L' =)L + I = I' + 4p — ), (B8)
by =[L+20— WL —L 4V +2L+L+1+4p— 8P,
B =[0I+ 20U+ m+|ml + 20 £ m— @ + 2P,
& =[IAF m+ @)l F m— |},
(B9)

&=+ 20+ Iml £ m + 20 — Im| & 7 + D,
& = —[Id + Im| F )1 — |m] F )t
The coefficients d and d= are the same as c% and &%, respectively, if one substitutes /', m’, and /' for I, m,

and m, respectively.
In the case of the representations DE(X*"1) of Sp(n), when

L=L+1, L=L4+1
and

!

l=m—-—m, I'=m—wm,
we have

apu=b ,=ch=dy=¢,=d3=0. (B10)
This reduces expressions (B5) and (B6) to the following form:
Esepre, oY momiiginr = 16101 + (' + (L' + 2p — 3))
X {_ajzl,:Flb:tl,:blé?::Idi:lYrﬁ:fni:illig:}:’ll,’%}+ a;l,ﬂbq:l,ﬂcil‘?%lYﬁ'ilifnl",lmi,liif:ill}’ (B11)
Eioyre, JYRELY L = 16[(1 + DI’ + (L +2p — 3)I?
X {:i:ajsl,lFlb;{:l,d:lcildj::Ian%{‘l,,ﬂv:v}”:f::{:,lr,ﬁl,;:r":'i + a?ld:,lb?l,:FlEiilg;:FlYrﬁ,’ﬁt?:ﬁt%:lf}fo}:,;l}' (B12)

The action of the invariant operator [ connected with the Sp(l) component of Sp(1) ® Sp(n) is given by
the formula

(@) L, Lyl & —x g~ | L Lols
1 YM,,+,-~-,M1+;M,._,~‘-,M1—= ,:zl,,(l,,+2)+2 z MmMr:|YM,.+,~-~,M1+;M,.~,-'-.M1_

p=1 1<p<r<n
+ Z [Cer.an,f_::l, . an+;Mn_: P ,M,,_+2, . ,M,-——2, cen :Ml_
1<p<r<n
L,Lgt,
+ C”,YM”"', v ,M1+;M,,—, e My =2, M2, :M1_]’ (B13)
where
Cpr = [, = Mp)(I, + M5 + 20, + MY, — M; + 21, (B14)

APPENDIX C: CALC%IE?(I;%N OF THE HIGHEST weight m is called higher than another weight m’ if the

first nonvanishing component of m — m’ is a positive
number. The weight A, which is higher than any
other weight in a given representation, is called the
highest weight. As is well known,? the highest weight
fully characterizes the irreducible representation of a

D(H)f = mf. (CL) compact group. We shall denote its components by A.
The set of eigenvalues {m,} may be considered as a n- It has been proved by Cartan that there exist 7
dimensional vector in the so-called weight space.l® A

18 R, E. Behrends et al., Rev. Mod. Phys. 34, 1 (1962). 19 E. B. Dynkin, Usp. Math. Nauk 2, 4(20) 59 (1947).

In a representation D of a semisimple Lie group G
of rank n, in which the matrices D(H,) of the
Cartan subgroup generators H, are diagonal, the
eigenstates and eigenvalues of D(H;) are defined by
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Fig. 5. The less degenerate representation of Sp(n); decom-
position with respect to the subgroup Sp(1) ® Sp(n — 1).

fundamental weights A®, .- A™ and that any
highest weight A is a linear combination
A =320, (C2)
k=1
where the 1, are nonnegative integers. Moreover,
these fundamental weights are uniquely defined by the
root system of the algebra of G. From the system
{am, -+, «'™} of simple roots, we can calculate the
Cartan matrix {4,;} by

_ 2(a(i)’ a(i))

A (o, a?y (€3)
Then the fundamental weights are given by
A(k) — z (A——l)kla(l), (C4)
=1

where A1 is the matrix inverse to {4,;}. Usually an
irreducible representation of the group G is denoted
by D(4,, - -, 4,). This notation appears throughout
Secs. 3 and 4 and in Paper II.

Let us calculate the coefficients A;, - - -, A, for the
representations Dé of the group Sp(n). The eigen-
value of the generator

d 0
Hy= i+ o)
: (a(P’R awn (CS)
is clearly
—In <my+m, L ln' (CG)

Therefore the highest weight is the one with the highest

value of /,. From Fig. 5 we see that the highest

possible value of /, is

L+1L
-

l, =

(e1)]
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To this value corresponds

L~-1

L”_l = .

