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It is shown that the vacuum expectation values (VEV) of : eM: (t, j) = f dxf(x) : eM: (t, x) are contin­
uous functions of the time for test functions which are Coo and of rapid decrease, with j[ in some 
neighborhood of the origin in the complex plane. The field a(x) is the pseudopotential derived from the 
pseudo vector current of a free two-component massive field in two-dimensional space-time. A 
consequence of this result is the existence of Green's functions in the Federbush model. An essential 
technique in the proof is a theorem by Jaffe on the boundary values of limits of sequences of analytic 
functions. 

1. INTRODUCTION 

Recent attempts to find examples of nontrivial 
quantum field theories have led to the study of 
various two-dimensional models, l which, even though 
the fundamental existence problem remains to be 
answered, have provided some clear examples of 
general propositions in field theory. In particular, 
Wightman has shown how to define a local field 
a(f) from the bilinear currents of free two-dimen­
sional two-component fields tp\o)(f) , tp+(O)(f) , which 
has the distinction of being a member of a local 
equivalence class other than that of the underlying 
free fields, and also playing a central role in the 
solution of both the Federbush2 and massive Thirring 
models. For the former, a solution of the field equa­
tions is given by tp(f) = [:eM: tp(O)](J),3 while as yet 
no such simple functional form has been found for the 
latter case. The solution tp(f) allows an explicit 
characterization of the perturbation series after a field 
strength renormalization which is sufficiently compact 
to lead directly to the existence of the time-ordered 
vacuum expectation values. Unfortunately for the 
more interesting Thirring model it appears necessary 

1 A. S. Wightman, "Introduction to Some Aspects of the Relativ­
istic Dynamics of Quantized Fields" (I.H.B.S. preprint, 1965). 

2 P. Federbush, Phys. Rev. 121, 1247 (1961) .. 
3 J. L. ChaIlifour and A. S. Wightman (unpublished). The 

relation (2.1) folIows from the triple-dot product formula 

This result in turn may be obtained by a series of lengthy,' but 
straightforward induction arguments. 

to deal directly with the Gell-Mann-Low expansion 
in the manner proposed by Lanford4 and renormalize 
by techniques such as those used by Glimm,5 both for 
the Yukawa model. The close relation between these 
two field theories underlines the need for a complete 
solution to the Federbush model in spite of its rather 
simple structure. 

We proceed by first showing that for any positive 
integer the vacuum expectation values of :an : (t, x) 
are tempered distributions in the space variables 
with values in the Banach space Ba of bounded func­
tions obeying a Lipschitz condition of order IX, 0 < 
IX < 1, in the time variables. A result of this type was 
first given by Jaffe6 for the free field in two-dimensional 
space-time. The extension to :eM : (t, x) itself, for A­
in some neighborhood of the origin, is accomplished 
by a slight modification of Jaffe's limit theorem7 on 
the boundary values of analytic functions. It is clear 
that this limit theorem may be extended to a variety 
of countably normed spaces complete with respect to 
some distribution topology. 

Let us recall some definitions which will be needed 
in our work. The triple-dot ordering of a field is 
defined by 

a(x1) ••• a(xn) 

= I : a(xi ) ... a(xiJ (a(xj) ... a(xjn_)o, 
partitions 

(1.1) 

the sum being taken over all partitions of (123 ... n) 
into disjoint subsets (i1i2 '" ir), (j2h'" jn-r) in 
natural order. The triple dot of rr to order n is defined 
by 

:an: (x) = lim :rr(x1) ... a(xn): (1.2) 

and by the reconstruction theorem when this limit 
exists. It is shown in Ref. 3 that :an : (f) exists for all 

• O. Lanford, Thesis, Princeton University, Princeton, N.J., 1966. 
D J. Glimm, Commun. Math. Phys. 5, 343 (1967); 6, 61 (1967). 
6 A. Jaffe, J. Math. Phys. 7, 1250 (1966). 
7 A. Jaffe. J. Math. Phys. 5,1174 (1965). 
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/ E 88 as an operator-valued distribution satisfying 
the usual requirements for a local field.9 The dense 
domain in Cl>oK space for "P(O(f) , "P+(O)(f) is D = 
P( "P(O), "P+(O)'¥ 0' where 'Yo is the vacuum state and 
:O'n: (f)D c D, Vn = 1,2,3, .... 

A formal expression for O'(f) is given by the 
convolution 

O'(f) = 2m(Ao * k)(f), • (1.3) 

This allows us to write 

(O'(x l ) ..• 0'(X2N»f 

= (2m)2N J il AO(Xi - Yi) 

X (k(Yl)' .. k(Y2N»f dYl ... dY2N, (1.4) 

where ( )f indicates the truncated vacuum expecta­
tion value. In the next section it is shown that these 
convolutions exist. Expanding the VEV of the 
pseudocurrent leads to the formal expression 

(O'(xl ) .•. 0'(X2N»f = - (im)2N ~ 5 IT 
'IT 112n 

d Pi(j ± (p~ - m2) exp [ - i i~ X.(P7fW - P7f(i)-l) ] 

X [(PI _ P2)2(P2 - Ps)2 ... (P2n - Pl)2]! 

(1.5) 

in which B(±p~{i» if i ~ 7T-l[7T(i) + 1]. The summation 
in (1.5) is over the (2n - I)! cycles of length 2n in the 
symmetric group of order 2n with 7T(I) = 1, 7T(J) -
1 = 2n. 

The expressions which are of interest to us are 
functions of the time variables T = (t1f2 ' •• f.) 
defined on :)t. by 

£O~(T) = (:O'ni: (tl,fl) :O'n.: (t2,f2)" . :O'n,: (t"f.»o 

with 
: O'n: (t, f) = J dxf(x) : O'n: (t, x), f E 8. 

We will not entertain the possibility that/need not be 
so restricive. Proposition 1 shows that £O:(T) is 
bounded on :)t', while Proposition 2 verifies that 
£O:(T) E $<z(!R!), 0 < IX < 1. 

• L. Schwartz, Theorie des distributions (Hermann et Cie., Paris 
1957), Tome II. 

B R. F. Streater and A. S. Wightman; peT Spin and Statistics 
and All That (W. A. Benjamin, Inc., New York, 1964). 

2. EXISTENCE OF W:(T) 

The structure of £0:( T) is apparent from the product 
formulas 

(: O'ni: (Xl) ... : O'n,: (X.»o 

= n!~ it [(O'ki(Xl)'" ~·(x.»rJk!rlk' (2.1) 
nCk, k =0 n(k)! 

l:5i:5. 

at least two k i =/= O. Throughout we use Schwartz's8 
multi· index notation. (k) = (klk 2' .. k.) is a partition 
of positive intt:gers 0 ~ k. < 00, k! = kl! k2! ... k.!, 
n! = n1 ! n2! ... n.! and n(k) are positive integers such 
that 

for each 1 ~ j ~ s. The truncated VEV inside the 
bracket is nonzero only if \k\ = kl + k2 + ... + k8 
is even. This is tactitly understood throughout. 

For a given partition (k) let 7T(k) be any cycle of 
length Ikl as in (1.5) and write 

k,+'" ki 

Pjlk, = ~ [P7f(a) - P7f(a)-l]' 
a=k,+'" ki_i+l 

Denote by I'Ve) that subset of (123 ... Ikl) taken in 
natural order for which pp appears in P;(k)1 ~ j ~ 
s+-+ fJ E Irk) for the permutation 7T(k)' With this 
notation we find from (1.5) that, for a given partition 
(k), 

(~1(Xl)~'(X2) ... ~·(x.»f 

= - (!!!)Ikl ~ J II dPa(j ± (p! - m2
) 

7T 7flk, aEI7flk, 

in which 

G~k)(P<z) 

=5 II dpp(j ± (p~ - m
2

) • 

PEl;:, [(PI - P2)2(P2 - Pa)2 ... (Plkl - Pl)2]! 

Hence £O:(T) takes the form 

nj (_ m/7T)lk1nlk' 
£O:(T)=n!~ IT nk 

nlk, /c;=O n(k)! (k!) I , 
1:5;:5. 

(2.2b) 

X ~ 5 IT f!. dPa(j ± (p! - m
2
) 

7fCkJ r=1 aElCk' 

X l~;;';~:~[lll;( k%O :~'Pjlk")] 
l:5i:5. 

X (exp [ -i~/iC~~~s:~P~7fCk") ]}. (2.3) 



                                                                                                                                    

TWO-DIMENSIONAL FIELD THEORIES 1139 

HereJis the Fourier transform of f Following lafl'e6 

denote Ilfll£ = sup 1(1 + Ixi)'i(x)l, then we have 

Proposition 1: 
• 

IW~(7")1 ~ Kn(E, s) II 11/;11.;, VEj > 0, 
1=1 

where Kn(E, s) is bounded for any finite partition 
(n) = (nl n2 • •• n.). 

It is enough to verify that integrals of the form 

If !! IT "~J dp,,~ ± (p; - m
2

) 

lS;iS;. 

x Gf;)(P,,{U (1 + IJo ~:pu'k,rlr] (2.4) 

exist for any partition (k), finite (n) and s, with any 
E = (El' E2, ... , Es) > 0. Kn(E, s) is a finite sum of 
such integrals. 

Changing variables to Pi = m (cosh ()i' sinh ()i) -
00 ~ ()i ~ 00 and including all the additional numer­
ical factors, (2.2b) becomes 

where 

{
sinh-l ()j2 ()(P~P?+l)' 

gl() = -1 ()j () 0 0 
cosh 2 (-PiPi+l). 

For a given r fr;) = {<Xl' <X2'··· <x"A in natural order, 
so that 

H7k)«()") 

= h"l«()"l - ()".)h".«()". - ()".) ... h,,;.C(),,;. - (),,), (2.5) 
r 

where each hi «() is given by a chain of length It = 
<Xi+! - <Xi - 1 consisting of the convolutions 

h",«() = [g", * g",+1 * ... * g"i+1-d«()· (2.6) 

Each gi«() is a distribution in 0 0, being the 
Fourier transform of the OM function i tanh 7T(], or 
else lies in S, being the Fourier transform of cosh-l 7T(]. 

Further, if any gi in the chain (2.6) lies in S, then so 
does the whole convolution. Otherwise h"i«() E 0 0.10 

Moreover, for any chain of length Ii, ° ~ Ii < 00, 

h",«() varies over bounded sets in Sand 0 0, respec­
tively. In the case that h"i«() E 0 0 and Ii is odd, h"i«() 
may be written as a sum of functions in S together 
with sinh-l ()/2; while for Ii even the chain is again a 
sum of functions in S but now the distribution is 
~«(). As a last remark on the properties of (2.5) let us 
note that for any partition (k) and permutation 7T(k) 

10 Reference 8, Theoremes XI et XV, pp. 103, 124. 

at least one term in (2.5) is in S. This is a consequence 
of the observation that g!k!«() = cosh-l () for any 
such permutation. 

In terms of these variables, (2.4) becomes a repeated 
application of integrals of the form 

pfoo II d()"h"J()"l - ()".) ... h"n_J()"n_1 - ()"n) 
-00 aEzf:' 

x h"n«()"n - ()"l)f(z + u«()), (2.7) 

where z + u«() = {Zl + uI «(), ... , z. + us«()} and 

( 
n, n(k, k1+ ... +kj 

u;C() = 1 + m
2 

k~O ~l ,,=k1+. ~ +k;_1+1 
lS;iS;. 

X {E~(k'(O() sinh ()Urk'(") - E~(k,(")-l sinh ()"rk,(<x)-l} y, 
Eu being the sign for the permutation 7T. Here fez) E 

C;o(:R,s) with 
s 

I DPf(z) I ~ K II [1 + Z~]-(Pi+'.)/2(p) = (PI'···' P.), 
i=1 

(E) = (EI'···, E.) > 0, forlz 

large enough. It is convenient to relabel the variables 
and transform again by setting ()"i = Xi + Xi+l + 
... + Xn so that (2.7) becomes 

](p)(z) = p L: TI dXih1(X1)h2(X2) ... hn- 1(xn- 1) 

X hn( + ~\)DPf(Z + vex»~, (2.8a) 

where DP = (j!P!j(jP1ZI •.• (j1J·z. and v (x) is u«() 
expressed in terms of the new variables. The relabeling 
is chosen so that Ihn(x)1 ~ cosh-1 xj2 while the 
remaining hi(x) are either test functions in S or 
distributions ~(x), sinh-l xj2. It is clearly enough ~o 
take each hi(x) = sinh-l xj2 1 ~ i ~ n - 1 in (2.8). 
The alternative cases are dealt with similarly. 

We then study the integral 

D(p)](z) = pJoo IT dX
i 

sinh-1 Xl . .. sinh-l X n_1 
-00 i=l 2 2 

X hn ( + ~>i) D1Jf(z + vex»~ (2.8b) 

and show the following result. 

Lemma 1: Let f be Coo and in Weinberg's class 
:r;'(j{S) where f-l = min (Ei ), ° < f-l < 1. Then so is 
the integral fez). 

Proof: The proof is an application of Weinberg's 
asymptotic theoremll after the region of integration 

11 S. Weinberg, Phys. Rev. 118, 838 (1960). 
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has been suitably partitioned to take into account the 
singular nature of the integrand. For the definitions 
of a multidimensional singular integral we refer the 
reader to Dunford and Schwartz.12 

Let {i)m = (ilia' .. im) 1 ~ rn ~ n - 1 be any 
subset of rn distinct elements in natural order chosen 
from (123", n - 1). Then we define an (i)m - 15 
corridor by 

Q(i)JI5) = Qi
1
i.·· 'iJI5) = {xllxil ~ 15 i E {i)m, 

IXII > 15 j ¢ {i)m' j ¥= n}. 
The part of the corridor with IXil ~ 15 i E {i)m we shall 
refer to as an (i)m - 15 box. Then the region of 
integration in (2.8b) is partitioned into disjoint sets by 

:It" = [ U QWm{I5)] u:lt;;. 
l:'>m:,> .. -l 

The nonsingular region may also be written :It;; = 
UWwU) where wU) is a wedge defined by the coordi­
nate planes; i.e., consider a set of signs 

Xl :::::.0 x2 ::::: O· .. Xn ::::: 0, 

2n in number. Then I ~ j ~ 2" and w(j) is the corre­
sponding region defined by a particular j. 

We now consider the behavior of I{z) on each of 
these disjoint regions. 

Wedges: On each wedge the integrand is bounded 
and 

II{(1) I ~ J IT dXi I!{z + V{X» I 

~ II Pi ll!{z + ~epi)l. f .. d 

:R.Ri=l (rn2 + p~) 
Weinberg's asymptotic theorem and Jaffe'sanalysis6 

gives the existence of the integral and that it belongs 
to 3';:' , 0 < f-t < 1. 

Corridors: On a corridor Q(i)JI5) with the notation 
Ll(.) = Lli Ll .... Ll. , 

, m 1 '2 1m 

Ll;h(Xl ... X .. ) 

= h{xl ,'" ,Xi"" Xn) - h(xl ,"', -Xi"'" X,,), 

the integral becomes the limit 

10 N. Dunford and J. Schwartz, Theory of Linear Operators 
(Interscience Publishers, Inc., New York, 1965), Vol. II. 

The unbounded part ofthe corridor may be broken 
into compact and unbounded regions 

On the compact regions, the cro nature of J{z) and 
hn{x) together with the bounded ness for large (z) 
permit the estimate 

ILl(i).Jh .. {xl + ... + x .. _l)D"![z + v{x)]}1 

~ 2m
x i ••• xim 

X 1 a . ~.~ a . {h .. (~~\) D"![z + V{X)]} I. . . ' 
Xl.) X'm 1. 1 Ql'tl '.' ::ll'im 

(2.10) 

with X~··· X:m some point in the (i)m - 15 box. 
Weinberg's asymptotic theorem together with his 
equation (12) for the asymptotic coefficients shows 
that IP[Q(i)m{I5)] in (2.9) over the compact regions is 
again in 3';:'{:ltB

). 

For the unbounded regions chooseNd ¢ {i)m,j ¥= n, 
such that for IXil > INil, 

0< y < 1, Mi a large integer. 

This may be achieved for any z, (p), (e). The regions 
under consideration break down into three types: 

(i) 15'< IXil ~ Ni , j ¥= n, Ix .. 1 > N .. ; 
(ii) Ix .. 1 ~ N.. with at least one IXil ~ N;, 

j ¥= n, j¢ (i)m; 
(iii) IXnl > N.. and at least one Ix;1 ~ N; 

as in (ii). 