(C8)
Hence there is a highest possible value of /,,_,;, given by
(C9)

But, when (C7) and (C9) hold simultaneously, it is
easy to see that

ln_2="'=ll=0,

(C10)
So we have

(Al’...’An)=(0,'.',0,—14_:-‘2,“1‘_+_£), (Cll)
2 2
Now in the case of group Sp(n) the Cartan matrix is

given by

2 =1 --- 0 0 0
—1 2 .- 0 0 0
{Ai5}= (C12)
0 0 - 2 -1 0
0 0 —1 2 -1
0 0 - 0 -2 -2

if we use the definition of «!? (i =1,---,n) given
in Appendix A (A16). Then the set of fundamental
weights of Sp(n) is
A(l) = a(l) + a(Z) Foeee 4+ a(n—l) + (%)a(n) = e
A(2) — a(l) + 2a(2) + o+ 2u(n—1) + a(n)

=€, 1€,

no»

(C13)

A(n—l) = a(l) + za(‘z) + o (n — l)a(n—ll
+ [~ D2 =€+ -+,
A(n) = a(l) + 2a(2) 4 F (n _ l)a(n~l)
+ (/e =e + - +e,.
In the case of the representation D%, of Sp(n) this gives

=" ———— =1,
! 2 2
Y Sl 7 (C14)
2
Ag=-+= A, =0.
Therefore, we have obtained the formula

g L=L ) (C15)

L
pf=D(LE55,0.0

as indicated in Secs. 3 and 4.
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Korteweg-de Vries Equation and Generalizations. I. A Remarkable
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Plasma Physics Laboratory, Princeton University, Princeton, New Jersey

(Received 8 October 1967)

An explicit nonlinear transformation relating solutions of the Korteweg-de Vries equation and a
similar nonlinear equation is presented. This transformation is generalized to solutions of a one-parameter
family of similar nonlinear equations. A transformation is given which relates solutions of a “forced”
Korteweg-de Vries equation to those of the Korteweg—de Vries equation,

1. INTRODUCTION

Interest in nonlinear dispersive wave equations
has focused recently on the simplest model equation
of this type, namely,

u, + uu, + u,,, = 0, )

where subscripts denote partial differentiations.
Korteweg and de Vries! first derived (1) (the
KdV equation) in their study of long water waves in a
(relatively shallow) channel. Recently, this equation
has been derived in plasma physics®® and in studies
of anharmonic (nonlinear) lattices.® Existence and
uniqueness of solutions of the KdV equation for
appropriate initial and boundary conditions have
recently been proved by Sjoberg.® The simplest
modification of the nonlinear term in (1) leads to a
similar equation

Uy + 020, F Vpgr = 0, )

which also arises in the study of anharmonic lattices.5

The present paper is the first in a prospective series
of works on properties and solutions of the KdV
equation and its generalizations.”?

* The work presented here was supported by the Air Force Office
of Scientific Research under Contract No. AF49(638)-1555.

¥ Present address: Courant Institute of Mathematical Sciences,
New York University, New York, N.Y.

1 D. J. Korteweg and G. de Vries, Phil. Mag. 39, 422 (1895).

2 C. S. Gardner and G. K. Morikawa, Courant Institute of Mathe-
matical Sciences Report No. NYO-9082, 1 May 1960 (unpublished).

3 H. Washimi and T. Taniuti, Phys. Rev. Letters 17, 996 (1966).

4 M. D. Kruskal, “Asymptotology in Numerical Computation:
Progress and Plans on the Fermi-Pasta—Ulam Problem” in Proceed-
ings of the IBM Scientific Computing Symposium on Large-Scale
Problems in Physics (IBM Data Processing Division, White Plains,
N.Y., 1965), p. 43.

5N. J. Zabusky, ‘A Synergetic Approach to Problems of Non-
linear Dispersive Wave Propagation and Interaction” in Proceedings
of the Symposium on Nonlinear Partial Differential Equations,
W. Ames, Ed. (Academic Press Inc., New York, 1967), p. 223.

8 A. Sjéberg, ‘““On the Korteweg—de Vries Equation, Existence and
Uniqueness” (Uppsala University, Department of Computer
Sciences, Uppsala, Sweden, 1967) (unpublished).

7 This program of research has been conducted mainly by C. S.
Gardner, J. M. Greene, M. D. Kruskal, C.-H. Su, and the author
at the Plasma Physics Laboratory, Princeton University, Princeton,
N.J., and by N. J. Zabusky at the Bell Telephone Laboratories, Inc.,
Whippany, N.J. Specific individual contributions will be reflected
in the authorship of the various papers.

I am privileged to write this first paper in the
series, which presents a remarkable explicit nonlinear
transformation between solutions of (1) and (2).
Also, a transformation to an accelerating coordinate
system is presented which relates solutions of (1) and
a “forced” KdV equation. The second paper in the
series® will discuss the existence of conservation laws
and constants of motion for these equations. Also,
it will show how the nonlinear transformation leads
to associated eigenvalue problems. The third paper
will show that the KdV equation governs small but
finite perturbations from homogeneous equilibrium
for a wide class of nonlinear dispersive systems. The
fourth will show how the KdV equation and some
generalizations can be viewed as Hamiltonian systems.
The fifth paper will give a detailed discussion of
polynomial conservation laws, including -uniqueness
and nonexistence proofs. The sixth paper in this series
will consider the associated eigenvalue problems and
will show how a study of them leads to exact general
solution of the KdV equation. These papers will be
referred to as I, II, ITI, IV, V, and VI.