Case (ii) is readily handled. V{e), (p), z 3 Km , (M) = 
(MI' .. M j ' •• M n- l ), 0 < y < 1 such that for Izi 
large enough, the integral is bounded by 

I · f.~ dxi1xl1 f.~ dXimxl .. 1m ••. 
(El(i)m -+0+ <II sinh Xil/2 <1m sinh Xim/ 2 

where 

This integral exists as (e)w
m 
-- 0+ and satisfies the 

estimates at large Izl for 3';:'. Over the region of 
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integration appropriate to Case (i) let us write 

d(i)Jhn(X1 + ... + xn_l)DPf[z + vex)]} 

= I [dWm h~(Xl + ... + X n-1)] 
ml+m2=m 1 
partitions 

[ , means -Xi. if k E (i)m). As hn E S and each 
x; 1 ~ j ~ n - 1 varies over a compact, we may 
estimate d(i)mlh~ terms by the mean-value theorem as 
2m1K IITkE(i)ml xkl· The d(ilm2DP/(z + vex»~ terms are 
a little more delicate. The case m2 = 0 reduces to the 
discussion for wedges wjn). When mz ¥: 0 let us 
examine one difference: 

di.DPf[z + vex)] = Dllf[Z + V(X1 ... Xik ••• Xn)] 

- Dllf[z + V(X1 ... -Xik ••• xn)]' 

Recalling that each (j a = xa + X,,+1 ••• + X n , we may 
choose N n sufficiently large that the Cauchy conver­
gence condition gives 

K IT Ix;I Y 

IdwmPPf[z + V(X)] I ~ _8 __ ~jE--'.(...:..i)m~2!..--__ _ 

IT [1 + (Zi + vi)z]«;+!>;)/2 
i=1 

0< y < 1, 

for IXnl > Nn • Weinberg's theorem is now applicable 
to this estimate to show the existence of the integral 
as (E)W

m 
-+ 0+ with the correct asymptotic behavior 

at large Izl for .'F;'. 
Case (iii) is clearly a compounding of cases (i) 

and (ii) with no new conditions arising. 
This concludes the proof of the lemma. 

An application of Lemma 1 leads directly to the 
existence of (2.4), as these integrals are a repeated 
iteration of integrals of the form (2.8a) with (z) = 0 
at the last stop. The order of these integrals is also 
immaterial since the integrals are absolutely converg­
ent in any order. 

From Proposition I, we have seen the existence of 
W;(T) as a bounded function on ~8. The continuity 
in the time variables is a direct consequence of simple 
inequalities. 

Proposition 2: W;(T) E Ba(~8) for any finite (n) 
and some 0 < ot < 1. 

Proof: B"(~8) is complete with respect to the norm 

IIw;(T)lIa = sup IIw;(T)1I + sup IW;(T) -w;(r')1 , 
t*T' liT - T'II'" 

where 

To verify the existence of the second supremum, the 
identical theorem to Jaffe's6 equations (32) and (33) 
holds in this case, to give 

8 

IW;(T) - W;(T')I ~ IK~(E, s) Itk - t~I"', 0 < ot < 1 
k=l 

uniformly on ~s. If Kn = max [Kf, K: , ... , K;'], 

then the elementary inequality ~~=1 Ilk - 1~1i% ~ 
2'(1-"'/2) lit - t'II'" gives 

IW;(T) - W;(T') I ~ K2s
(1-",/Z) liT - T'II'" 

and thus W;(T) E B"'(~S). 

3. EXPONENTIAL 

Our next consideration concerns demonstrating 
that W~(T) E Bi%(~'), where, for any test functions 
hES, 

W:'(T) = (:eJ.a: (tl,fl) :el.a: (tz,Jz)"·:eJ.a: (t,,f.)o' 
(3.1) 

More precisely, let us define the operator-valued 
distributions 

and their vacuum expectation values 

W~(~1' ~2' ••• , ~'-1) = (rI>Z(xl)cf/j(x2) ••• rl>f(x.»o· 
(3.2) 

The completeness of Bi%(~') would allow us to con­
clude that W~(T) is bounded and satisfies a Lipschitz 
condition provided that we could show the sequence 
{W~(T)} constructed from (3.2) to be Cauchy with 
respect to the norm II II"'. As it stands, a direct esti­
mate of this condition is fairly hard due to the detailed 
nature of the series (2.3). A more natural method of 
proof is suggested by Jaffe's limit theorem' since (3.2) 
has a formal sum as N -+ 00, which may be used in 
the tube b s = ~Z(.-i) - iV'f(S-ll. In fact, the w~ (;) 
in (3.2) are boundary values of functions F;'(O, 
~ = ~ - i'Y} analytic in b •. In a similar manner the 
W;'(T) are boundary values of functions H~aO) 
analytic in ns-! = :)tH - i~~l (~~ is the set of 
vectors (Xl' Xa' ••• ,X.) with positive real compo­
nents), where, in the sense of S', 
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The various relations between these sequences of 
analytic functions and the convergence of their 
boundary values is contained in the diagram 

F;«,) ~ F':'a), 
~ ~ 

H;«,O) .~ H';'aO), 

t t 
w;«'T)'~ w':('T), 

where the regions in which the limits exist must be 
specified. In particular, we show that the compact 
convergence of F;< (') ~ F';' (s) as analytic functions 
in the tube '"CJ. leads to w~('T) ~ w';'('T) as N ~ co 
in the sense of Btl.. 

To simplify the notation, let us write for (1.5) 

G~k)(';) = «(jk1(Xl)(jk t (X2)' .. (jka(x.»l' , 

where (k) = (kl' kz , ... , k.) is any partition with 
Ikl even. Then in the tube '"CJ. consider the sum 

N n [G(k)(Y)/k ']~(k) 
F;-'a) = ! AflA~"" A:'! II s \>. (3.4) 

n;=0 ~(k) ki=O 'f](k) ! 
l$i$. l$i$. 

whose boundary value is the distribution w;< (n 
G~k)m is analytic in '"CJ. as may be seen directly from 
(1.5) and the remarks in the Appendix. Further, on 
any compact subset K c '"CJs , 

IF;<a)1 s exp [! IAlk IG~k)a)IJ' (3.5) 
(k) kl 

in which the summation over the partition (k) must 
have at least two nonzero entries, IAlk = IAll"l IA21k2 ... 
IA.lka. In the Appendix it is shown that for ,= 
~ - it'f], 0 < I < 1, and 'f] in a compact of V~s, 

The (Ikl - 1)1 arises from the number of terms in 
(1.5), each of which is analytic in '"CJ •• Using this in 
(3.5), noting that for 'E K, 3 a 10 such that 0 < 
to S t < 1 for which the uniform bound IG~)(01 S 
(lkl - 1)1 M holds, and after performing the summa­
tion over (k), we have 

! IAlk IG~k)a)1 
(k) k! 

< MIn (1 - IAII2)(1 - IA2l2) ... (1 - P'sI2). (3.7) 
- 2 1 - (IAII + ... + p·sl)2 

Thus, we may find some neighborhood N€(O) of the 
origin in the (A) = (A'I' •.. , As) complex space such 
that F;" m converges compactly to a function F';' m 

(3.8) 

From this last statement, it is an easy matter to 
verify that H~(tO) converges compactly to H;'('O), 
analytic in N€(O) X n~-I where 

H';'('O) = lim JdXI ... dx.ftCxI ) .•• f.(x.)F,;,a). 
'1-+ 00 

in V + (3.9) 

To complete the diagram above, we now give a lemma 
on the boundary values of functions analytic in n~. 

Lemma 2: Let <1>(~) be analytic in n~. Then <1>($) 
has a boundary value 'F(~) = lim <1>(e - i1') in 

'1~O+ 

Ba(:R!) ~ lil<1>a)/ini l sKI" - ';olla-1, 
1 SiS S, 

o < oc < 1 as '->-';0 with 'f] ->- 0+ and , remaining 
inside any compact set A c n~-I which only meets the 
boundary jt. in the point ~o, which may be arbitrary. 

Proof: The necessity of the above condition is a 
simple generalization to s variables of 'Privalov's 
lemma.14 

For the sufficiency, consider 

where ~ E jts and 'f] varies over compacts in jt~; 

o < t < 1. The hypotheses of the lemma allows the 
estimate 

1<1>(~ - it1') - <1>(~ - it''f])1 S ~[it};I'·Jcttl. - t"') 

so that {<1>(~ - it'f])} is a Cauchy sequence of bounded 
continuous functions as t ~ 0+ with respect to the 
supremum norm. Thus lim <1>(~ - itrJ) = 'Fa) exists 

t~ 

and is continuous and bounded on jt8. 

Next consider .;, e' on the boundary jt •. We may 
choose 0 < t < 1 and 1') in a compact of jt~ so that 

I'l"(';) - 1¥(nl 
s I'l"(';) - <1>('; - it'f])1 + l<1>a - it'f]) - <1>(f - it1')1 

+ 1<1>(f - it'Y}) - 'F(~')I, 

18 The uniformity on compacts is a consequence of Yital.i's 
theorem [E. C. Titchmarsh, Theory of Functions (Oxford UnlVefSlty 
Press, New York, 1939), 2nd ed., paragraph 5.21]. 

14 N. J. Muskhelishvili, Singular Integral Equations (P. Noordhoff 
Ltd., Groningen, The Netherlands, 1953). 
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where we have just seen that the first and third terms 
are bounded by k/(XL~:=l 111;1"]t". For the second 
term we have 

I<I>(~ - it1]) - <I>(f - it1]) I 
8 r Si [i-1 2 s 2 

~ Ki~JS/Pi k~l(~k - ~kO) +k~)~k - ~kO) 

8 J (a-1)/2 

+ (Pi - ~iO)2 + t2k~~1]kI2 , 

with ~; < ~iO < ~i' 
the right-hand side being bounded by 

2
1

-

a

K i I~i _ ~;I". 
(X i=l 

Finally, we may find a constant Ko independent of 
~, ~' for which 

I'¥(~) - '¥(~/)I ~ Ko II~ - ~/II", 0 < (X < 1, 

t = min (1, II~ - fll). 

This last lemma provides a convenient criterion for 
deducing·when the boundary values of HsooaO) belong 
to Ba. It remains only to be able to decide when such 
boundary values are actually the limits W;'(T) with 
respect to II II", and then apply the reconstruction 
theorem to recover the field ;e"": (f). This is provided 
by Lemma 3 below which is quoted without proof. 
This is identical to the one given in Ref. 7. 

Lemma 3: Let <l>N(n, N = 0, 1,2, ... be a se­
quence of functions analytic in n~ and bounded on 
compacts independently of N, such that I a<l>Nw/a'il ~ 
K II' - ~olla-l 1 ~ i ~ s, 0 < (X < 1 for' --+ ~o under 
the same conditions as in Lemma 2. Then 

lim <l>N(~ - i1]) = '¥ N(~) E B"(:R,s) 
q~O+ 

and {'¥ N(~)}varies over a bounded set inB". Moreover, 
if <l>NW --+ <l>ooW pointwise in n~, then '¥N(~)--+ 
'¥ 00 (~) in B" uniformly on bounded sets. 

This last result indicates that in order to show 
W;'(T) E Ba, it is only necessary to check the growth 
condition laH~('O)/a'il ~ K 1,,0 - TII"-1, 1 ~ i ~ s, 
o < (X < I, where T is some real point in :Rs• The 
condition on the manner in which ,0 approaches the 
point T allows us to find a cone with angles 0 ~ bi < 
1T, 1 ~ i ~ s such that ,0 --+ T inside this cone 
and ,0 - t; = a7 - t i ) - i1]i = t1]i[tan Wi - i], 
where 0 < t < 1; 1]7 varying over a compact in :R+. 
As '7 --+ ti the angle Wi is strictly less than 7T/2 in 

setA 

FIG. 1. Region su..:h that ~o ~T inside cone defined by 
o ~ Oi~1T. 

magnitude. (See Fig. I.) Then 

(

8-1 )i ,,0 - TI = t:1"~ - ti l
2 

o· o· i 
= t[+ + ... + ~S-l J, 

cos Wl cos W s_ l 

the coefficient of t being bounded for ,0 --+ T in the 
cone and 1]0 varying over compacts of :R~-l. 

With these preliminaries it is now necessary to 
estimate the growth of the derivatives of H~('O) as t 
approaches zero. For this, we use the bound below 
obtained from (3.3), (3.4), and (3.5): 

I 
aH~aO) I 

a,~ 

I I [ IAlk/ aG(kl(n IJ ~ I:~ dxl · .. dXsNxl }· . ·fixs} ~ k! ~,~. 
mV+ 

X exp [1 ~ IG(klWI] I. (3.10) 
(k k! 

From the Appendix we find that in the limit l) --+ 0 in 
V!fs, ,0 = ~o - it'Yj°, 0 < t < 1, 

II aG(klWI 
dXl dX2 ••• dx.Jlx} ... fix.} ~,~ 

~ t£-~~~kl! [(In l/t) lk l-l + K~]. (3.11) 

Here 0 < € < 1, while M, K~ are constants. Lastly, 
before using these estimates in (3.10), let us note that 
for every Ikl > 0, (In l/t)lkl = O[I/t ll ] with any 
o < ft < 1. This remark together with (3.10) leads 
directly to the bound 

I 
aH~('O) I < MNot£-l t-Il- r 

a,~ - 1T In (1ft) , 
where 

N _ !CIAll + ... + lAs/)2 
0- 1 - !CIAll + ... + IAsl)2 1 - ! IAl12 

(3.12) 

ilAsl2 

l-iIAsI2' 
r = E In [(1 - t IAl I2) ••• (1 - ! IAsI2)], 

27T 1 - !CIAll + ... + lAs/)2 
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and M is some appropriate constant. If we restrict 
(A) to a neighborhood of the origin in which IAil < 
2,j/s, then r < (K/27T) In (1/1 - 152). In particular, if 
15 < (E'/E' + K/27T)!, 0 < E' < 1, then r < E'. 

Combining these remarks, we may state finally that 
3 0 < E' < IX < 1 for any 0 < E' < 1 such that 

I aH~r) I ~ Kta-I, 0 < t < 1, 1 ~ i ~ s - 1 

uniformly in some neighborhood N.(O) of the origin 
in the (A) plane. By Lemma 3 we then have the result 
below. 

Proposition 3: For any test functions j; E S, there 
exists some neighborhood N.(O) of the origin in the A 
complex plane such that 

W:(T) = (:e).": (t'/I)' .. :e).a: (Is, t8)0 

is in Ba(jts), 0 < IX < 1 for all A E N.(O). 
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APPENDIX: GROWTH ESTIMATES 
FOR G~k)G - iT}) 

During the discussion of W .. OO(T) in Sec. 3,. two 
estimates [(3.6), (3.11)] on the growth of G~k)($ - it'Yj) 
as t ~ 0+ were required. We give an account of these 
below. 

From (2.2a) we may start with the formula 

where 
k.+·· ·+kj 

P:(k) = I [P"Ca) - P .. Ca)-I], 
a~1 

which exists as a principal-value integral. Throughout 
we restrict 0 < t < I and allow 'Yj to vary over com­
pact subsets of V~CS-l). (For the time variables, t}0 

ranges over jt~-I.) In order to show that the integral 
(AI) exists and to obtain simple estimates for its 

behavior near the boundary, we note the following 
trivial lemma. 

Lemma 4: V partitions (k) = (kl' k 2,' •• ,ks) and 
permutations 7T(k) there exist polynomials Qi('Yj°, IYli) 
which are strictly greater than zero when the 'Yji I ~ 
j ~ s - I vary over compact subsets of V+, such that 

s-1 

IP:(k)t}i ~ I cosh ()" Q,,('Yj0, IYlI) > O. 
"~l "EI(k)" 

Proof: The lemma follows in the case of an arbitrary 
partition (k) once it is proved for (1.5). 

Consider the partial sums 
,. 

1': = I [P .. Ca) - P"C"H]' 
,,~1 

()(±p~C"» if IX $ 7T-1[7T(1X) + 1] 

and suppose a given P .. c,,) appe~rs in Pi for some 7T12nl 
after cancellations. Then as P:n = 0, 3{J: j + I ~ 
{J ~ 2n and 7T({J) - I = 7T(IX) hence for this particular 
7T(IX); P~Ca) > O. Similarly, we may show that a term 
P .. C,,)-1 remaining in Pi after cancellation must have 
negative energy . 

It is now clear that, after changing the integration 
variables appropriately in (AI), we may find a bound 

2%lpi'Yj; ~ mC~cosh ().Q;(t}0, IYlI») > 0, 

where Q( 'Yj0, IYli) is a polynomial made up of terms of 
the form 'Yj~ - IYl;1 with positive coefficients. 

As a consequence, the exponential in (AI) with 
o < t < I is in S for the variables ()", IX E IC~) and (AI) 
exists. To study the limit t ~ 0+, rewrite (AI) in the 
form 

I G~k)($ - it'Yj) I 

~ ~ I I f II d()aH'{k)«()a)exp (-/fp~(k)'Yji)I' 
(47T) uCk) " Ilk)" i~1 

where HC~)«() was defined by (2.5). From our remarks 
following (2.5) and (2.6), let us suppose that ha,«() is 
in S and change variables to Xi = () "I - () "1+1' I ~ j ¢ 
i ~ A, Xi = ()a,; whereupon the above integral 
becomes 

I G~k)($ - itt}) I 

~ ~ I \ foo dx1 ••• dX n IT h"iXi)h".[- ±xkJ 
(47T) "(k) -00 ;=1 k~l 

i*i k*i 

X exp [-tm(cosh xiiio - sinh xiYi) (A2) 

with ii a linear combination of the ii; 1 ~ j ~ s - 1 
as given by Lemma 4. Due to the convexity of the 
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future light cone, if E V + and varies over compact 
subsets with the 'YJi' 

It is a straightforward exercise to show 

I L: dx; exp [-tm(cosh xiif
o 

- sinh xii)] I 
~ K[ln l/t + K o], 

where K, Ko are continuous on 0 < t < 1, and 
uniformly bounded in if, t over their respective 
domains. The remaining integrals exist as convolutions 
of distributions in 0; with a function in S. Further, 
using the fact that haj(x) j :F i is the Fourier transform 
of (i tanh 7Tayi, and similarly ha,(xi) of (i tanh 7Ta)li/ 
cosh 7Ta, we easily find 

L:dXl' .. dXi ... dx;A/xl)' .. 

x ha.( -~~(j)'" ha;.(x;) I ~ (27T)"-1. 

Applied to (AI) with A bounded by \k\ gives the 
relation (3.6): 

\G~k)m\ ~ (\k~I:;-7T1)! Ko[(ln lit) + K~], 0 < t < 1. 

The second bound (3.11) requires a little more 
detail in order to give the power of t precisely. From 
(3.3), 

I f dXl ... dX.!l(Xl) ... f.(x.) aG~;~O I 
~ (m/7T)lkl 

x 21 f IT dpib ± (p; - m2)p~ 
1f(k) i=l [(PI - P2)2(P2 - P3)2 ... (Plkl - Pl)2]i 

X exp [ -ij~/5~(~~ - i1]~)J gl(Pj - PH) 

x exp (-:~Pjl}j) /' (A3) 

where there are at most \k\ terms in 

po = m ~kl+ ... Hi [cosh e + cosh e ] 
3 ~a=l 1f(a) 1T(a)-l 

after changing the signs of the integration variables 
and omitting cancelled terms. As for Eq. (A2), by using 
Fourier transforms, (A3) is bounded by a similar 
integral in which $t is replaced by Pt, where 

Mal' ... , 0',,) 

= ~ roo dOl'" dO" cosh Of! exp (-i±akok) G~~oo ~ 

x exp (-i:~P~(k)'~ll L!;(Pj - PH)])' 

where t = min (tk ) and P (a, b) is a polynomial. 
lSkS;' 

We have been a little free with the indices in this 
formula as the meaning is clear. It requires a simple 
argument to show that the polynomial P may be 
chosen so that the limit t -4- 0+ is not affected. The 
numbers !1-k I > 0 representl the degree of divergence 
as tk -4- 0+ of our estimate for the test functions. We 
may always choose one or more of the €j such that 
there exists 0 < € < 1 for which the singular part of 
(A4) as the tk approach zero is bounded by 

Letting t = min (tk ), this is bounded by 

Combining these estimates with the remarks following 
(A2), we find (3.11): 

If dXl ••• dx.!/xl) ... fix.) oG~;;n I 
M Ikl' t£-l < . [(In l/t)lk l-l + K'] 

- 7T21kl 0 , 

o < € < I, 0 < t < I,. and n~ 1 ~ j ~ s - 1 in com­
pact subsets of :R~-l. 
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The general theory of the realizations of finite Lie groups by means of canonical transformations in 
classical mechanics, which has been developed in a preceding paper and already applied to the rotation 
group, is now applied to the Galilei group. Some complements to the general theory are introduced; in 
particular, a new kind of possible canonical realizations connected with the singularity surfaces of the 
functions .o(y), \P(y), 3(y) are discussed (singular realizations). In agreement with the situation encoun­
tered in quantum mechanics, the constants dpl1 appearing in the fundamental Poisson bracket relations 
among the infinitesimal generators ({YP' YI1} = C~I1Yr + dpl1) cannot all be reduced to zero. There remains 
a single independent constant m, which, in the physically significant cases (m > 0), represents the mass 
of the system. No physical interpretation seems to be attachable to the realizations corresponding to 
m = O. For m ~ 0, two different kinds of irreducible realizations exist: one of a singular type which 
describes the free mass-point, and another of a regular type which describes a classical particle spin. 
A number of physical significant examples corresponding to nonirreducible realizations are thereafter 
discussed and the related typical forms are constructed: specifically, the cases dealt with are the rigid 
rod (linear rotator), the rigid body, and a system of two interacting mass points. It is shown that the 
problem of the construction of the variables of the typical form is equivalent to the determination of an 
appropriate solution of the time-independent Hamilton-Jacobi equation. 

1. INTRODUCTION 

In two preceding papers,l which we shall refer to as 
I and II, respectively, we developed a general theory 
of the realizations of finite-parameter Lie groups by 
means of the canonical transformations in classical 
mechanics and applied the theory to the rotation 
group. In this paper we deal with the more interesting 
case of the Galilei group. The paper has to be read 
in strict connection with II: here we use the same 
terminology and notations and assume the reader is 
familiar with all the results obtained there. 

In order to clarify the physical meaning of the 
formal developments which follow and to expound a 
direct justification for our approach, we shall briefly 
outline some very general considerations about the 
problem of the invariance in the specific case of 
classical physics. 

Let us synthetically denote, by the point P of an 
appropriate space, the set of variables which is suffi­
cient to an observer 0 for the complete description 
of a physical system at a certain instant of time. 
Specifically. denoting by P(t) the position of P at the 
time t, we shall assume that P(t) can be expressed by 
means of a suitable transformation in terms only of 
t and P(O), and write 

pet) = UtP(O). (1) 

1 M. Pauri and G. M. Prosperi, J. Math. Phys. 7, 366 (1966); 
8, 2256 (1967). For a general discussion of related matter see also: 
E. C. G. Sudarshan, "Principles of Classical Dynamics," lecture 
notes, Rochester (1963); D. G. Currie, T F. Jordan, and E. C. G. 
Sudarshan, Rev. Mod. Phys. 35, 350 (1963). 

Let us consider, now, a second observer 0' and assume 
that he can perform the same kind of measurements 
on the system that 0 does. Consequently, the time 
evolution of the system will be described by Of 
through a certain function Pf(t') in the same space to 
which P(t) belongs. We assume also that the two 
trajectories P(t) and Pf(t') are linked by a one-to-one 
correspondence. Clearly, such a correspondence can 
be expressed in particular also as a transformation 
connecting the point P(t), labeled by the time co­
ordinate t with respect to 0, with the point P'(t) 
labeled by the same time coordinate (t' = t) with 
respect to Of. This transformation will depend in 
general on the time coordinate itself so that we shall 
write 

(2) 

We shall say that the two observers 0 and 0' are 
equivalent if the time evolution of the system can be 
described by the two observers through the same 
transformation Ut , i.e., if one can also write 

P'(t) = UtP'(O). (3) 

Substituting Eqs. (1) and (3) into Eq. (2), one obtains 

UtP'(O) = LtUtP(O); (4) 

and using again Eq. (2), for t = 0, one has finally 

UtLO = LtUt, (5) 
or 

Lt = UtLOUt 1
• (6) 

Equation (6) expresses in the most general way the 
equivalence of the two observers 0 and 0'. 

1146 
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Let us now consider a definite class of observers and 
assume that the set of all the space-time coordinate 
transformations connecting the observers form a 
group ~. We shall state that the physical laws are 
invariant with respect to the group ~ if the two 
following requirements are satisfied: 

(1) Any two observers of the considered class are 
equivalent to each other in the sense specified above. 

(2) The transformations Lt , relative to any pair of 
observers 0 and 0' belonging to the class, depend 
only on the relation which connects 0 with 0' and 
not on the particular choice of o. The second require­
ment directly implies that the set Lt of the transfor­
mations Lt and, in particular, the set Lo of the 
transformations Lo will form a group homomorphic 
to ~. 

Now, let us assume that the group ~ includes the 
time translation which connects two observers 
differing only in the choice of the origin of the time 
variable 

t' = t - T (7) 

and denote by E(T) the transformation Lt corre­
sponding to the operation (7). It holds in particular 
that 

Since, obviously, in this case 

P'(O) = peT), 
it follows that 

(8) 

(9) 

(10) 

that is, the time translation coincides with the trans­
formation which expresses the time evolution of the 
system between the instants of time 0 and T. Then 
Eq. (6) can be written as 

Lt = Eo(t)LoEol(t). (11) 

From Eqs. (10) and (11) one sees that the time­
evolution law and the transformation properties of 
the complete description given by different observers 
at any given instant of time are completely determined 
once the transformations Lo are given. Since the set Lo 
provides a realization of the group ~, we conclude 
that, independently of time considerations, the prob­
lem of the construction of the most general theory 
invariant under ~ itself is reduced to that of con­
structing its possible realizations. 

Here we are interested in the case of a system with 
a finite number of degrees of freedom and charac­
terized by a set of canonical coordinates Ql' ... ,Qn; 
PI, ... ,Pn' whose time evolution is described in 
Hamiltonian form. In this way, we are led to consider 
a situation in which the Lo's are canonical transforma­
tions and then to look for the possible canonical 

realizations $\ of ~ which will be identified hereafter 
with the Galilei group. We stress once more that the 
realizations $\, the construction of which is our 
main concern, do not directly involve time anyway, 
and that their elements physically represent the trans­
formations which connect the canonical coordinates 
at time zero for equivalent observers. On the other 
hand, once the realization $\ is given, the transforma­
tions defined by Eq. (11), which connect the canonical 
coordinates at any time t, provide a second realization 
$\t of the group ~ by means of canonical transforma­
tions depending explicitly on time. On considering 
an element of~, we shall refer to the corresponding 
elements of $\ and $\t as the time-independent and the 
time-dependent images, respectively. 

In Sec. 2 we discuss some complements to the 
general theory given in 1. More precisely, we treat in 
greater detail particular kinds of realizations which in 
I were only mentioned and are now of relevant 
interest for the Galilei group. Such realizations, which 
we call Singular realizations, are distinguished by 
possessing invariant manifolds which lie on the 
boundary of the domain of the functions .Q(y) , 
\l3(y), ~(y) (see I). 

In Sec. 3, after recalling some preliminaries on the 
Galilei group, the fundamental Poisson brackets 
among the canonical generators are established. The 
problem of the reduction of the constants dpcr to 
their minimum number is next discussed. As it is 
already known from the quantum case,2 all the con­
stants can be reduced to zero, apart from those 
relative to the Poisson brackets between the generators 
of the pure Galilean transformations and the homolog 
space translations, which remain equal to a single con­
stant. Such a constant, which will be denoted by m, 
in the physical cases turns out to be the total mass of 
the system. 

In Sec. 4, Scheme A (see II) is constructed, both in 
the case m ¥= 0 and m = 0, and all the possible types 
of singular realizations are discussed. As in the 
quantum problem, only the realizations corresponding 
to m > 0 are directly significant from the physical 
point of view, while those corresponding to m < 0 
are shown to be reducible to the former ones by means 
of an anticanonical transformation, and those corre­
sponding to m = 0 are not directly interpretable as 
describing physical systems. In the case of m > 0, a 
direct physical meaning can be attached, in particular, 
to the canonical invariants, which, according to the 
most natural choice, can be taken for instance as the 
energy and the angular momentum in the center-of­
mass system. 

• J. M. Levy-Leblond, J. Math. Phys. 4, 776 (1963). 
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In Sec. 5 we construct the irreducible realizations, 
which correspond to fixed values of the invariants. 
Such irreducible realizations appear to be of particular 
interest. In the case m > 0, they are essentially of two 
kinds. The former one is of a singular type and 
corresponds to a system with three degrees of freedom 
and zero intrinsic angular momentum. The latter one 
is of a regular type and corresponds to a system with 
one more degree of freedom and a definite nonzero 
value of the intrinsic angular momentum. In both 
realizations, the Hamiltonian turns out to be of the 
form 

~ 

H = L + const, 
2m 

so that they can be interpreted as corresponding to a 
free mass point and to a free particle with spin, 
respectively. This seems to be the most natural way 
for introducing the spin in classical mechanics. We 
stress that two constants characterize anyway the 
irreducible realizations: they are the values of m and 
of the intrinsic angular momentum. On the other 
hand, the value of the second invariant gives only the 
zero-point energy and does not affect the realizations. 
We are here in a case of identical realizations in the 
sense of the Sec. 4 of I. The construction of the 
irreducible realizations for the case m = ° concludes 
the section. 

In Secs. 6 and 7, the problem of constructing 
Scheme B for a number of physically significant 
examples corresponding to nonirreducible realiza­
tions is considered. The cases of the free rigid rod, 
the spherical and the symmetrical top, and a system 
of two mass points interacting through a Coulombian 
potential are explicitly solved. 'In the cases of the 
rotator and the spherical top, one of the two invari­
ants is still fixed and gives the zero-point energy; 
consequently, the phenomenon of the identical real­
izations occurs again. In the case of the symmetrical 
top and of the system of two intera~ting mass points, 
the two invariants appear as canonical variables and 
there are no inessential variables. The same qualitative 
results hold for the case of the asymmetrical top: 
The corresponding realization turns out to be canoni­
cally equivalent to the realization corresponding to 
the symmetrical top. 

Finally, in connection with the construction of 
Scheme B, it is noteworthy to notice that, with an 
appropriate choice of the invariants, the variables 
Q(q,p) and P(q,p) of the typical form are essentially 
Hamilton-Jacobi variables in the sense of the 
analytical mechanics. The problem of the construction 
of these variables can be consequently reduced to 
the finding of a suitable solution of the time-inde-

pendent Hamilton-Jacobi equation. Conversely, the 
knowledge of the inverse canonical transformation 
amounts to obtaining the solution of the equations 
of motion. We take advantage of this remarkable 
circumstance for the actual construction of the 
variables of the typical form in the case of the 
two interacting mass points. In all other cases we 
shall follow directly the constructive procedure of the 
Theorem 2 proved in I. 

2. COMPLEMENTS TO THE GENERAL 
THEORY: SINGULAR REALIZATIONS 

As we pointed out in I and II, the canonical 
generators Yl(q,P),'" ,y,,(q,p) are not, in general, 
independent functions within a particular realization, 
because a certain number of relations of the form 

f,zCYl,"',Yr)=o, O(=I,"',s<r (12) 

may exist. Let us consider the form that such rela­
tions assume in terms of the expressions ,0, llJ, and ~ 
of Scheme A. When the y /s are reexpressed in terms 
of the variables ,0, llJ, and ~, Eq. (12) becomes 

gi,Q, llJ, ~) = 0, oc = 1, ... , s. (13) 

Then, using the fundamental relations 

{,Qi, ,Qi} = {llJi' llJ;} = {~t> ~t'} 
= {,Qi, ~t} = {llJi , ~t} = 0, 

{,Qi' llJi} = t5ij; i,j = 1,"', h; t, t' = 1,"', k, 

(14) 
it follows that 

ag~ = ag~ = 0, oc = 1, ... , s. (15) 
a,Qi allJi 

This means that Eq. (13) does not imply constraints 
on the variables ,Qi' llJi so that Eqs. (12) are essen­
tially relations among the invariants (cf. I, Sec. 3). 
However, we stress that in order to draw such a 
conclusion it is necessary that the manifold defined 
by Eqs. (12) lies inside the domain of the functions 
,Q(y) , llJ(y), ~(y). An exceptional situation occurs, 
instead, when the above manifold belongs to the 
singularity surfaces of the same functions. All the 
realizations corresponding to this last class will be 
called exceptional or singular realizations. In order to 
treat such singular r.ealizations one has to proceed in 
the following way: Among the singularity manifold 
of the functions ,Q(y), llJ(Y), ~(y) one must choose, in 
all possible ways, the submanifolds which are left 
invariant by the group transformations. Let us write 

{

h1(Yl' ... ,Yr) = 0, 

(16) 

hr-u(Yi, ... ,Yr) = 0, u < r, 
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as the equations for a given invariant submanifold. 
Then, from the expressions Yl , ... 'Yr, one has to select 
a set y~, ... ,y~ which is independent within the 
manifold (16). After that, one has to reapply the 
procedure given in I and to construct a system of new 
functions .Q'(y) , I.p'(y) , 3'(y), i.e., according to the 
terminology introduced in II, a new Scheme A. We 
shall presently see, in particular (cf. Sec. 3), that the 
only unfaithful realizations occurring in the case of 
the Galilei group are just of the singular kind. On the 
other hand, we know that this is not true in general 
(see I, Sec. 4). 

Another kind of singularity may occur in connection 
with the dependence of the functions of Scheme A on 
the constants dpu • Actually, it may happen that the 
original expressions of the variables .Q(y), I.p(y), 3(y) 
lose their meaning for exceptional values of such 
constants. In this case Scheme A has to be inde­
pendently constructed from the beginning, starting 
from these exceptional values of the dp./s. Such a 
situation occurs in the case of the Galilei group in 
correspondence with the value m = O. 

3. GENERALITIES ON THE GALILEI GROUP 

The general Galilei transformation will be written 
in the following way, adopting the passive point of 
view: 

x' = Rx - vt - a, 

t' = t - 7", (17) 

where R represents a pure rotation. The parameters 
of the group are then the three parameters w which 
characterize R, and v, a, and 7". The following special 
kinds of transformations are contained in Eqs. (17): 

(a) a = v = 7" = 0, pure rotations, 

(b) R = I, v = 7" = 0, pure space translations, 

(c) R = I, a = 7" = 0, pure Galilean transforma-
tions or accelerations, 

and finally 

(d) R = I, a = v = 0, pure time translations. 