2. TRANSFORMATION RELATING EQUATIONS
(1) AND (2)
Equations (1) and (2) are particularly interesting,
since they are exceptional among equations of the form

ut+u”u,+umz=0, p=1a2,3’.”9 (3)

as the only ones possessing more than three “poly-
nomial conservation laws” (not trivially equivalent;
see 11, Sec. 2. This result will be proved in V).

The similarity between (1) and (2), both in form
and in possession of many polynomial conservation
laws (see II), suggested that their solutions might be
intimately related. A detailed comparison of these laws
led to the discovery that if v satisfies (2), then u,
defined by

u=v® 4+ (—6),, @

8 J. Math. Phys. 9, 1204 (1968), following paper.
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satisfies (1). By explicit calculation, in fact,
u, + uu, + Upee
= (22O )t oo+ o). ©
X

The presence of the operator (2v 4 (—6)3/0x)
hinders us from concluding inversely that if u
satisfies (1), then any solution v of the Riccati equation
(4) is a solution of (2).

The reader need not be concerned about the occur-
rence of the imaginary coefficient in (4). It is an
historic accident that we chose to study (1) and (2)
with the signs of the terms as given. For (1), the
particular choice of signs is unimportant, since
appropriate changes of sign of the variables yield
transformations between any two possibilities. (See
V for transformation properties of the KdV equation.)
However, for (2), the relative sign of the last two
terms is invariant to such transformations, but can
be reversed by the substitution » — iv. We could have
confined our discussion here to real solutions by
considering two versions of (2), one with like and
one with unlike signs.

The transformation takes (2) with cubic nonlinearity
into the quadratically nonlinear KdV equation (1).
It is rare and surprising to find a transformation
between two simple nonlinear partial differential
equations of independent interest. One is reminded
of the Hopf—Cole transformation®!® of the quadrati-
cally nonlinear Burgers equation into the linear heat
conduction (diffusion) equation. A number of investi-
gators (including us) have attempted unsuccessfully
to find a similar simple linearizing transformation
for the KdV equation, but a complicated one will be
given in VI.

3. A GENERALIZATION

A generalization!! of the transformation (4), which
in IT is used to prove the existence of infinitely many
conservation laws, is that a one-parameter family of
nonlinear equations similar to (1) and (2), but
containing both types of nonlinear terms simultane-
ously, can be transformed into (1). Noting that (1)
is invariant to Galilean transformation (again, see
V), whereas (2) is not, we define

=t x'=x

(6)

Taa"

vt 42

2e2’

® E. Hopf, Commun. Pure Appl. Math. 3, 201 (1950).
10 J. D. Cole, Quart. Appl. Math. 9, 225 (1951).
11T am grateful to C. S. Gardner for this generalization.

u(x, t)

]

(M
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o(x, t) = = wx', t) + —\/—6 , 8)
NG 2e

where the specific dependence on the arbitrary param-

eter € has been chosen for convenience in II. Then (1)

remains invariant, of course, but (2) (dropping the

primes) becomes

wy + (W + 3ewihw, + wo, = 0, 9)
and (4) (with the plus sign) becomes
u=w+ iew, + 12w (10)

We observe that (9) reduces to (1) for € =0, and

after the rescaling w' = (e/\/g)w it reduces to (2)
for € — o0.

4. TRANSFORMATION TO ACCELERATING
COORDINATE SYSTEM

The KdV equation (1) can be generalized by adding
a time-dependent “forcing term,” and for convenience
we write it as

(11)

where we assume that y,, = y,,(¢) is a known function.
This equation arises in the study of ion-acoustic
waves.®12 It also arises in a study of the propagation
of electrostatic waves through an ion sheath where
Yu =11

We now give a transformation which reduces the
“forced” KdV equation (11) to the KdV equation
(1). This transformation is also applicable to more
general equations (e.g., the Burgers equation) where
U, is replaced by any arbitrary function of x deriva-
tives of u not depending on either  itself or explicitly
on x or t. Define new variables

Uy + U, + Upga =ytts

t'=1,

(12)
(13)

Direct substitution of this transformation into (11)
shows that the KdV equation (1) is indeed obtained
for the primed variables. We note a strong similarity
to the Galilean transformation (6) and (7).

The physical interpretation of this transformation
is clear. The quantity y(z) represents a time-dependent
translation of the x axis, and, therefore, the forcing

"=x — y(1),
u(x’ t) = ul(xl, t,) + yt’(t’)'

12 This equation does not appear in the paper by Washimi and
Taniuti because they failed to account for the arbitrary integration
“‘constant” y,(f) in their solution relating the first-order electron
density and ion velocity. This has been corrected in a recent paper,
T. Taniuti and C.-C. Wei, J. Phys. Soc. Japan 24, 941 (1968).