The infinitesimal operators of the group relative to 
the transformations (a), (b), (c), and (d) will be 
denoted by .At, 13, X, and &, respectively. They have 
the form 

a 
.At = -x x -, ox 

a 
13=--, ox 

a 
X=-t-, ax 

a 
&= --, at (18) 

and satisfy the following commutation relations 

[.A(, i , .A(,;] = € m.A(, , 

[.A(,i, 1'>;] = €ii!1'> , 

[.A(,i, J\,;] = €inJ\" 

[.A(, I , &] = 0, 

[1'>i' 1'>;] = 0, 

[J(,i, J\,;] = 0, 

[1'>1' &] = 0, 

[J\,l' &1 = 1'>1 

(19) 

[1'>i' J\,j] = 0, (i,j, I = x, y, z). 

Given a canonical realization ~ of the group, the 
generators corresponding to .At, 13, X, and £; will be 
denoted by M, T, K, and E, respectively. According 
to the results established in I, the Poisson-bracket 
relations among such generators can be formally 
obtained from Eqs. (19), replacing the canonical 
generators for the group operators, the Poisson 
brackets for the commutators, and adding suitable 
constants dpa to the right-hand side of the equations. 
The constants dpa are not all independent but are 
linked-by the system of conditions 

d pa + d ap = ° (p, (1, A = 1, ... , 10), 

C~adTA + c;'pdTa + c:AdTP = O. (20) 

In the present case the restrictions implied by such 
conditions, with obvious meaning of the symbols, 
are 

d MiT; = d TiM;, d MiK; = d KiM;, 

d TiK; = ° (i ¥= j), 

d TiKi = dT;K;' 

d MITI = d MIKz = d MzE = d TiT; 

= d TIE = d KiK; = 0, 

d MiT; = €ii/dKzE ' for every i andj, 

d MiMi = -dMjM,·, d MiTj = -dTIMi , 

d MiKj = -dK;Mi' 

(21) 

Consequently, there are ten independent dplT and the 
Poisson-bracket relations become 

{Mi' M j } = €ijlMz + dM,M;' {T;, T;} = 0, 

{Mi , T j } = €i;ITI + dM,Ti' {Ki' K j } = 0, 

{Mi' K;} = €i;zKl + d MiKJ , {MI , E} = 0, (22) 

{Ki' E} = T; + t€ii/dMITI , {Tz, E} = ° 
{T;, K;} = mbi ;, (i,j = x, y, z). 

In order to reduce the dpa's to the minimum number, 
one has to consider the following equations (see I): 

C~aIXT = ° (p, (1,7" = 1, ... , 10). (23) 

Since they give 

IXM, = IXT, = IXK, = 0 (i = x, y, z), (24) 

all the independent dpa's but one can be put equal to 
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zero by means of a suitable redefinition of the canon- Because of the infinitesimal transformations of the 
ical generators y p - y p + IXp. Precisely performing original variables 
the substitutions 

Mi - Mi + lEiild M,MI' 

T; - T; + !EiildMiTI' 

Ki - Ki + lEmd MiKI' 
one obtains from Eqs. (22) 

{Mi' Mi} = EiilMI' {T;, Ti} = 0, 

{Mi' Ti} = EiilT", {Ki' Ki} = 0, 

{Mi' Ki} = EiilKI' {Ml' E} = 0, 

{Kl' E} = T", {Tl' E} = 0, 

(i,j = x, y, z). 

(25) 

(26) 

The reason why the constant m cannot be reduced to 
zero is essentially that a transformation of the form 

q; = qi + baP{yp, qi}UIJ' 

p~ = Pi + baP{yp, p;}qIJ (i,j = 1,"', n), (30) 

it can be deduced that 

ij; = iji - baP{yp, iji};;q, 

p~ = Pi - baP{yp,-Pihii (i,j = 1,"', n), (31) 

so that the new generators can be expressed as 

yp(ij,p) = -Yp[q(ij,p),p(ij,p)] (p = 1, " . ,r). 

(32) 

From Eqs. (29) and (32) one readily ascertains that the 
Poisson-bracket relations among the new generators, 
with respect to the new variables, are given again by 
Eqs. (26) except for the last one, which is changed in 

E-E + IXE (27) sign. 

does not change the values of the dp,,'s. 
At this point, let us make a few remarks. First, 

recalling Eq. (10) and comparing the Hamilton 
equations and the structure of the canonical trans­
formations corresponding to the infinitesimal time 
translation, one can see that the following relation 
holds: 

E= -H (28) 

[cf. Eq. (10)], where H is the Hamiltonian of the 
system. Moreover, as to the determination of the 
number of the invariants, we observe that, as stated 
iQ I, such a number is directly provided by order r of 
the group minus the generic rank of the matrix 
Ilc;"YT + dpt1 li. Using Eqs. (26), it can be easily seen 
that in our case this rank is eight, whatever be the 
value of m. Thus, the number of the canonical invari­
ants for the GaliIei group is two. Finally, before 
concluding this section, we want to say some more 
about the meaning of the constant m. We shall 
presently see that in the physically significant ex­
amples the constant m represents the total mass of 
the system and, consequently, m must be greater than 
zero. No physical meaning, it seems, directly attaches 
to the realizations for which m = 0. As for the real­
izations corresponding to m < 0, it can be shown 
that they are convertible into the positive mass cases by 
means of an anticanonical transformation. [A trans­
formation ij = ij(q,p), P = fi(q,p) will be called 
anti canonical if it satisfies the conditions {iji' iji}qIJ = 
{Pi' Pi}qp = 0, {iji' Pi}qp = -bii · For instance iji = 
qi' Pi = -Pi (i,j = 1, ... , n).] In order to see this, 
we note that 

4. CONSTRUCTION OF SCHEME A 

Let us consider first the case m =F 0. Direct inspec­
tion of Eqs. (26) enables us to put 

\.PI = T." \.P3 = Tz , 

.0
3 

= _ Kz. 
m 

(33) 

Then we look for a function of the canonical genera­
tors, say ctJ = ctJ(M, T, K, E), which has zero Poisson 
brackets with all the expressions (33). This means that 
ctJ has to satisfy the following system of partial 
differential equations: 

octJ K _ octJ K _ m octJ + octJ T = ° cycl; 
oM z oM 11 aT oE 11) , 

11 Z 11) 

actJ actJ actJ 
-- Tz - -- ~ + m - = 0, cyc!. 
aM1I oMz oK., 

(34) 

One can easily verify (see Appendix A) that a system of 
independent solutions is provided by the expressions 

and 

K 
S=:M+-xT 

m 
(35) 

T2 
- W =: E + - , (36) 

2m 

which, moreover, satisfy the following Poisson-bracket 
relations: 

{Si' Si} = EiiIS!, (37) 

{S!, W} = ° (i,j, I = x,Y, z}. (38) 

{A, Bh; = -{A, B}QIJ' (29) Let us remark that Eqs. (37) are identical to the 
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Poisson-bracket relations obeyed by the canonical 
generators of the rotation group. Thus, finally, 

~1 = T~ ~s = T. 

It will be apparent from the following that, within 
the physical realizations, ,01' ,02' ,os can be inter­
preted as the coordinates of the center of mass; 
~l' ~2' ~3 as the components of the total linear 
momentum; 81 , 82 , 83 as those of the intrinsic 
angular momentum; and W = -:Jz as the internal 
energy. Let us remark, in particular, that the variables 
appearing in the fourth and fifth columns represent 
Scheme A for the little group of (E, T) (rotation 
group). 

Now, we want to discuss the occurrence of singular 
realizations. The singularity manifold for the expres­
sions of Scheme A is related to the function ,04 = 
arctan Sll/S~, which is singular for 

S~ + i8y = 0 (40) 
and for 

application of the results of II, Scheme A for the 
Galilei group can be summarized in the form: 

~4 = 8. 
T2 

~2= -W=E+-
2m 

(39) 

(From the point of view of the functions of two 
complex variables, the function arctan Z1!Z2 has the 
two singularity surfaces Zl + iZ2 = 0, Zl - iZ2 = O. 
Such surfaces intersect at the point Zl = Zz = 0, 
which is consequently a point of singularity for the 
function.) However, this manifold is not an invariant 
one for the Galilei group. The only singular invariant 
submanifold belonging to the surface (40)-(41) is 
provided by 

S =0. (42) 

The Scheme A for the singular realizations corre­
sponding to the condition (42) is obtained directly 
from the scheme (39) by suppressing the fourth and 
fifth columns. Thus, the scheme corresponds to 
unfaithful (trivial) realizations of the little group. 

S~ - iSy = O. (41) We have 

1lJ1 = T~ ~3 = T. ~ = -w = E + T2 
2m 

Furthermore, if the matrix defined by Eq. (44) of I 
is constructed, one easily checks that, both in cases 
S ~ 0 and S = 0, the rank qo "equals the order of the 
group. Consequently, no unfaithful realization of the 
particular kind studied in I, Sec. 4, exists for m =;t6 O. 

Next, let us consider the case m= O. It is apparent 
that in this circumstance there is a number of variables 

(39') 

of the scheme (39) which become singular. Therefore, 
according to the prescriptions given in Sec. 2, one has 
to refer back to Eqs. (26), substituting for the fifth­
line Poisson brackets: 

{Ti' K j } = 0, (i,j = x,y, z). (43) 

Scheme A, in this case, can be constructed in the form 

~l=Mz ~3=M·T 1lJ4 = E 

.0
2 

= _1_tan-1 

2M 
x M(MxT). 

(M.T)M. - M2T. 
x T(K x T.M) 

(K x T) . (M x T) 

K·T 
,0 --

4- T2 

where M = IMI, T = ITI. The detailed calculations are given in Appendix B. 

(44) 
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The invariant singular manifolds related to the scheme (44) and the corresponding Scheme A can be 
summarized in the following table: 

KxT=O 

~s =E ~1 = M • T ~2 = T2 

t"'\ t MjJ t"'\ ___ 1_ arctan M(M x T). t"'\ _ K • T 
.wI = arc an - .w2 .ws -

MIJJ 2M (M. T)M. - M2T. T2 

(44') 

T=O 

~1 =M. ~1 = M • K ~2 = K2 ~3 = E 

MjJ t"'\ 1 M(M x K). 
,01 = arctan - .w = - arctan --~--~-

(44") 
MIJJ 2 2M (M. K)M. - M2K. 

T=K=O 

~1 = M. ~1 = M2 ~2 = E 

MjJ (44"') 
,01 = arctan -

MIJJ 

~=E 

The realizations of the types (44'), (44"), and (44111) 
are the canonical analogs of the true unitary 
representations of the second, third, and fourth 
classes studied by Inonii and Wigner.3 The realiza­
tions (44') are faithful, while all the others are un­
faithful. In particular, within the realizations (44") 
the translation subgroup corresponds to the identity. 
If ~3 is not fixed, such realizations are faithful 
realizations of the homogeneous Galilei group plus 
time translations. The realizations (44111) are faithful 
realizations of the rotation group plus time transla­
tions and those of the type (44"") are faithful realiza­
tions of the time translations group if, again, ~ == E 
is not fixed. We remark that in the. cases (44") and 
(44"') the time translation E becomes a commutative 
subgroup. Consequently, if E reduces to!a constant, a 
new cause of unfaithfulness arises (cf. I, Sec. 4) and 
the realizations become faithful realizations of the 
homogeneous Galilei group [isomorphic to the Eu­
clidean group in three dimensions E+(3)J and of the 
rotation group, respectively. 

5. THE IRREDUCIBLE REALIZATIONS 

The irreducible realizations can be directly con­
structed according to the following procedure: one 
starts from Scheme A and inverts the functions 
,Q(y), ~(y), ~(y), obtaining the expressions 

YP = Yp(,Q, ~, ~). (45) 

a E. Inonii and E. P. Wigner, Nuovo Cimento 9, 705 (1952). 

(44"") 

Then one introduces axiomatically a system of 2h 
canonical variables q, p and sets 

,Q.=qi> ~;=p; (i,j=l,·",h). (46) 

Finally, one prescribes certain definite values for the 
canonical invariants in their accessible domain, taking 
into account the results of I, Sec. 4. 

In the case m =F- 0 one realizes from the discussion 
of the previous section that there are two kinds of 
irreducible realizations: Singular realizations, for which 

8 == 0, (47) 

corresponding to systems with three degrees of 
freedom, and regular realizations, for which 82 

equals a positive constant S2, corresponding to sys­
tems with four degrees of freedom. In the case m = 0, 
according to the above, there can be five different 
kinds of irreducible realizations, three of which are 
unfaithful; moreover, the realization corresponding 
to the scheme (44) is regular, while the other four are 
of a singular type. 

A. l"educible Singular Realizations for m F 0: 
tbeFree Mass Point 

For the Singular realizations, we have from (39'), 
(45), and (46) 

T=p, 
K= -mq, 

so that Eqs. (35) and (47) give 
M= q x p. 

(48) 

(49) 
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Finally, from the actual structure of the invariant :.32 , 

we deduce the Hamiltonian 
2 

H = -E = L + const. (50) 
2m 

Using Eqs. (48), (49), and (50), it is possible to 
write down explicitly the infinitesimal transformations 
of the various types: 

(a) Pure rotations 

{
q: = qi + bON=likqk' 

Pi = Pi + OWIE1ikPk; 

(b) Space translations 

{
q: = qi - oai' 

Pi = Pi; 

(c) Pure Galilean transformations 

{
q; = qi' 
pj = Pi - mbvi ; 

(d) Time translations 

{

q: = qi + Pi Or, 

p~ = Pi' ~,j = x, y, z). 

(51') 

(511/) 

(51"') 

(511/1/) 

An examination of the transformation laws (51), 
along with Eq. (50), shows that the realization corre­
sponds to a free mass point with Cartesian coordi­
nates q." qll' q.; momenta P." Pv' P.; and mass m. 

In particular, from Eqs. (51"') we observe that it 
follows that, under the acceleration 

x' = x - vt, (52) 

the configurational variable q does not change, 
exactly as x does not for t = O. This is in agreement 
with the fact that, as discussed in Sec. 1, the elements 
of the realization provide a connection among the 
canonical variables at time equal to zero. The trans­
formation properties for the canonical variables at 
time t have to be constructed according to Eq. (6) 
as a product of a first time translation (- t), the 
transformation at time equal zero, and a second time 
translation (t). Since the time translation commutes 
with the pure rotations, the space translations, and, 
obviously, other time translations, the transformation 
properties of q(t) and pet), under such transforma­
tions, are directly obtained simply by replacing such 
expressions for q and pinto Eqs. (51'), (511/), and 
(51""). As for the acceleration, Eq. (51"') has to be 
replaced by 

{
q:(t) = q;(t) - ovit, 

p;(t) = p;(t) - mbvj , (53) 

in complete agreement with Eq. (52). Correspondingly, 
the generators of such infinitesimal transformations 
can be obtained from the time-independent ones by 
simply reexpressing the old variables q and p in terms 
of the new ones q(t), pet). One obtains 

T = pCt), 

K = -mq(t) + pet) . t, 

M = q(t) x pet), (54) 

-E = H = p2(t) + const. 
2m 

Going back to the original discussion, we recall that 
Eqs. (50) and (54) provide the expression of the free 
mass-point Hamiltonian, if m is interpreted as the 
physical mass. In this connection, remembering what 
was said at the end of Sec. 3, we remark that if one 
performs the anticanonical transformation 

ifi = qi' 
Pi ;:::: -Pi (i,j;:::: x, y, z), 

it follows that 

T = -T(ij, -p) = p, 
K = -K(ij, -p) = mij, 

lVI = - M(ij, - p) = ij x p, 
-2 

E = -E(ij, -p) = -:.32 + ~ 
2m' 

(55) 

(56) 

so that, in the new variables, a new realization is 
. defined in which the mass m and the "internal energy" 
W == -:.32 are changed in sign. 

In this case, we observe that the value of -:.32 == W 
gives merely the zero-point energy. The physical 
arbitrariness of this quantity is reflected in the fact 
that the canonical realizations corresponding to 
different values of ~2 are identical ones. This case is 
just an example of the more general situation discussed 
in Sec. 4 of I [see also what was said in Sec. 2 of this 
paper in connection with Eq. (27)]. 

B. Irreducible Regular Realizations for m ¢ 0: 
the Particle with Spin 

We want to consider now the general irreducible 
realizations of a regular type. In this case, ~l == 82 

has to equal identically a positive constant S2, and :.32 

can assume any real constant value as before. Such 
~egular ~ealizations. ~an be expl.icitly constructed by 
mtroducmg two additIonal canomcal variables. Indeed, 
from the scheme (39) and Eq. (46), using now the 
variables X and Px for q4 and P4, one has 

T=p, 
K= -mq, (57) 
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and 

{

Sz = (S2 - p~)l- cos X , 

SII = (S2 - p~)l- sin X , 

Sz = Px' 8 2 = S2. 

Consequently, one also has [see Eq. (35)] 

and, finally, 

M=q xp + 8, 

p2 
H = - E = - + const. 

2m 

(58) 

(59) 

(60) 

Such a realization can be plainly interpreted as 
corresponding to a free particle with spin s (see II, 
Sees. 4, 5 where a discussion of the connections with 
spinor theory is also given). The same remarks as 
before hold true about the zero-point energy. 

C. The Irreducible Realizations for m = 0 

The irreducible realizations for m = 0 should be 
obtained from Eqs. (44), (44'), (44"), (44"'), and (44'''') 
following the procedure already described. We shall 
not do this in detail, but we want to make a few re­
marks. 

The realizations corresponding to Schemes A (44"), 
(44"'), and (44""), as we have already said, are 
unfaithful realizations, i.e., realizations of factor 
groups and, consequently, they are not interesting 
for the Galilei group directly. The realizations corre­
sponding to the schemes (44) and (44') are instead 
faithful ones and stand, in some way, in analogy with 
the regular and the singular realizations for m =;i: O. 
Actually, they can be viewed as limiting cases of the 
previous situations when the mass goes to zero and 
consequently the velocity and the center-of-mass 
coordinates go to infinity. In this connection, we can 
see that there is no possible way to introduce into the 
framework of such realizations center-of-mass co­
ordinates and linear-momentum variables satisfying 
reasonable physical requirements. As to the center-of­
mass coordinates, obvious requirements are that under 
infinitesimal rotations, space translations, and accelera­
tions, they shall transform respectively as 

Qi = Qi + OWt€tikQk, 

Q~ = Qi - oa;,_ 
Qj = Qi' (j, 1, k = x, y, z). 

(61) 

Consequently, Ql has to satisfy the following rela­
tions: 

{Mi' Q;} = €iikQk' 

{Ti' Q;} = -oij, (62) 

{Ki , Qi} = 0 (i,j, k = x,y, z). 

It is readily seen that a quantity obeying such equa­
tions cannot have zero Poisson brackets with the 
canonical invariants appearing in the schemes (44) 
and (44') and so it cannot be a function of the in­
finitesimal generators alone. As for the linear momen­
tum, we should assume the following transfonnation 
properties under rotations, space translations, and 
accelerations, respectively: 

Pi = P; + ow!€u",p, 

Pj = Pi' (63) 

Pi = Pi - flOVi (j, 1, k = x, y, z), 

where fl should be the mass of the system, so that 

{Mi' Pi} = E'ijkPk' 

{Ti' P,.} = 0, (64) 

{Ko Pi} = -flOti (i,j, k = x,y, z). 

Now, Eqs. (64) are incompatible with the schemes 
(44) and (44') unless fl = O. This is straightforward, as 
before, in the case of scheme (44). As for scheme 
(44'), from the first Eq. (64), we must have 

{M. T, Pi} = -(T x P); = 0 (j = x,y, z), (6-5) 

so that 

Pi = J..T, [with {Mz, J..} = 0 (l = x, y, z)]. (66) 

Moreover, in order to satisfy the remaining Eq$. (64), 
it must be that 

{Ti' J..} = 0, {Ki' J..}Ti = -flOi}' (67) 

Takingj =;i: i, the second equation gives, for any i, 

{K;, J..} = 0 (68) 
and, consequently, 

(69) 

In both cases (44) and (44'), if also we require that Pi 
be a constant of the motion {E, Pi} = 0, we must have 
Eq. (66) with J.. = const. However, such a momentum 
variable does not correspond to a zero-mass system. 

6. NONIRREDUCIBLE REALIZATIONS: 
FREE RIGID SYSTEMS 

We want to discuss, now, some simple classic 
examples of mechanical systems corresponding to 
nonirreducible realizations. In analogy with what was 
done in the case of the rotation group, our attitude will 
be to consider the transformation properties of the 
canonical coordinates as already known on the basis 
of their physical meaning; then to deduce the explicit 
expressions of the generators of the infinitesimal 
transformations; finally to construct the corre­
sponding Scheme B. In this section we shall discuss 
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free rigid systems: precisely, the rigid rod, the spher­
ical top, the symmetrical and the asymmetrical top. 

A. Free Rigid Rod 

We intend for a rigid rod or linear rotator, in ana­
logy with II, a system characterized by the coordinates 
of a mass center q"" q'll' q., by two angular coordinates 
q;, 8 specifying an orientation, and by the conjugate 
momenta p"" P'II , P.; p", ' Pe . 

Under a pure rotation, the mass-center coordinates 
and the conjugate momenta transform as vectors, 
while the transformation properties of the angular 
variables q;, 8 and of P"" Pe are those of the same 
coordinates of the linear rotator [cf. II (Sec. 3, ii)]. 
Under a space translation all the variables remain un­
changed except for the mass-center coordinates which 
transform according to the law q' = q - ba. Under an 
acceleration, in the time-independent image, only the 
total momentum p transforms, according to the law 
p' = p - mbv. Finally, the transformation properties 
under a time translation are obviously determined by 
the structure of the Hamiltonian. Summing up, we 
can write the following expressions for the infinitesimal 
generators [see II (Sec. 3, ii)]: 

with 

T::;: p, 

K = -mq, 

M = q x p + S, 

_ E = H = .r + S2 + const (70) 
2m 21 

p2 1 ( 2 1 2) = 2m + 21 Pe + sin2 8 P", + const, 

(

S'" = -sin q;Pe - cot '8 cos q;p"" 

Sy = cos q;Pe - cot 8 sin q;p"" 

2 2 1 2 
S. = P"" S = Pe + ~ P"" sm IJ 

(70') 

where m and I are the mass and the moment of inertia 
of the rod. The angular momentum in the center-of­
mass system is denoted by S. 

In constructing Scheme B, the only variables which 
are not trivially obtained from Eqs. (70) and (70') are 
Q5 andP5' Using the results of II (Sec. 3, ii and Appen­
dix A), one sees that a possible choice is provided by 

p _ ~ _ p2 + _1_ p2 
5 = 1 - e sin2 8 '" ' 

1 Pe tan 8 
Q5 = - arctan , S = lSI. 

2S S 
(71) 

Moreover, since the variables are ten in number, one 

of the invariants must be fixed. However, one directly 
ascertains from Eqs. (70) that this cannot be the case 
for ~2 itself. A correct choice for the second invariant 
in the Scheme B is instead 

~~ == ~2 + ..l ~1 [see I and II (Sec. 1)], (72) 
21 

which, again, gives the physically irrelevant zero-point 
energy, with the same consequences as before. The 
physical meaning of the variable Q5 as a suitable angle 
of rotation has been illustrated in II [Sec. 3, ii], 
where its role was played by the variable Q2' The 
Scheme B for this case together with the preceding 
and the following ones is summarized at the end of the 
paper (see Table I). 

B. Free Rigid Body 

The canonical coordinates in this case can be 
chosen to beq", , q'll' q.; q;, 8, 'IjJ and p", ,Py ,P.;P", ,Pe ,P",; 
as before, the q"" qy, q z' are the center-of-mass co­
ordinates and q;, 8, 'IjJ the Euler angles specifying the 
body orientation. (The conventions used in Ref. 4 
are adopted throughout.) Proceeding as in the 
previous case and using the results of II (Sec. 3, iii), 
the canonical generators can be written as 

T= p, 

K = -mq, 

M = q x p + S, (73) 

p2 ~2 ~2 ~2 
- E = H = - + -1 + -~ + ---1 + const, 

2m 211 212 213 
where 

sin q; . 
S", = cos q;Pe + -.- Ptp - cot () sm q;p"" 

sm 8 

. cos q; 
S1I = sm q;Pe - sin (} P'" + cot () cos q;p"" (73') 

S. = P"" 

2 2 1 2 2 2 cot () 
S = Pe + -:--;-e (p", + Ptp) - -. -()- P",Ptp , 

sm sm IJ 

where II, 12 , 13 are the principal moments of inertia 
and ~., ~~, ~, are the expressions obtained from 
S"" Sy, Sz interchanging q; and 'IjJ, P", and P"'; they 
represent the three components of the intrinsic angular 
momentum S in the body system which we assume here 
to be defined by the principal axes of inertia [cf. II, 
(Sec. 3, iii)]. We recall also that 

(74) 

4 H. Goldstein, Classical Mechanics (Addison-Wesley Publishing 
Co., Reading, Mass., 1959), Chap. 4. 
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and obviously 

{~i' ~i} = €i;k~k (i, j, k = ~, 'YJ, o· (75) 

In order to construct Scheme B we need to discuss 
different cases separately: 

Spherical Top: Ii = 12 = la == I 

The Hamiltonian becomes 

p2 82 
H = - E = - + - + const. 

2m 21 
(76) 

Thus one sees that, as in the case of the linear rotator, 

1 
~~ == ~2 + - ~1 = const (77) 

21 

is true. Then, using the results obtained in II (Sec. 
3, iii and Appendix D), Scheme B can be completed 
by setting 

_ C"f 2 1 (2 2) 2 cot () 
P5 = Vi = P8 + ~() Ptp + Pip - -.-() PtpPIp' 

. sm sm 

1 P8 tan () 
Q5 = -arctan , 

2S S _ PtpPIp 

Pa = ~" 
~ 

Qa = arctan -!! . 
~s 

S cos () (78) 

In conclusion, there are two variables P5 and Q5 
in the second set [cf. I (Sec. 3)], one fixed invariant 
~~ and two inessential variables Pa, Qa in the 
fourth set. We notice in particular that, for a time 
translation, 

Q~ = Q5 + ~ (79) 

is true in agreement with the fact that, according to the 
discussion given in II (Sec. 3, iii), the expression 
2SQ5 represents the angle of rotation around the 
intrinsic angular momentum 8-more precisely, the 
angle between the half-planes from 8 to the z and 
, axes, respectively. 

Symmetrical Top: II = 12 == I -:;6 la 
The Hamiltonian can be written 

p2 ~2 + ~2 ~2 
H = - E = - + q ~ + -' + const 

2m 21 213 

p2 8 2 1-13 2 = - + - + --Pip + const. (80) 
2m 21 2Il3 

No function of the invariants can be constructed in this 
case, which is identically equal to a constant; con­
sequently, the fourth set is empty. The invariant 

~~ defined above becomes 

~' = 13 - I p2 + const (81) 
2 2~1 Ip , 

so that it has zero Poisson bracket with the expression 
of Q5 already introduced for the spherical top. Thus, 
we can set 

P _ ~ 2 1 (2 2) 2 cot () 
5 = 1 = P8 + ~() Ptp + Pip - -. -()-PtpPIp' 

sm sm 

1 P8 tan () 
Q5 = - arctan --:"""---.......,... 

2S S _ PtpPIp (82) 
Scos () 

_ C"f' la - I 2 
Pa = V2 = -- Pip . 

21a1 

The variable Q6 has to be, for instance, a function of 
the quantities ~" arctan ~~/~s such that 

{Q6, Pa} = 1. (83) 

One readily finds 

laI 1 ~ 
Qa = -- - arctan -.!! . 

13 - 1~, ~; 
(84) 

Under a time translation, Q5 and Qa transform in 
the following way: 

Q~ = Q5 + ;I' 
Q~ = Qa - T. (85) 

As to' their physical meaning, we assume that the 
, axis coincides with the axis of the symmetrical top; 
then the expression 2SQ5 provides, as before, the 
angle between the two half-planes from 8 to the z 
and the , axes, respectively, i.e., in this case, the 
precession angle. The quantity (I - I3/I/3)~' Qa gives, 
instead, the angle between the half-plane (8-') 
and (~-'), i.e., essentially, the proper rotation angle 
of the body. Let us remark that a possible different 
choice for the variables of the second set, precisely 
that which retains the original form of the invariants 
~1' ~2' is accomplished by putting 

1'5 = P5 == ~1' 
1 

Q5 = Qs + 21 Qa , 

- 1 C"f 
P a = P a - - Ps == V2' 

2I 

Q6 = Qa· 

(86) 

In this case Q5 does not change under the time 
translation, i.e., it is a constant of motion. 
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Asymmetrical Top: II ¥: 12, 12 ¥: Is, II ¥: Ia 
In this case also there is no variable in the fourth 

set. It is interesting to remark that the canonical 
realization is canonically equivalent to the previous 
one of the symmetrical top, as it can be easily seen. 
For instance, if one puts 

Ps = ~1' 
P6 = ~2' (87) 

all the canonical generators, in terms of the variables 
of Scheme B, have the same form in the two cases. 
In particular, the Hamiltonian takes the form 

p2 
H = - - Ps (88) 

2m 
for the asymmetrical top and [see Eqs. (86)] 

(89) 

for the symmetrical top. On the contrary, the realiza­
tions for the symmetrical top and the asymmetrical 
top are not canonically equivalent to the realization 
corresponding to the spherical top. In addition, let us 
stress that, since the differences between such realiza­
tions are of a strictly dynamical character, they do not 
appear in the corresponding realizations of the 
rotation group, as it is apparent from II (see also 
footnote to Table I). 

The actual construction of the variables Q5 and Q6 
for the asymmetrical top involves the solution of a 
very complicated system of partial differential equa­
tions leading, as could be expected, to elliptic 
functions. Though the system is solvable, we shall not 
quote here the results and no further detail will be 
added about this point. Of course, the physical 
meaning of the variables Qs and Qs is no longer a 
simple one: indeed, their transformation properties 
under time translations remain very simple but we 
know that in this case there is no significant angle 
varying linearly with time. 

7. NONIRREDUCIBLE REALIZATIONS; 
SYSTEM OF MASS POINTS 

Let us consider n mass points and denote with 
qi , Pi the canonical variables of the ith mass point and 
with mi its mass; then consider the product of the 
realizations corresponding to each mass point. In this 
case 

T = I Pi> 
; 

K = -Imiqi' 
i 

M = Iqi X Pi' 
t 

p2 
-E = H = I -' (i = 1, .. " n). 

i 2m; 

(90) 

As for the constant m appearing in Eqs. (22), one has 

m = I mi (i = 1, ... , n). (91) 
; 

The quantities 

P = T = Ip;, 
i 

S = I (qi - Q) X Pi' 

-~2 = W = H _ p
2 

= 1_l_(p; _ mip)2 
2m i 2m; m 

(92) 

(i = 1, ... , n) 

are the coordinates of the center-of-mass, the total 
linear momentum, the angular momentum, and the 
energy taken in the center-of-mass frame. The realiza­
tion corresponds clearly to a system of free points. 

In order to introduce an interaction, one can 
proceed in the following way: The expressions for T, 
K, and M are left unchanged, and the Hamiltonian is 
modified as 

p2 
H = -E = I _i + U(ql' Pi) (i, [,j = 1, .. " n). 

i 2mi 
(93) 

The requirement that the Poiss.on-bracket relations 
(22) shall be still satisfied leads to 

{MI , U} = {TI' U} = {KI' U} = 0 (l = x,y, z). 

(94) 

Relations (94) imply that U must depend only on the 
scalar products built up from coordinates qi - Q and 
momenta Pi - (milm)P (not all independent) in the 
center-of-mass frame or, which is the same, from 
relative coordinates qi - qj and relative velocities 
Pi!mi - Pi/mj' We remark that we could have 
modified the expression of K as well, by setting 

K = -I miq; + V(ql' Pi) (i, l,j = 1, ... ,n). 
i 

(95) 

However, with the aid of arguments parallel to those 
given in the quantum case,5 it can be shown that 
V(qi' Pi) can be put equal zero without loss of 
generality. 

Here, we shall limit ourselves to discuss in detail 
the case of two mass points. Let us introduce the 
relative coordinate ; = ql - q2 and the conjugate 

• L. L. Foldy, Phys. Rev. 122, 275 (1961); D. G. Currie, T. F. 
Jordan, and E. C. G. Sudarshan, Rev. Mod. Phys. 35, 350 (1963), 
p.367. 
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momentum 
• m2 ml P~ = f-l; = - PI - - P2' 

m m 

where f-l = m1mZ/m is the reduced mass and now, 
obviously, m = ml + m2' The angular momentum 
in the center-of-mass frame and the internal energy 
can be written as 

8 =; x Ps' 

W == -~z = 1. P: + U(I;I, IPsl, ; • pg). 
2f-l 

(96) 

(97) 

If polar coordinates r, cP, (), rather than Cartesian 
ones, are used to specify;, and the corresponding 
conjugate momenta Pr' P'I" Pe are introduced, one 
obtains 

(98) 

If we assume that we have U = U(r) , and we 
separate the center-of-mass variables, the time­
independent Hamilton-Jacobi equation can be written 
in the form 

1 [(08)2 1 (08)2 1 (08)2J 
2f-l or + ~ o() + r2 sin () ocp = w. (100) 

A complete integral .of this equation is provided by 
(see for instance Ref. 6) 

18 { 2! 
8 = rJ.'I'CP + d()' rJ.: - ~} 

80 sm2 ()' 

f.r { rJ.
2 }! + rodr' 2f-l[w - U(r')] - r~2 (101) 

(rJ.'I" rJ.8 integration constants). Then, from the rela­
tions 

(102) 
08 

Pr=-' 
or (

S", = -sin CPPs - cot () cos CPP'I" 

S" = cos CPPo - cot () sin CPP'l" 

Sz = P'I" 8 2 = P: + . 12 ()P!, 
sm one easily verifies that rJ.'I' and rJ.e are the z component 

and the absolute value of the angular momentum in 
W == -~2 = 21 (P: + ~ P: + 2 ~ 2 () p~) + U the centre-of-mass frame and that w is clearly the 

f-l r r sm energy in the same frame (internal energy). Thus 8 can 
= p~ + ~ + U. (99) be rewritten in terms of P4 , Ps, P6 as 

2f-l ~W2 .. 8(r m () P4 Ps Ps) = P m +le 
d()'[P - ---.fLJ! 