3S. H. Lam and C. Berman, Department of Aerospace and
Mechanical Sciences, Princeton University (private communication).
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term in (11) may be interpreted as due solely to an
acceleration of the x axis.

Since we have assumed only that y, () is known,
we have the freedom to set y(0) = y,(0) = 0. With
this information the transformation becomes particu-
larly useful, since the initial values for the two equa-
tions are identical:

u(x, 0) = u'(x’, 0) = u'(x, 0). (14)

Therefore, if the solution of the KdV equation (1)
is known, then the full solution is obtained from (12)
and (13) with only two simple quadratures to obtain

y(t) and y (o).

JOURNAL OF MATHEMATICAL PHYSICS

ROBERT M. MIURA

Note added in proof: The transformation (12) and
(13) was used by Moore't for studying the viscous
boundary layer on an accelerating semi-infinite flat
plate. I wish to thank H.-H. Chiu of the Department
of Aeronautics and Astronautics at New York Univer-
sity for this reference.
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With extensive use of the nonlinear transformations presented in Paper I of the series, a variety of
conservation laws and constants of motion are derived for the Korteweg-de Vries and related equations.
A striking connection with the Sturm-Liouville eigenvalue problem is exploited.

1. INTRODUCTION

In this second paper of the series on the properties
and solutions of the KdV equation, u; + uu, + 4y, =
0 and its generalizations, we present our current body
of knowledge on the existence of conservation laws
and of constants of motion (i.e., “temporal invari-
ants™) for the KdV equation (I.1) and two similar
nonlinear equations (I.2) and (I.9) given in the first
paper of this series,! referred to as I. The present
Paper II is meant to be read in conjunction with I,
where nonlinear transformations relating solutions of
(L.1) to those of (1.2) and (1.9) are given. (References
to physical applications are also given there.) Most
of the results on the conservation laws and the
constants of motion are based on, or are in some way
related to, these transformations.

A conservation law associated with an equation such

* The work presented here was supported by the Air Force
Office of Scientific Research under Contract No. AF49(638)-1555.

+ Present address: Courant Institute of Mathematical Sciences,
New York University, New York, N.Y.

+ Present address: Department of Applied Mathematics, Uni-
versity of Texas, Austin, Texas.

1 R. M. Miura, J. Math. Phys. 9, 1202 (1968), preceding paper.

as (I.1) is expressed by an equation of the form

Tt + X;c = 0’ (1)

where T, the conserved density, and —X, the flux of
T, are functionals of u. If T is a local functional of u,
i.e., if the value of T at any x depends only on the
values of u in an arbitrarily small neighborhood of x,
then T is a local conserved density; if X is also local,
then (1) is a local conservation law. In particular, if T
is a polynomial in u and its x derivatives and not
dependent explicitly on x or ¢, then we call T a
polynomial conserved density; if X is also such a
polynomial, we call (1) a polynomial conservation law.
[We need never allow for dependence on ¢ derivatives
of u, since (I.1) permits them to be eliminated in
favor of x derivatives; similarly with the other such
equations we deal with.] In Sec. 2 we present a number
of polynomial conservation laws which have been
found explicitly, and in Sec. 3 we prove that there are
infinitely many of them for each of (I.1), (I.2), and
(1.9).

There is a close relationship between constants (of
motion) and conservation laws. For example, if one
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as (I.1) is expressed by an equation of the form

Tt + X;c = 0’ (1)

where T, the conserved density, and —X, the flux of
T, are functionals of u. If T is a local functional of u,
i.e., if the value of T at any x depends only on the
values of u in an arbitrarily small neighborhood of x,
then T is a local conserved density; if X is also local,
then (1) is a local conservation law. In particular, if T
is a polynomial in u and its x derivatives and not
dependent explicitly on x or ¢, then we call T a
polynomial conserved density; if X is also such a
polynomial, we call (1) a polynomial conservation law.
[We need never allow for dependence on ¢ derivatives
of u, since (I.1) permits them to be eliminated in
favor of x derivatives; similarly with the other such
equations we deal with.] In Sec. 2 we present a number
of polynomial conservation laws which have been
found explicitly, and in Sec. 3 we prove that there are
infinitely many of them for each of (I.1), (I.2), and
(1.9).

There is a close relationship between constants (of
motion) and conservation laws. For example, if one
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assumes either that u is periodic in x or that u and its
x derivatives vanish sufficiently rapidly at the (finite
or infinite) ends of some interval, each polynomial
conservation law (1) immediately yields a constant of
local conservation type

I EfT dx.