Note that the expressIOns of the components of 8 'T"" 4r 80 5 sinz ()' 
coincide with the corresponding expressions for the f.r { P )! 
intrinsic angular momentum of the linear rotator. + dr' -2f-l[Ps + U(r')] - ,~ , (103) 

We see from Eqs. (98) and (99) that none of the ro r 
invariants reduce to a constant. Consequently, we can so that there follows 
put Po == ~l = 8 2 and P6 == ~2 = - W. In order to 
construct the variables Qo and Q6 of Scheme B, we 
could apply the same procedure used in the previous 
examples, which is directly based on the Theorem 2 
of I. We do this in Appendix C for the case U == O. 
Here, instead, we want to have the opportunity of 
introducing and illustrating a different approach 
which displays general interest, since it shows the 
connections between our group-theoretic formulation 
and the classical formalism of Hamilton-Jacobi and, 
in addition, it appears directly profitable for actual 
calculations (for instance) in the case of purely 
positional central interactions. 

We observe that, in the case of the GaIiIei group, 
the variables Q(q,p) and P(q,p) of the typical form 
are essentially Hamilton-Jacobi variables in the sense 
of the analytical mechanics. Therefore, the problem of 
the construction of Scheme B is essentially reduced to 
finding a suitable solution of the time-independent 
Hamilton-Jacobi equation. Conversely, the knowledge 
of Scheme B provides the solution of the equations of 
motion. 

Evaluating the first integral, one obtains the expected 
expression for Q4, namely, 

cos CPP8 - cot () sin CPP'l' 
Q4 = arctan --. ..:...::-'------.:....::....;'-

-sm CPP8 - cot () cos CPP'I' 

S 
= arctan...J!.. 

S", 
(105) 

The second and third integrals can obviously be 
evaluated only for a definite choice of the interaction 

6 L. D. Landau and E. M. Lifshitz, Mechanics (Pergamon Press 
Inc., New York, 1960), Chap. VII, Sec. 48. 
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VCr). For instance, in the case of free particles 
VCr) == 0, one gets 

1 Pe tan () 1 rPr Q = - arctan - - arctan -
5 2S S 2S S 

1 Po tan () - rPr 
= - arctan , 

2S S rprPe tan () 
+ S 

(106) 

rPr .ur3Pr 
Q6 = 2P 6 = - r2p~ + S2 ' 

which are to be compared with the same expressions 
derived in Appendix C. In the case of the Coulomb 
potential VCr) = -glr, one gets, instead, 

1 Pe tan () 1 rPr 
Q5 = - arctan -- arctan -....:...:-

2S S 2S S _ gW 

S 

Q6 = rpr + g.u arctan g.u - 2W~s, (107) 
2Ps 2Ps[2,uPs]i rPr[2.uPs] 

where 
p2 S2 g 

-Ps == -~2 = W = -'!... + - - -. (108) 
2,u 2,ur2 r 

Let us remark that the first term in the expression of 
the variable Q5' for any interaction, coincides with 
the corresponding expression of the same variable 
in the case of the rigid rod. It is also clear that the 
above treatment contains both the bound motion case 
and the unbound one through the sign of Ps == ~2' 

In a forthcoming paper we shall discuss in detail 
the canonical realizations of the inhomogeneous 
Lorentz group. 

APPENDIX A; SOLUTIONS OF THE 
SYSTEM (34) 

The system can be written more concisely as 

0<1> 0<1> 0<1> 
€m;-- Kr - m - + - ~ = 0, 

uM; o~ oE 
0<1> 0<1> 

€ii/- Tr + m- = 0, i = x, y, z. (AI) 
oM; oK; 

This is a linear complete homogeneous system of six 
equations in ten variables, which must have four 
independent solutions. 

First of all, let us look for a particular solution 
<I> = (T, K, E), independent of M. It follows that 

0<1> 0<1> 
- T. - m - = 0 (A2) oE' o~ , 

0<1>=0 ( ) i = x,y, z. 
oK; 

(A3) 

Using the method of the characteristics already used 
in II (Appendix D), we can write 

1 oE 1 oE 1 oE 1 
(A4) --=--=-- =--

T", aT", Ty aTy Tz aTz m 

from which we get 

1 (2 2 2) "" E=-- T",+T'J/+T. +"'0. 
2m 

(AS) 

Thus, the solution we were looking for can be written 

T2 
<1>0 = 2m + E, (A6) 

which coincides with the expression (36). Then, let us 
search for three other independent solutions, which 
are functions of only M, T, and K. Direct inspection 
of (AI) suggests a need for expressions linear in M 
of the form 

<I> = a· M + o/(K, T), (A7) 

a being a constant vector. Such an expression, when 
replaced in (AI), leads to the total differential system 

which gives 

00/ 
€ijlaiKr - m - = 0, 

o~ 
00/ 

€ijlajTr + m - = 0, 
oKi 

(AS) 

'I" = 1. €ijlajT,K I + const. (A9) 
m 

Consequently, we obtain 

1 
<I> = a • M + - a • K x T, (AI0) 

m 

and finally, choosing a as the unit vector along the 
three coordinate axes, we get the expressions (35). 

APPENDIX B: CONSTRUCTION OF SCHEME 
A FOR THE REGULAR REALIZATIONS 

WITH m =0 

As stated in Sec. 3, we have also in this case h = 
4, k = 2. Let us start with choosing \PI = M z • 

Then, the results of II (Sec. 2) enable us to put .01 = 
arctan M'J/! M",. The system 

{\PI' <I>} = 0, 

{n1,<I>}=0 (B1) 

is complete and admits eight independent solutions. 
It is evident that any scalar which can be constructed 
with the generators is a solution of the system. It can 
be checked that a possible choice of the independent 
scalars is 

M2, T2, M. T, K .. T, E, r == IK x T12, 
A == K x T • M. (B2) 
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A further independent solution remains to be deter­
mined, which, obviously, cannot be a scalar. Since 
M., T., and the scalars (B2) are nine independent 
variables which have a zero Poisson bracket with 'll1' 
in order to find the remaining solution it is sufficient 
to look for a function «I> of such variables having a 
zero Poisson bracket with .01 ' We must have 

{.Q «I>} == M· T - M.T. a«l> a«l> = 0 (B3) 
l' M2_M2 ar+aM ' 

z • • 

M=IMI. 

Thus, «I> can be assumed to be a function of only M., 
T., M2, and M· T. Solving (B3) with the method of 
the characteristics, we find 

M·T 
T. - --2-M. 

«I> _ M [(M x T) x M]. 
- [M2 _ M~]! = M2[M2 _ M~]!' (B4) 

Now, we can choose 'll2 = M2 and look for a func­
tion .02 of MS, «1>, and the remaining variables, such 
that (BS) 
It holds that 

{«I> M2} = 2 M.,Ty - MyT., = 2 [M x T]. , (B6) 
, . [M 2 - M!]! [M 2 - M;]! 

while, obviously, all the scalars (B2) have zero 
Poisson brackets with M2. As a consequence of the 
Jacobi identity, the expression (B6) must be a solution 
of the system (Bl) [see I (Sec. 2)], and so it could be 
reexpressed in terms of «I> and of the variables (B2). 
It is more convenient to denote the quantity (B6) by 
2«1>' and to notice that it holds true for 

{«I>, M2} = 2«1>', 
{«I>', M2} = -2M2«1>. (B7) 

Then, .02 can be assumed to be a· function of «1>, <1>', 
M2, and (BS) becomes 

2«1>' a.Q2 _ 2M2«1> a.Q2 = 1. (BS) 
a«l> a«I>' 

A solution of the associate homogeneous equation is 
readily found to be 

Q = «1>'2 + M2«1>2. (B9) 

Then, using as independent variables «1>' and Q instead 
of <1>' and «1>, we get 

-2M(Q - «I>'2)! :~2 = 1, (BI0) 

from which it easily follows that 

.02 = - arctan --1 (<<I>' ) 
2M M<I> 

1 M[T x M]. = - arctan (Bll) 
2M M2T. - M.TM. 

At this point we have to look for six independent 
functions of the variables (B2) and of «I> which have 
zero Poisson brackets with 'll2 and .02, 

From the structure of .02 , one can readily check 
that, among the variables (B2), 

T2,M·T,K.T,E,r (Bl2) 

have the above property, while for A the following is 
true: 

{.Q A} _ _ Ar
2 

2, - 2[M2T2 _ (M . lYl' T = ITI. (B13) 

A sixth expression having zero Poisson bracket~ with 
1P2 and .02 can be obtained by 

{.Q2 , 'f(M2, T2, M. T, K· T, E, r, A)} 

a'f Ar2 a'Y = o. 
== aM2 - 2[M2T2 _ (M • T)2] aA (B14) 

A solution of this equation is 

'Y = A[M2T2 - (M. T)2]!. (BlS) 

Then, setting lPa = M· T, with the usual procedure 
we find 

.0 1 t T(X x T • M) 
a=-arcan 

T (K x T) • (M x T) 
(B16) 

We are left with IP. and .0,. It is readily seen that 
T2, K • T, and r have zero Poisson bracket with .os. 
The same is true for E, since it is obvious that it has 
zero Poisson bracket with K x T. Thus, if one sets 
IP" = E, an obvious choice for .0" is 

(BI7) 

The remaining quantities T2 and r can be directly 
assumed as the two independent canonical invariants. 

APPENDIX C: DETERMINATION OF THE 
VARIABLES Q5 AND Qa FOR THE SYSTEM 

OF TWO FREE PARTICLES ACCORDING TO 
THE CONSTRUCTIVE PROCEDURE OF 

THEOREM 2 OF I 

The Variable Qfi: We have to search for a function 
Qs = Q6(r,pr> qJ, () such that 

{Q" Q6} = {P", Q5} = 0, 
{Q5' S2} = 1, {Qu, P6} = O. (el) 

The result obtained for the rigid body suggests looking 
for an expression of the form 

1 P/I tan 0 2 
Q5 = - arctan + «I>(r, Pr' S ). (e2) 

28 8 

The first three relations (el) are then automatically 
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satisfied. The last one gives In conclusion we have 

1 1 Pr a<'P S2 a<'P 
{<'P, ~2} - - == - - - - - - - - = O. 

2/-lr2 2W2 /-l 'Or /-lr3 aPr 

1 Pe tan () I rPr 
Qs = - arctan - - arctan -

2S S 2S S 

(C3) 1 Pe tan (j - rPr (C7) = - arctan . 
2S S rprPe tan () Putting ~ == rpr, 1) == r, this becomes + S 

(e + S2) a<'P + ~1) a<'P + ! = O. (C4) 
a~ (1) 2 

A particular solution of Eq. (C4) is easily found 
by assuming <'P to be independent of 1), and the follow­
ing is obtained: 

The Variable Q6: The variable Q6 is easily deter­
mined by observing that two independent functions 
which commute with both Ps and Qs are given by 
~ = rPr and ~2 itself. Then, for a function 'Y = 
'Y(~, ~2)' we have 

(C8) 

(C5) 

and 80 

;r,. 1 rPr 
w = - - arctan - + const. 

2S S 
(C6) 

i.e., 
00/(_ p~ _~) = 2~2 00/ = 1. 
a~ /-l W 2 o~ 

Thus, we conclude that 

1 
Q6 = - rpr' 

2~2 

(C9) 

(CIO) 

TABLE I. The variables of the typical form (Scheme B) for the physical (m > 0) canonical realizations discussed in the present paper. 

I 

II 

Free mass point 

(~1 = 0, ~a = const). 

I {~~ :: ~: g~ :: ;: 
Pa==p. Q3=q. 

I 

Free particle with spin 

(~1 = s', ~. = const). 

(

Pl = p~ Ql = q~ 
Pa = P. Q. = q. 
p.=p. Q3=q. 
p. =Px Q. = X 

Rigid rod (~; == ~. + ~ ~l = const). 

Ql = q~ 
Qa = q. 
Q. = q. 

cos 'PPo - cot () sin 'PP'P Q = arctan -.,... --'-'--'----".--'-''-'-
• -SIO 'PPe - cot () cos 'PP'P 

1 pe tan () 
Q6 = 2{P&)t arctan (P&)t 

Spherical top {~~ == ~. + b ~1 = const)a. 

Ql = q. 
Q. = q. 
Q. = q. 

cos 'P 
sin 'Ppe - sin 8 ptp + cot () cos 'PP'P 

Q. = arctan . 
Sm 'P . 

cos 'Ppe + ~8 P'P - cot () SIO 'PP'P SIn 

a Note that. looking at Scheme B for the spherical top. the part corresponding to the internal motion can be considered as providing a particular class of realizations 
(viz., the "symmetricar' ones) of the sroup 0(3) ® 0(3), which is an "invariancc" dynamical symmetry group for the intrinsic motion of the system. This is no 
longer true for the symmetrical and asymmetrical top. in which the dynamical symmetry is broken. 
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II 

IV 

(

PI =p,. 
Pa =pv 

I P a = p. 

P, = p", 

M. PAURI AND G. M. PROSPERI 

TABLE I (contd.) 

. cos '" sm ",po - ~(J PrP + cot (J cos ",p", sm T 

Qe = arctan ----.,... --------• sm", . 
cos ",po + ~(J p", - cot (J sm "'PIJI sm 

Symmetrical top (lst choice, cf. Eqs. (72), (82), (84». 

Ql =qz 
Q. =qv 
Qa =q. 

. cos tp 
sm tppo - --:--(J PIJI + cot (J cos tpp", sm 

Q4=~cmn ---~~~-------­sin tp 
cos tppo + --=--(J P'" - cot (J sin tpp", sm T 

P _. 1 a I 2 cot (J 

( 

,- p + sin" (J (p", + plJl) - sin (J P"'PIJI 
1 po tan (J 

Q, = 2(P )l arctan 

II 

Is - I 
Pe = 2lIa p~ 

I 

Pa =p. 

, (P)! P"'PIJI 
I - (PI)l cos () 

. cos", 
II, 1 SIn "'Po - Sfil7j p", + cot (J cos "'PIJI 

Qe = I-I - ~ctan . 
a - PIJI sm", . 

cos ",po + --=--(J p", - cot (J SIn "'Prp sm 

System of two free mass points 

Ql = .!. 2 m,qt 
m i '" 

Qa = .!. 2 miq, m i v 

Qa = .!. 2 m.q,. 
m i 

cos tppo - cot (J sin rpp", 
Q, = arctan. (J -sm tppo - cot cos rpp", 

1 po tan (J 1 rpr 
Q5 = 2(P,)! ~ctan (P,)l - 2(P,)l arctan (P&lt 

1 
Qe = 2Pe rpr 

System of two mass points interacting through a Coulomb potential: U(r) = -glr. 

I 

p.=p. Q. = .!. 2 l1Ijq, m i Z 

cos rppo - cot (J sin rpp", 
Q, = arctan. (J -sm tppo - cot cos rpp", 

1 Po tan (J 1 1 rpr 
Q, = 2(P.)l arctan (P,)! - 2(P,)! arctan (P)l _ gW 

• (P.)! 

rp, gp, gP, - 2p,rPe 
Qe = 2Pe + (8p,P:)! arctan rp,(2P,Pe)l 
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Special Functions and the Complex Euclidean Group in 3-Space. I 

WILLARD MILLER, JR. 
University of Minnesota, Minneapolis, Minnesota 

(Received 29 September 1967) 

It is shown that the general addition theorems of Gegenbauer, relating Bessel functions and Gegenbauer 
polynomials, are special cases of identities for special functions obtained from a study of certain local 
irreducible representations of the complex Euclidean group in 3-space. Among the physically interesting 
results generalized by this analysis are the expansion for a plane wave as a sum of spherical waves and the 
addition theorem for spherical waves. This paper is one of a series attempting to derive the special func­
tions of mathematical physics and their basic properties from the representation theory of Lie symmetry 
groups. 

INTRODUCTION 

The cylindrical (Bessel) functions obey two distinct 
types of addition theorems: those of Graf and 
Gegenbauer.1 Graf's addition theorems are closely 
related to the representation theory of the Euclidean 
group in the plane and are obtained from a study of 
the solutions of the wave equation in 2-space.2- 4 On 
the other hand, the addition theorems of Gegenbauer 
are usually considered as by-products of the repre­
sentation tlieory of the Euclidean group in n-space 
and are ordinarily derived from a study of the wave 
equation in n-space. It will be shown, however, that 
the Gegenbauer theorems can be derived (and even 
extended) from a study of certain representations of 
the Euclidean group in 3-space alone. 