(Throughout this paper integrals are to be taken as
complete.) An example of a constant of “nonlocal
conservation type” occurs in Sec. 5. However, we can
also derive constants without use of conservation laws
(e.g., the discrete eigenvalues discussed in Sec. 4),
and, on the other hand, conservation laws yield con-
stants of conservation type only under special
conditions.

In Sec. 4 we show that the nonlinear transformation
(1.4) leads naturally to a Sturm-Liouville equation
(or time-independent Schrodinger equation). The
discrete eigenvalues turn out to be constants of motion.
Still another family of constants arises from a study
of the time-evolution equations for the eigenfunctions,
as shown in Sec. 5. Finally, in Sec. 6 we give a single
constant of local conservation type with conserved
density depending explicitly on x and ¢ as well as on u.

2

2. THE EXPLICITLY KNOWN POLYNOMIAL
CONSERVED DENSITIES

For a polynomial conservation law of (I.1) or
(1.2), T and X are each a finite sum of tetms of the
form uloufr - - - u?, where u; = 9’u/0x’ and the a; are
nonnegative integers. For each such term we define
a rank r. In dealing with (I.1) the rank is the sum of
the number of factors #; and half the number of x
differentiations,

1
= Z (1 + j)a;, 3)
as is consistent with the scaling properties of the last
two terms of the equation. In dealing with (I1.2) the
rank is
1

ry = %120(1 + fa;, 4
similarly consistent. A polynomial of rank r is one
whose terms are all of rank r. Since any x derivative
is trivially a conserved density, two polynomials
which differ by an x derivative will be called equivalen:.
Any polynomial conserved density for (I.1) or (1.2)
can be uniquely expressed as a sum of polynomials of
differing ranks. It is easily seen that these polynomials
individually are conserved densities, since # differentia-
tion increases the rank by $. In this section we prove
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that, for both (I.1) and (I.2), there is a polynomial
conservation law with nontrivial conserved density
T, of each positive integral rank r (and corresponding
flux X, of rank r + 1).

Equation (I.1) can itself be expressed as a poly-
nomial conservation law with r = 1, and multiplica-
tion by u yields one with r = 2. These are obvious,
and in the usual applications correspond physically to
conservation of momentum and energy. A polynomial
conserved density with r = 3 was found by Whitham,?
two more with r = 4 and 5 were found by Kruskal
and Zabusky,® and we have explicitly computed five
additional ones of consecutive rank. (A systematic
method for such computations will be given in V.)
For (1.2), similarly, we have explicitly computed
polynomial conserved densities with r = 1, 1, 2, 3, 4,
and 5. These polynomial conserved densities are all
the ones we know explicitly, and we record them here,
together with the corresponding polynomial fluxes as
far as we have calculated them. The freedom to add x
derivatives has been utilized to write the conserved
densities in a canonical form where the highest-
derivative factor (if any) in each term occurs at least
squared (as explained in detail in V), so the following
formulas are unique up to multiplication by a constant.

For Eq. (I.1) we have

Tl = uo, (Sa)
2
X, = dui + u,, (5b)
2
T2 = ‘%uo, (6a)
X, = %ug + uglty — %ui (6b)
3 2
T3 = juy — uy, (7a)
4 2 2
X3 = tug + uduy — 2ugud — 2uuy + ul, (7b)
2
Ty = i - 3”0“1 + %uz, (83)
2 2
X, = Euo =+ uouz - %uouf + 2tugus — 6ugu,u,
2 2
+ 3ujuy + HBuu, — 2ul, (8b)
— 5 2 .2 38 2 08,2
T, = $ug — 6ugu; + 2Lfugu; — 2884u;, (9a)
X5 = su§ + ugu, — Suduf + 8udui — 12uluu,
+ 12uquiuy, — 3ui + ZBuguqu, — 2ugul
36,,3 (]
— Bruusuy + F3u; — 2h8ugu, + 1358144, (9b)
T, = 3ul — IOuguf + 18ulul — Suf — 128y,u2
+ 1205 + 38y, (10a)

2 G. B. Whitham, Proc. Roy. Soc. (London) A283, 238 (1965).

8N. J. Zabusky, “A Synergetic Approach to Problems of Non-
linear Dispersive Wave Propagation and Interaction” in Proceedings
of the Symposium on Nonlinear Partial Differential Equations,
W. Ames, Ed. (Academic Press Inc., New York, 1967), p. 223.
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X7=

Ty =

— 1,,7 5
2Ug + Ugty —

MIURA, GARDNER,

25yu5u + 28udui — 20udu,u,

+ 30uuluy, — 20ugu} + 36udusu, — 23%uu’

+ 188yquf — T2ugti Usity + 66uiu; — 20ujug
%Quousus — L44y005 + 2802y, — 1983

+ 22uugu, + FRugug — SPul, (10b)

dug — 15ugui + 36ugu; — 30uqu] — 2&2ugu;

+ 22%0u3 + 108udul + 238y .2

(11a)

0
1op0 u2u3 - —“us »
1,8 4 — 18ulu? + 51utu® — 30udu,u
e”o “o“z ol ol okl
+ 60uduiu, — 75ulut + T2udusu, —

+ 82823 — 216ubu usuy + 504uguiul

76,,3,,2
828uqus

648

— 120uguius + 90uju, — €48uduqu;

+ 540,22 — 1728y, 4.2 4 1288y 4y you,

— 1404,2,% | 2180, %, _ 522,

— 2872y 42y, + 216uduu, + £32ugu,ug

48 80
— 432y — 432w + YAPuguf — 293%udu,
[1] 1 8 648

— BL3%uqus — 233%u5u, Lug, (11b)
= dub — 21udu? + 63ufus — 105ulut — 108udud

+ 360udud + 756uguiui + 108uiu? — 324ulul

— 1080uguzus + 378u3s — S42ugul

2 944.,2

+ 83%u5uy + 40 us, (12)

= 1u3 — 28ulud + 3%4udus — 280udul — 216ugul

+ 960uul + 3024usulus — 168uf + 288udu}

— 4320uguau; — 2592uquiu; + 3024uqu;

+ 28408,2,8 _ 2502,2,% 4 36288, ;) )2

+ 864ulyl — 182344y .3 _ 5ablsa,2,’

+ 15852y 42 148152, 42 4 6853184,3

- l%%%gug, (13)

Lout® — 36ulu? — 630usul + 15%udul
— 1512uqu? + 2160ugus + 9072udusu;

— 1884,%,% + 13608ugus + 238484y 4%,3
+ 13608utus — 12960udu,ul — 11664uuus
+ 648u“ 2 + 178848u5 — 1524098{40“11"3

_ 4goeeseu0u u _

§§ﬂi§u2u u3

+ 1e3298,2, % 7776u0u1u4 2278,3,2
10458

— 11 97_1_5_“&“ +

ﬂ—ﬂﬁ—uuluau,; + &ﬂ.7_0_5.9_2.u2u 2

AND KRUSKAL

For Eq. (I.2) we have

Ty = vy, (15a)
X3 =3} + vs, (15b)
T, = v}, (16a)
X, = }od + v, — 303, (16b)
T, = }vg — 30}, (17a)
X, = 30§ + viv, — 30i} — 3,05 + 302, (17b)
T; = 3vg — 5020} + 30k, (18)
Tom = 4 -
T, = 1&g — 18vjvf + 82ujv} — 242030} — 822022
4 432503 | 580822 | 24,2 (20)

3. EXISTENCE OF INFINITE SEQUENCES OF
POLYNOMIAL CONSERVED DENSITIES

The orderliness of these conservation laws led us
quite early to conjecture that there exists one of every
positive rank, both for (I.1) and for (I.2). The rapid
proliferation of terms with increasing rank, however,
makes a straightforward inductive argument extrémely
difficult. We prove the conjecture in this section by
finding a recursion algorithm for constructing the
conserved densities; the corresponding fluxes are then
obtained in terms of them. In V we will discuss these
polynomial conserved densities in more detail and
prove that they are unique up to addition of an x
derivative and multiplication by a constant. Also we
will prove there that nontrivial polynomial conserved
densities of half-integral rank do not exist for (I.1),
nor for (1.2) except with r, = 4.

By solving (I.10) recursively, w can be expressed as
a formal series of increasing nonnegative integral
powers of ¢, the coefficient of € being a polynomial
in u and its derivatives of rank 1 + n. (Informally,
< may be thought of as a small expansion parameter.)
Equation (I.10) transforms (I.1) into

0= (1 + i65a— + %ezw) [w, + (W + 3wWHw, + Wepol,
x
(21)

and, since we are dealing with formal series, obviously
the expression in square brackets must itself vanish
(to all orders), which gives (1.9) formally. Thus we
obtain a conservation law with

T=w, X=3iw+ 3 (22)

If we now substitute the series for w into these, we ob-
tain a formal-series conservation law for (I.1). Then,
since (I.1) is independent of ¢, for each n, the coeffi-
cients of €” in T and X constitute a conservation law

fse?w® + w,,.
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for (I.1). [It actually suffices to generate the conserved
densities, since the corresponding fluxes are always
obtainable by antidifferentiation from (1).]

It remains to demonstrate that the conserved
density for each even n is nontrivial, i.e., not an x
derivative (unlike the odd ones, as we shall see
shortly). To do this we show that each such density
contains a term (with nonzero coefficient) which is
purely a power of u, as will suffice since such terms
can never arise from differentiation. Now, by the
last remark, ail such terms must be generated by
recursion from (1.10) with the w, term omitted. This
equation can even be solved explicitly, yielding
—@3/e®)[l — (1 + %e2u)?] as the sum of ail terms not
depending on the derivatives of u. But when this is
expanded, evidently every nonnegative even power of
e actually appears. This concludes the proof of the
conjecture.