The results presented here are part of a continuing 
program by the author to uncover the relationship 
between Lie symmetry groups and the special func­
tions of mathematical physics.5t6 In this program, 
symmetry groups are considered as fundamental 
objects, while special functions and their properties 
are derived in a systematic fashion from the repre­
sentation theory of the symmetry groups. The special 
functions associated with a given group arise in two 
ways: as matrix elements corresponding to a repre­
sentation of the group, and as basis vectors in a model 
of such a representation. To the extent that matrix 
elements and models can be derived systematically for 
a given group, a large part of special function theory 

1 W. Magnus, F. Oberhettinger. and R. Soni. Formulas and 
Theorems for the Special Functions of Mathematical Physics 
(Springer-Verlag, New York, 1966), 3rd ed. 

• N. Y. Vilenkin, Usp. Mat. Nauk. N.S., 11, No.3, 69 (1956). 
• N. Y. Vilenkin, Special Functions and Theory of Group Rep­

resentations (Izd. Nauka., Moscow, 1965). 
4 E. P. Wigner, The Application of Group Theory to the Special 

Functions of Mathematical PhysiCS, Princeton Lecture Notes (1955) 
(unpublished). 

• W. Miller, On Lie Algebras and Some Special Functions of 
Mathematical PhYSics, American Mathematical Society Memoir, 
No. 50 (Providence, 1964). 

6 W. Miller, Lie Theory and Special Functions (Academic Press 
Inc., New York, 1968), Chaps. 5, 6. 

can be derived systematically from the theory of Lie 
groups. 

In this paper, we examine a restricted class of 
irreducible representations of the complex Euclidean 
group in 3-space and obtain identities relating Bessel 
functions and Gegenbauer polynomials. In future 
papers, we shall examine other representations of this 
group and derive identities relating Whittaker func­
tions and Jacobi polynomials. 

1. REPRESENTATIONS OF THE EUCLIDEAN 
GROUP 

We denote by ~6 the 6-dimensional complex Lie 
algebra with generators p+, p-, p3, j+, r, and p 
commutation relations as follows: 

[P,j±] = ±j±, [j+,j-] = 2j3, 

[P,p±] = [p3,j±] = ±p±, 

[j+,p+] = [j-,p-] = [P,p3] = 1.'), (Ll) 

[j+,p-] = [p+,r] = 2p3, 

[p3,p±] = [p+,p-] = 1.'). 

The elements j+, j-, l generate a subalgebra of b 6 

isomorphic to sl(2), the Lie algebra of 2 X 2 traceless 
matrices.6 The elements p+, p-, p3 generate a 3-dimen­
sional Abelian ideal in ~6' 

Denote by Ts the complex 6-parameter Lie group 
consisting of all elements {w, g}, 

w = (a, fl, y) E ¢a, g = e ~) E SL(2), 

ad - be = 1, (1.2) 

with group multiplication 

{w, g}{w', g} = {w + gw', gg'}, (1.3) 

where" +" denotes vector addition in (;3 and 

gw = (a 2a - b2fl + aby, -e2a + d2fl - edy, 

2aeoc - 2bdfl + (be + ad)y). (1.4) 

Here w is a complex 3-vector and g is a complex 
2 x 2 unimodular matrix. The identity element of 

1163 
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T6 is {O, e}, where ° = (0,0, 0) and e is the identity 
element of SL(2) , and the inverse of an element {w, g} 
is given by 

{w, g}-1 = {_g-IW, g-I}. 

The set of all elements {O, g}, g E SL(2), forms a 
subgroup of T6 which can be identified with SL(2). 
Similarly, the set of all elements {w, e}, WE ¢s, forms 
a subgroup of T6 which can be identified with ¢s. 

It is straightforward to show that '06 is the Lie 
algebra of T 6 • Indeed, the generators of '06 can be 
chosen so that 

{W, g} = exp (l1.p+ + {3p- + ypS) exp [( -bjd)j+] 

X exp (-cdj-) exp (-21n dP), (1.5) 

where {w, g} is defined by Eq. (1.2) and g is in a 
sufficiently small neighborhood of e [in the topology 
of SL(2)].6 Here "exp" is the exponential map of a 
neighborhood of 0 in '06 onto a neighborhood of 
{o, e} in T6. 7 

The complex grqup T6 is closely related to the real 
Euclidean group in 3-space6 : the set of all pairs 
(r, R),r a reaI3-vector, R a proper 3 x 3 orthogonal 
matrix, with group multiplication 

(r, R)(r', R') = (r + Rr', RR'). 

To see this we note that £6' the real, simply connected 
covering group of the Euclidean group, can be 
defined as the set of all pairs (r, A), where r = (rl' r2, rs) 
is a real column vector and A is an element of SU(2) 
(the group of 2 x 2 unitary unimodular matrices). 
The group multiplication law is 

(r, A)(r', A') = [r + R(A)r', AA'], 

where Eikl is the completely anti symmetric tensor such 
that E123 = + 1. We choose these generators so that 
they are related to the finite group elements by 

(r, A) = exp (r1Pl + r2P2 + rsps) exp 9'ds 

X exp () jl exp 9'2jS' 

where r = (rl' r2, rs) and 9'1' (), 9'2 are the Euler 
coordinates for A. The formal elements p±, pS, j±, P, 
defined in terms of the generators (1.6) by 

p± = Tb + ipl' pS = ips, 

j± = ±j2 + ih, P = i/s, 
can easily be shown to satisfy the commutation 
relations (Ll) for the complex Lie algebra '06 ' Thus, 
we have explicitly determined 86 as a real form of '06 

and '06 as a complexification of 86 , In this sense we 
can say that T6 is a complexification of the Euclidean 
group in 3-space. 

Consider a complex vector space V (possibly 
infinite-dimensional) and a representation p of '06 by 
linear operators on V.5.6 Set 

p(p±) = P±, p(p3) = ps, 

p(j±) = J±, pcP) = p. 

Then the linear operators P±, ps, J±, JS satisfy com­
mutation relations on V analogous to Eq. (Ll), where 
now [A, B] = AB - BA for operators A and B on V. 
We define two operators on V which are of special 
importance for the representation theory of '06 ' They 
are 

p . p = _P+P- _ psps, 

P . J = t(P+J- + P-J+) - psp. (1.7) 
where R(A) is a real 3 X 3 orthogonal matrix given It is easy to show that 

explicitly by [P . P, p(I1.)] = [p. J, p(I1.)] = ° 
_ (~(a2_b2+d2_b2)' ~ (d2

+b
2
-a

2
-b

2
), db+ab) 

R(A) - "21 (a'-b2-a-2+-b2), 1(-2+b-2+ 2+b2) .( -b-+ b) , "2" a a _ ' 1 -a ~ 

-(db+ab), j(-db+ab), ad-bb 

when 

A = (~h ~) E SU(2), ali + bh = 1. 

Now, £6 can be considered as a real subgroup of 
T6 • Indeed, it is easy to show that the collection of all 
elements {w, A}, where w = [t( -r2 - ir1), t(r2 - ir1), 

-ira] and A E SU(2) forms a subgroup of T6 isomor­
phic to £6' The isomorphism is given by (r, A) ~ 
{w, A}, r = (rl' r2, ra). 

The real6-dimensional Lie algebra 86 corresponding 
to £6 is generated by elements jk' h, k = 1, 2, 3, with 
commutation relations 

[h, jk] = Ejkdl' [h ,h] = EikIPI' 

[Pi' h] = 0, j, k, I = 1, 2, 3, (1.6) 

7 S. Helgason, Differential Geometry and Symmetric Spaces 
(Addison-Wesley Publ. Co., Inc., Reading, Mass., 1962), Chap. 2. 

for all 11. E '06 ' Thus, if P is an irreducible representa­
tion of '06 , we would expect p. P and p. J to be 
multiples of the identity operator on V. 

The irreducible representations of '06 which are of 
interest in special function theory have been classi­
fied. 5•6 Among these representations we single out the 
following two classes related to Gegenbauer poly­
nomials and Bessel functions: 

(1) 

There is a countable basis {f~u)} for V such that m = 
u, u - 1, ... , -u + 1, -u, and u = 0, 1, 2, .... 

(2) p,.(w), (0 ~ Re # < 1 and 2# not an integer). 

There is a countable basis {f~")} for V such that m = u, 
u - 1, u - 2, .. " and u = # + n, where n = 0, 
±1, ±2,···. 

These representations are defined for any nonzero 
complex number w. Furthermore, corresponding to 
each representation, the action of the infinitesimal 
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operators on the basis vectors /;,u) is given by 
J31'("') = ml'(u) J+/,(u) = (m - u)j(u) 

Jm 'Jm 'm m+l' 

rj;,u) = -em + U)j;'~1' (1.8) 

p31'(u) = _w __ j (U+1) + w(u + m)(u - m)j(U-1) 
Jm 2u + 1 m 2u + 1 m' 

(1.9) 

P+j(u) = _w __ j (u+ll _ w(u - m)(u - m - l)j(u-1) 
m 2u + 1 m+1 2u + 1 m+1 , 

(1.10) 

P-j(u) = ~j(U+1) + w(u + m)(u + m - l)j(u-1) 
m 2u + 1 m-l 2u + 1 m-l , 

p . p'!(u) _ _ w21'(u) P . Jrl'(u) - ° 
m - Jm , 'Jm - • 

(1.11) 

(1.12) 

[If a vector /;,u) on the right-hand side of one of the 
expressions (1.8)-(1.12) does not belong to the 
representation space, we set this vector equal to zero.] 

It is easy to verify directly that the infinitesimal 
operators given by these expressions (1.8)-(1.11) do 
satisfy the commutation relations (Ll) and define 
an irreducible representation of 176 , Furthermore, the 
vectors U;,u)}, corresponding to some fixed value of 
u, form a basis for an irreducible representation of 
the subalgebra sl(2) of 176 , Each such induced repre­
sentation of sl(2) associated with Po(w) has dimension 
2u + 1 and is denoted by D(2u). Each such induced 
representation of sl(2) associated with PI'(w) is 
infinite-dimensional and is denoted by tu. The rep­
resentations D(2u) and !u have been studied in detail 
elsewhere. 5 •6 

Our aim in this paper is to examine the relationship 
between the representations Po(w), PI'(w) and special 
function theory. In particular, we shall be interested in 
the following two aspects of this relationship: 

(1) We can look for models of the abstract repre­
sentations Po(w), piw) such that the infinitesimal 
operators p( oc), oc E 176 , are linear differential operators 
acting on a space V of analytic functions in n complex 
variables. In this case the basis vectors f~u) will be 
analytic functions and expressions (1.8)-(1.11) will 
yield differential recursion relations obeyed by these 
"special" functions. For n = 1, 2, all of the possible 
models have been constructed.6 In particular, for 
n = 1 it is known that no models exist. For n = 2, 
there is Model A: 

J3=t~ J+=-t~ 
at' oZ' 

J- = t-1 [(1 - Z2) E... - 2zt ~J' oZ at 
(1.13) 

p+ = wt, P- = w(l - Z2)t-1, p3 = wz. 
Corresponding to this model, the basis vectors /'(1).) 

are uniquely defined by relations (1.8)-(1.12) up to ;n 

arbitrary multiplicative constant and may be given by 

f;,")(z, t) = r(u - m + l)r(m + t)C::,~~(z)(2t)m. 
(1.14) 

Here r(x) is the gamma function and C~(z) is a 
Gegenbauer polynomial defined by the generating 

function (1 _ 20cz + oc2)-" = .z C~(z)ocn. 
n=O 

If the representation under consideration is Po(w), 
then m takes the integer values u, u - 1, ... , -u and 
u runs over the nonnegative integers in Eq. (1.10). 
However, if the representation is Pl'(w), then m = u, 
u - 1, u - 2, ... , and u takes all values such that 
u - f1 is an integer. Substitution of Eq. (1.13) and 
(1.14) into expressions (1.8)-(1.11) leads to some well­
known recursion relations for the Gegenbauer poly­
nomials: 

!!.. CA(Z) = 2ItC.Hl(Z) dz n n-1 , 

[(1 - Z2) ~ - 2zlt + z Jc~(Z) 
= (n + 1)(n + 2A - 1) C"-1(z) (1.8') 

2(1 - A) n+1' 

zC,,{z) = n + 1 C" (z) + (21t + n - 1) C" () 
n 2(1t + n) n+l 2(1t + n) n-1 Z , 

(1.9') 

C~(z) = It ~ n (C~+1(Z) - C~:!:~(z», (1.10') 

2(1t _ 1)(1 _ Z2)C"(Z) = -en + 2)(n + 1) C"-1(z) 
n 2(A + n) n+2 

+ (n + 2A - 1)(n + 2A - 2) C .. - 1(z) (1.11') 
20 + n) n' 

valid for nonintegral A E ¢;, n = 0, 1,2, .... 
There is another useful model of the representations 

Po(w), piw) which can be constructed in terms of 
differential operators in three complex variables. 
This model (Model B) is closely related to the separa­
tion of variables method for solution of the wave 
equation in spherical coordinates and is determined 
by the operators 

J3 = t ~ J+ = - t ~ at' oZ' 
J- = t-1 (1 - Z2) ~ - 2zt ~), 

oz at 
p 3 = w[z l + (1 - Z2) ~ - :.! ~J' 

or r oz r ot 

p+ = wt (~ - ~ E... - ~~) 
or r oz rot' 

P- = wt-1 [(1 _ Z2) ~ _ z(1 - Z2) ~ 
or r oz 

+ (Z2 + 1) t ~J. (1.15) 
r at 
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Notice that the J operators in expressions (1.13) and 
(1.15) coincide. Thus, to finish the construction of 
Model B based on operators (1.15), we look for basis 
vectors f~u) [r, Z, t] of the form 

!~u)[r, z, t] = Z(u\r)!~u)(z, t), (1.16) 
where the fllnctionsf~u)(z, t) are given by Eq. (1.14). 
A straightforward computation shows that the. basis 
vectors (1.16) and infinitesimal operators (1.15) satisfy 
relations (1.8)-(1.12) if and only if the functions 
Z(U)(r) satisfy the recursion relations 

(~ _ ~)Z(U)(r) = Z(u+l)(r), 
dr r 

(~ + U + l)z(u)(r) = Z(U-l)(r), (1.17) 
dr r 

for all values of u such that both sides of these ex­
pressions are defined. The solutions of these recursion 
relations are well known to be cylindrical functions. 1 

For simplicity we shall primarily restrict ourselves 
to the solutions 

Z(u)(r) = ,-ilu+l(r), 

where Iu+i(r) is a modified Bessel function 
00 (z/2)H2k 

Iir) =k~ k! ro. + k + 1) . 

Thus the basis vectors for Model B become 

!~u)[r, z, t] 

= (u - m)! rem + t)r-iIu+l(r)C::,~~(z)(2t)m. (1.18) 

As before, in the case of the representation Po(w), m 
takes the values u, U - 1, ... , - u and u runs over 
the nonnegative integers, while, in the case of the 
representation p/w) , m takes values u, u - 1, 
u - 2, ... , u - f-t is an integer, 0 ~ Re f-t < 1 and 
2ft is not an integer. (Note that as far as special 
function theory is concerned, the above results are 
independent of w. Hence, in the remainder of this 
paper, we shall always set w = 1.) 

(2) Each of the representations Po(l), pil) of '(;6 

induces a local representation of the Lie group T6 
defined by linear operators T(h), hE T6 , acting on 
V. 6 These operators satisfy the group property 
T(h)T(h') = T(hh') for hand h' in a sufficiently small 
neighborhood of the identity. The general theory 
relating local representations of Lie groups to repre­
sentations of Lie algebras will not be repeated here.6 

We shall limit ourselves to construction of the 
operators T(h) and computation of the matrix elements 
of these operators with respect to the basis {f~u)}. 
The results when applied to Models A and B con­
structed in (1) yield addition theorems and other 
identities relating Gegenbauer polynomials and 
cylindrical functions. 

2. COMPUTATIONAL IDENTITIES 

In this section we collect together several computa­
tional results which will be needed later to extend the 
Lie algebra representations Po(l) and pil) (w = 1) 
to local group representations of T6 • Assume that the 
operators J±, J3, P±, pa and the basis vectors f~u) 
satisfy relations (1.8)-(1.12) and that they define 
either of the irreducible representations Po(l) or 
pi!). (Formally, the results for both representations 
look the same: Thedifference lies only in the allowable 
values of u and m.) 

Lemma 1: 

C7'+l(P3)!~U) 
min (l,u-m) 

= I A(m + t; 1, u - m; k)!;,:,+l-2k), 
k=O 

where 

A()'; I, s; k) 

= s! r(2A + s + 1 - k)r(A + I - k)r(A + k) 
(s - k)! (1- k)! k! r(2A + s + 1 - 2k) 

X rCA + s + 1 - k + 1) 

X rCA +2 s - k) (A + S + 1 - 2k), 
r (A) 

if ° ~ k.~ min (1, s) 

= 0, otherwise. 
Here, A E ¢ and t, s, k are nonnegative integers. 

Proof' Straightforward induction on I, using the 
recursion relations (1.9) and (1.9'). 