We now show that the coefficients of the odd
powers of e, which comprise the imaginary terms,
are all x derivatives, so that these conserved densities
of half-integral rank are trivial. Assume that u is real
and define
(23)

where y and z are real. From (I.10) it is obvious that
y contains only even and z only odd powers of .
Now (1.10) becomes

w=y+ iz,

U=y — ez, + §2(y? — 28 4 iz + ey, + 3e¥yz).
(24)

The imaginary part of this equation may be written

2= =2l (1 + 3L 25)
therefore z is an x derivative to every order in e, as
claimed. Incidentally, by using (25) to eliminate z in
the real part of (24), we can obtain a recursion
formula which generates the nontrivial conserved
densities y but, unlike (1.10), “skips over” the inter-
vening trivial ones.

Although (1.10) is a simple recursion formula for
the conserved densities, it would be quite awkward
to write an explicit formula for the conserved density
of rank r obtained from it. A much simpler and more
elegant formula for the conserved density of rank r
will be obtained in V.

Having established the existence of an infinite
sequence of (nontrivial) conserved densities for (I.1),
from (1.4) we obtain such a sequence for (I.2), and
from (1.10) for (1.9). In fact, it was a correspondence
noticed between conserved densities of (1.1) and (1.2)
which originally suggested the transformation (I.4).
Under appropriate boundary conditions, we immedi-
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ately have the existence of infinitely many constants
of motion given by (2).

It may be remarked that if we had used, instead of
(22), one of the just mentioned higher polynomiai
conserved densities of the w equation (I1.9), e.g.,
T = iw?, we would also have obtained an infinite
sequence of conserved densities for (I.1). But the
results would necessarily be included in the previous
ones, because of the uniqueness to be proved in V.

We note that th single conserved density w for (1.9)
yielded infinitely many conserved densities for (I.1).
However, the inverse does not hold. One reason for
this is that u as expressed in terms of w by (I.10) is a
finite series, and another is that, even if it were infinite,
because (21) depends on e we could not conclude
that the coefficient of each power of ¢ would be a
conserved density.

4. ASSOCIATED EIGENVALUE PROBLEM

Viewing (1.4) (with plus sign) as a Riccati equation
for v, we introduce the usual linearizing change of
variables

v=(~6 L, (26)
¥
transforming it into
u= —6Le= Q7
Y

For most of this section, we consider the case that
all functions involved (i.e., u, v, ) are periodic with
a common period. If (27) is interpreted as an equation
for y, then for almost any u there is no (periodic)
solution. We may, however, take advantage of the
Galilean invariance of (1.1) and shift u by a constant.
We therefore replace u in (27) by 4 — 1 and obtain

which is the well-known Sturm-Liouville equation.

We briefly summarize some familiar properties of
the eigenvalues 4 and corresponding eigenfunctions ¢
for the periodic Sturm-Liouville eigenvalue problem?*:

(i) There is a denumerable infinity of eigenvalues,
all real, satisfying A, > A4 24> 432> 4, > 4, >
Ag > -+ and approaching — oo;

(if) The corresponding (real) eigenfunctions '™
form a complete orthogonal system;

(iii) The zeros of '™ are all simple, and the humber
of them per period is n for n even and n + 1 for
n odd;

(iv) A function ¢ is an eigenfunction if and only

¢ E. A. Coddington and N. Levinson, Theory of Ordinary Differ-
ential Equations (McGraw-Hill Book Co., Inc., New York, 1955).
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if it makes the functional

Ay} = f (uy® — 6y}) dx /fw dx

stationary, and the corresponding eigenvalue A’ is
Afy'}.

If we allow « to evolve according to the KdV equa-
tion, then it is natural to ask how 1 and y evolve.
Eliminating » by (28) from the KdV equation, the
result may be written

6 0 0
0='1t“—_—[('l"——1/’x)
Y

x (w3 B et m)]- (30)

(29)

Multiplying by %? and integrating over the period
gives

Ay =0; @D

thus each eigenvalue is a constant of motion! These
new, infinitely numerous constants appear not to be
associated with any nontrivial conservation laws,
i.e., with nontrivial conserved densities (see Sec. 2).

Appropriately integrating (30) twice gives for the
last expression in parentheses, rewritten again by
(28) to remove even the apparency of a possible
singularity when » = 0,

P+ U+ DYy + Yoou = oy + By f y2dx, (32)

where «(t) and f(¢) are the constants of integration.
(For the interpretation of the integral when ¢ has
zeros, see Sec. 5.) By periodicity, 8 = 0 unless
fv2dx =0, this latter being the condition on p
that (28) have a second linearly independent periodic
solution, Thus v, is determined as nearly uniquely as
could be expected: the freedom to-normalize y
arbitrarily at different times is represented by the
choice of «, and to add in the second eigenfunction,
when 2 is a double eigenvalue by the choice of 8.

Conversely, we can verify that if « and y evolve
according to (I.1) and (32), then (28) remains satisfied.
For denoting the left side of (28) by Q, straight-
forward calculation leads to

0 + 3w + HQL: + Dowr = 0. (33)

If 0 = 0 initially, it remains so for all time, as shown
by an ‘“‘energy” argument in which (33) is muitiplied
by Q and integrated, and § Q2 dx is shown by simple
estimation to grow no faster than exponentially in
time.

It is interesting to examine the eigenfunctions for

MIURA, GARDNER, AND KRUSKAL

large (negative) A by means of the familiar WKB
formalism. We set

v~ Re [3 exp {(/1/6)*f f 4 dx}], (4)
where 4 and B are asymptotic series in nonpositive
integral powers of 1%, all coefficients of which have
the common period in x; the factor B will be chosen
later for convenience, but we could set B = 1 without
loss of generality. We require the expression in
brackets to satisfy (28), obtaining a condition which,
when solved for the 4 in the leading terms, yields

Ao [1 - (e/z)*(Ax + 2%—‘14) - i(“ + %)T

(3%

as a recursion formula for A. Periodicity of (34)
requires

f Adx = 2xN(~6/A)}, (36)

N being the (large) number of zeros of y in a period.
[Taking the imaginary instead of the real part in (34)
gives the other eigenfunction with N zeros; thus the
complex version of (34) represents both ¥~ and
'™ at once, and Ay_; = 4 to all orders as N — 0.]
Seen to be even more effective than B = 1 is the choice
B = A%, which eliminates the A% term in (35).
With either choice, the coefficient of any power of 4
in A is evidently a polynomial in « and its derivatives,
and is a conserved density by (36). With B = 4%,
in fact, the simple replacements 4 = ! 4 4e?y and
A = —3e2 transform (35) into the recursion formula
for the nontrivial polynomial conserved densities
mentioned after (25). The derivation here is more
general, however, since it shows that if the evolution
of u in (28) is governed by any equation whatsoever
which leaves the eigenvalues invariant, then that
equation possesses all the same polynomial con-
served densities as the KdV equation. Lax® has
initiated a search for such equations and found
several, and Lenard® has recently derived an infinite
sequence of such equations.

Turning now to the case of the infinite interval with
u vanishing sufficiently rapidly as x — 3 co, we have
the time-independent Schrédinger equation eigen-
value problem. The spectrum of eigenvalues is now
a semi-infinite continuum together with a finite

5 P, D, Lax, Courant Institute of Mathematical Sciences, New
York University (private communication).

8 A. Lenard, Department of Mathematics, Indiana University
(private communication).
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number of discrete values; however, the constancy
of the eigenvalues shown by (31) is informative only
for the discrete ones (if any). The eigenfunctions of
the discrete spectrum are square-integrable, whereas
those of the continuous spectrum, although bounded,
are not square-integrable and are thus “improper.”
We can associate complex reflection and transmission
coefficients with these improper eigenfunctions. For
an incoming plane wave at o0 or — o, the transmis-
sion coefficient turns out to be a constant of motion
and the reflection coefficient to depend on time in a
very simple way. These results have been published
elsewhere’ in brief and, together with the earlier
material of this section, will be elaborated in VI.

5. FURTHER CONSTANTS OF THE KdV
EQUATION FROM THE y EQUATION

From (28), u may be expressed as a rational func-
tion in y and its derivatives which is homogeneous of
degree zero. Thus any polynomial conserved density
for the KdV equation can be transformed into a
rational homogeneous conserved density of degree
zero for (32). Similarly, such conserved densities for
(32) are obtained from the conserved densities for
(1.2) and (1.9). In addition, it is easy to verify that
(32) has two rational homogeneous conserved densities
of degrees other than zero, namely, 4? and y~2, which
therefore obviously do not correspond to any for the
KdV equation. For the periodic case, however, we can
form the two associated constants, whose product

e (r(fv°+)

is itself a constant and, being homogeneous of
degree zero, may evidently be considered a functional
of u. (This constant can be associated with either of
the two distinct nonlocal conserved densities y? | p~2dx
and y?[y?dx.) Since there are infinitely many
eigenfunctions, we have obtained a new family of

(37

7C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M,
Miura, Phys. Rev. Letters 19, 1095 (1967).
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infinitely many constants of motion for the KdV
equation [and hence for (I.2)}.

Note, however, that since any eigenfunction
(except the first) has zeros, | y~%dx is not properly
defined. To overcome this difficulty, first assume that
u is analytic. Then so is y,* and we may extend ¢
by analytic continuation to some strip containing
the real axis and choose a path of integration a little
off the axis to avoid the zeros of p. Since the residue
of 2 is zero wherever v = O because, by (28),
¥, = 0 there, the value of the integral is the same
whether the path goes above or below a pole. With
this interpretation of the integral, the proof of its
constancy remains valid. The integral turns out to
equal t