Lemma 1 is a consequence merely of the abstract 
definition of the representations Po(1) and pil). 
Hence, the lemma must be valid for Models A and B. 
In Model A, pa = z and f~u) is given by Eq. (1.14). 
We immediately obtain the known result: 

Corollary 1: 

C:(z)c~(z) 
min (l,s) (S + 1 - 2k)! 

= I A(A; 1, s; k) . Cf+s-2k(Z). 
k=O s! 

For Model B, we obtain 

Corollary 2: 

c:(z! + (1 - Z2) ! _ Z(A - t»)IsH~r) C;(z) 
or r oz r Jr 

min (l,s) (s + 1 - 2k)! = I A(J.; 1, s; k) ~~-----=~ 
k=O s! 

X 
IIH-2kH(r) C" () 

Jr /+s-2k Z • 
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When s = 0, this expression simplifies to the identity 

CA(Z ~ + (1 - Z2) ~ _ ~ (A _ t»)I;.(~) 
1 or r oz r .Jr 

= IIJ~) C~(z). 

Lemma 2: Let y E ¢ and I be a nonnegative integer. 
Then 

[//2] 

C~(P3)f~") = L B(y, u + t; 1, k)f~u+I-2k), 
k=O 

where 

B(y, A; 1, k) 

_ (A + 1 - 2k)r(y + I - k)r(y - A + k)r(A) 

- (l - 2k)! k! rcy)f(y - A)r(A + 1- k + 1) 

Proof: Induction of I using (1.9) and (1.9'). 

In the remainder of this section, A is any complex 
number not an integer, such that 2.1. is not a negative 
integer. 

Corollary 3: Let y E ¢. Then 

[//2] 

C~(z) = L B(y, A; 1, k)(1 - 2k)! ct_2iz). 
k=O 

Corollary 4: Let y, .I.E ¢. Then 

c~[z ~ + (1 - Z2) ~ _ ~ (A - t)]I;.(~) 
or r oz r .Jr 

[//2] I ( ) 
= k~ B(y, A; 1, k)(l- 2k)! HJ~ r C;-2iz). 

Lemma 3: 

(p3y!~") = [ljl (u + 1 - /k + t) 
k=O 2 

f(u + t)l! j(uH-2k) 
Xu' 

f(u + 1- k + !)k!(l- 2k)! 

Proof: Relation (1.9) and induction on I. 

Corollary 5: 

(2Z)1 [1/2] (A + 1 - 2k)f(A) ;. 
l! = ~O f(A + 1 - k + l)k! CI_2k(Z). 

Corollary 6: 

[
z ~ + (1 - Z2) ~ _ ~ (A _ t)]1 I;.(~) 

or r oz r .Jr 

=[!] (A + 1- 2k)r(A)I! IHl- 2k(r) CL2k(Z), 
k=O 21f(A + 1 - k + l)k! .Jr 

Lemma 4: 

(P+Yf~u) = i (1) 
k=O k 

(_1)k(U - m)! f(u +! - k)(u + t + 1- 2k) 
X 

2f(u - m - 2k + l)f(u + 1 - k + !) 
X j(u+I-2k) 

m+l • 

Proof: Relation (1.10) and induction on I. 

Lemma 5: 

(P-)~~u) = i (1) 
k=O k 

(-ly+kf(u + m + 1) 
X _---...:x~f...o..:( u~-_k_+--,----,!,"-,)(,-u_+,----I_-_2_k_+-,----,,-,-i) 

21f(u + m - 2k + l)f(u + 1 - k + !) 
X j (uH-2k) 

m-l • 

Proof: Relation (1.11) and induction on I. 

We can use the above lemmas to compute the 
action of the operators exp (rxp3), exp (rxP+), and 
exp (rxP-) on V. [If P is a linear operator on V and 
rxk E ¢, we define exp (rxP) to be the formal sum 
L':o (rx/k!)Pk.] Although these results will be of only 
formal significance for the abstract representations 
Po(1) and pit), we will soon see that when applied 
to Models A and Bthey can be rigorously justified. 

Lemma 6: 

eaP3f~u) = !(u + k + t)(~)t-u-
k=O k! 2 

X IU+k+t(rx)f(u + t)f~U+k). 
Proof: This result follows directly from Lemma 3. 

Assuming that Lemma 6 is valid when applied to 
Model A, we find: 

Corollary 7: If rx, .I.E ¢' then 

ea. = (;ff(A)Jp + k)IHirx)C~(z). 

Corollary 8: 

e
ap3 = (;ff(A)Jo(A + k)IHk(rx)C~(P3). 

3. DETERMINATION OF THE OPERATORS 
T(h) 

The differential operators (1.13), which define 
Model A, satisfy the commutation relations of the 
Lie algebra 1>6' Hence, according to standard results 
in Lie theory,S these operators uniquely determine a 

8 H. W. Guggenheimer, Differential Geometry (McGraw-Hill 
Book Co., New York, 1963), Chap. 7. 
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local representation of Ts by operators T(h), h E Ts , 
acting on the space of analytic functions in two com­
plex variables. The computation of T(h) is straight­
forward,s.s and we merely give the results. Due to the 
group multiplication law (1.3), we can write 

T(h) = T(w,g) = T(w; e)T(O; g), 
where 

h = {w, g}, w = (oc, f3, y) E (;3, 

g = (: ~) E SL(2). 

Iff is defined and analytic in a neighborhood of some 
point (z, t) E (;2 (t ¢ 0), then we have 

[T(w; e)j](z, t) = [exp (ocpt + f3P- + yP3)f](z, t) 

= exp [oct + f3(1 - Z2)t-1 + yz] 

Furthermore, 

[exp ocJ3f](Z, t) = fez, te~), 

[exp ocJ+f](z, t) = fez - oct, t), 

x f(z, t). (3.1) 

( 
oc(1 - Z2) 

[exp ocrf](~, t) = f z + t' (3.2) 

t _ 20cz _ oc2 (1 ~ Z2»). 

Combining these results, we obtain 

[T(O; g)f](z, t) 

= [exp (-b/dJ+) exp (-cdr) exp (-2ln dJ~f](z, t) 

( 
cd(z2 - 1) 

= f z(1 + 2bc) + abt + t ' 

a2t + 2acz + c2 (Z2 ~ 1»), (3.3) 

where 

g = (: ~) , ad - be = 1. 

By construction, the T operators satisfy the group 
multiplication property 

T(hh')f = T(h)[T(h')j], (3.4) 

whenever both sides of this expression are well defined. 
In the same way, the differential operators (1.15), 

which define Model B, can be used to construct a 
local representation of Ts by operators T(h) acting on 
the space of analytic functions in three complex 
variables. As before, we write T(h) = T(w; g) = 
T(w; e)T(O; g). Standard techniques in Lie theorys 
give 

[exp ocP+f](r, z, t) 

= f(r (1 + 2;oct z (1 + 2;OCr!, t (1 + 2;OCr*), 

[exp f3P-f](r, z, t) 

( ( 
2f3(1 - Z2»)* ( 2f3(1 - Z2»)-* 

=frl+ ,zl+ , 
rt rt 

( 
2f3) ( 2f3( 1 - Z2»)_*) t+- 1+ , 
r rt 

[exp yp3f](r, z, t) 

( ( 
2 2 Z)* ( ) ( 2 2YZ)-* = f r 1 + :2 + -;- , z +; 1 + :2 + -r- , 

( 
y.2 2YZ)-*) t 1+-+- . 
r2 r 

Thus, 

[T(w, e)j](r, z, t) 
= [exp ocP+ exp f3P- exp yP~](r, z, t) 

=f[rQ, (z + y/r)Q-l, (t + 2f3/r)Q-l], (3.5) 
where 

Q = [1 + 2f3(1 - Z2) + 2OC(t + 2f3) + r: + 2YZJ*. 
rt r r r r 

(3.6) 
Here f is defined and analytic in some neighborhood 
of the point (r, z, t) E (;3. Exactly as in the computa­
tion (3.3) we find 

[T(O; g)f](r, z, t) 

= f (r, z(1 + 2bc) + abt + cd (Z2 ~ 1) , 

a2t + 2acz + c2 (Z2 ~ 1»). (3.7) 

Again, we have the group multiplication property 

T(hh')f = T(h)[T(h')j], 

whenever both sides of this expression are well 
defined as analytic functions of r, z, and t. 

4.MATRIX ELEMENTS OF Po(l) 

We will now compute the matrix elements of the 
group representation of To induced by the Lie algebra 
representation Po(l) of lJo. The restriction of this 
group representation to the real subgroup Eo of To 
is well known (it is a member of the so-called principal 
series of representations of Eo) and the restricted 
matrix elements have been computed. 9- 11 We carry 
out the computation for To here to motivate the more 
complicated work to follow in the next section and also 
to point out the increased information about special 
functions obtained by studying the complex group. 

In the remainder of this section, u and v will 
be nonnegative integers, while m and n will be inte­
gers ranging over . values from -u to u and -v 

• N. Y. Vilenkin. E. L. Akim. and A. A. Levin. Dok!. Akad. 
Nauk SSSR 112, 987 (1957). 

10 N. Y. Vilenkin. Translations of the Moscow Mathematical 
Society for the Year 1963 (American Mathematical Society, Provi­
dence. 1965), English Trans!.. pp. 209-290. 

11 W. Miller. Commun. Pure App!. Math. 17, 527 (1964). 
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to v, respectively. We define the matrix elements 
{v, n Iw,gl u, m} of the representation Po(l) by 

00 v 

T(w, g)!~) = I I {v, nl w, g lu, m}!~v), (4.1) 
v=O n=-1) 

where the operator T(w, g) and the functions !:"U) 
refer either to Model A or to Model B. It is known12 

that the functions !:..U) for both Models A and B form 
an analytic basis for the representation space in the 
sense of Ref. 6, Chap. 2. In particular, the functions 
T(w, g)!;:) can be expressed uniquely as linear com­
bination of basis functions uniformly convergent in 
suitable domains. The coefficients in this expansion 
are bounded linear functionals of the argument 
T(w, g)!:"u) (in the topology of uniform conver­
gence on compact sets). Since these conditions are 
satisfied, it can be shown that the matrix elements 
{v, nl w, g lu, m} are model-independent: They are 
determined uniquely by the infinitesimal operators 
(1.8)-(1.11) and are the same for every model of Po(1) 
for which the functions I;:) form an analytic basis.6 

Thus the matrix elements can be computed directly 
from expressions (1.8)-(1.11) and they will be valid 
for both Models A and B. 

Furthermore, the group property 

T(w, g)T(w', g') = T(w + gw', gg') 

leads immediately to the addition theorem 
00 v' 

I I {v, nl w, g Iv', n'}{v', n'l w', g' lu, m} 
v'=O n'=-v' 

= {v, nl w + gw', gg' lu, m} (4.2) 

for the matrix elements.6 

Matrix elements of the form {v, nl 0, g lu, m} are 
determined completely by the J operators (1.8) and 
depend only on the representation theory of SL(2). 
In fact, for fixed u, the functions !:..u) form a basis for 
the (2u + I)-dimensional irreducible representation of 
sl(2). The matrix elements of these irreducible repre­
sentations are well-known. 6 We quote the results: 

{v, nl 0, g lu, m} 
du-nau+mbn-m(u - m)! 

(u - n)! 

X F(n - u, -m - u; n - m + 1; bc/ad)!5 
r(n - m + 1) v,u 

du-mau+ncm-n(u + m)! 
= 

(u + n)! 

x F(m - u, -n - u; m - n + 1; bc/ad) !5 
r(m-n+l) V,U' 

(4.3) 

12 F. W. Schllfke, Einfiihrung in die Theorie der Speziellen Funk­
tionen der Mathematischen Physik (Springer-Verlag, Berlin, 1963), 
Chap. 8. 

where 

g = (: !) E SL(2), ad - bc = 1. 

These expressions make sense even when the gamma 
function in the denominator has a singularity, since 

lim F---->-(a-',_b-';_c-';_x-".) 
c-+-n r(c) 

= a(a + 1) ... (a + n)b(b + 1) ... (b + n) 

(n + I)! 
X xn+1F(a + n + 1, b + n + 1; n + 2; x), 

n = 0, 1,2, .. '. (4.4) 

The hypergeometric functions in Eq. (4.3) are 
Jacobi polynomials. 

It follows immediately that the identity 
u 

T(O; g)!;"u) = I {u, nl 0, g lu, m}!~u) (4.5) 
n=-u 

must be valid for both Models A and B. Substituting 
expressions (1.14) and (3.3) for Model A into (4.5) 
and simplifying, we easily obtain the identity 

k! r(u - k + t)(X2)kC~_k+! 
(2u - k)! 2 

X [Z2 - Z - 1 + (2z - 1)/x + l/x2
] 

X (1 + 2xz + X
2
(Z2 - lW-k 

= I r(u - 1 +!) -2u I! (X)l 
l=o(2u - 1)! 2 

x F( -k, -2u + 1; 1 - k + 1; 1 - x) CU - 1+! 
r(l - k + 1) I (z). 

(4.6) 

When k = 0, this identity reduces to a simple gener­
ating function 

[1 + 2xz + X2(Z2 - 1)]U 

= I~ (2n (U ~ tTl G)!q-!+!(Z) 
for the basis vectors (1.14). Model B gives no new 
results. 

Combining Lemma I and Corollary 8 we find 

T(O, 0, y; e)!;"u) = exp (yp3)!~) 

= (~)m+!r(m + t) f (m + 1 + !) 
y 1=0 

x I m+I+!(y)C'('+!(P3)f;"U) 

= (~)m+! rem + t) f !;,.U+;) 
y j=-oo 

00 

x IA(m + t;j + 2k, u - m; k) 
k=O 

X (m + j + 2k + t Im+i+2k+!(Y)' 
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Therefore, 

{v, nl 0, 0, y; e lu, m} 
= <5n•m(2/y)m+1r(m + t) 

co 
X !A(m + !; v - u + 2k, u - m; k) 

k=O 
X (m + v - u + 2k + !)Im+,,-u+2k+f{y). (4.7) 

[Due to the properties of the symbol A( ), defined 
by Lemma 1, this sum is actually finite.] When 
m = u, we have the special case 

{v, nl 0, 0, y; e lu, u} 

=<5 (2/ )u+1r(U+t)(v+t)I () if v~u; 
n.u Y (v _ u)! ,,+1 Y , 

= 0, if v < u, (4.8) 

which also follows directly from Lemma 6. 
The matrix element 

{u, ml oc, {J, y; e 10, O} 

can be computed by making use of the identity 

{u, ml ab~, -cd~, (1 + 2bc)~; e 10, o} 

= {u, ml 0; g lu, O}{u, 01 0, 0, ~; e 10, O}, (4.9) 

where g E SL(2). This identity is a special case of the 
addition theorem (4.2). In terms of new variables 
oc = ab~, {J = -cd~, y = (1 + 2bc)~, and p2 = 
y2 + 4oc{J, the matrix elements on the right-hand side 
of Eq. (4.9) are given by 

{u, ml 0; g lu, o} 

= r(lml + !)u! (~)lmloc<lml+m)/2( _(J)<lml-m)/2 
fo(u + 1m!)! p 

X C~~\;;.t(y/p), 

{u, 01 0, o,~; e 10, O} = (2/p)1 r(;) (u + !)Iu+1(~). 
u. 

(4.10) 
Therefore, 

{u, ml oc, {J, y; e 10, o} 
= (2/ p)1(4/ p)lmloc<lml+m)/2( _(J)<t ml-m)/2 

X r(lml + t)(u + t) ct~I+1(y/p)I 1(p). (4.11) 
(u + Iml)! u Iml u+~ 

There is an ambiguity in the signs of expressions (4.10) 
since p = ± [y2 + 4oc{J]1. However, a close inspection 
of (4.11) reveals that the final matrix element is a 
function of p2 so the. ambiguity in sign causes no 
harm. Furthermore, the matrix element is an entire 
function of oc, {J, and y. 

Applying the identity 
co u 

T(oc, (J, y; e)!~O) =! ! {u, m loc, (J, y; el 0, o}!;"") 
u=o m=-u 

to Model A, we obtain 

exp [oct + {J(1 - Z2)/t + yz] 

= (2.)1! i (8toc/p)m(u + t)(u _ m)! r2(m + t) 
Trp u=O m=O (u + m)! 

X Iu+1(P)C;:"::,!(y/p)C;:"::,!(z) 

+ e;)lJo l/2{J/tp)m(u + !) 

x I~+I(P)C;:"::,!(y/p)C;~,;;l(z). (4.12) 

This formula is the complex generalization of the 
well-known formula 

e
ip

.
r 

= (::3r~k~tJI+1(pr)Y~«()r' 97r)Y~«()1>' 971» 

for the expansion of plane waves into spherical waves. 
Since the left-hand side of Eq. (4.12) is an entire 
function of the variables oct, {J/t, y, and z, it follows 
from standard expansion theorems for Gegenbauer 
polynomials12 that the right-hand side must converge 
for all values of these variables. Furthermore, the 
expansion coefficients {u, m loc, {J, y; el 0, .O} on the 
right-hand side must be entire functions of oc, {J, 
and y. 

At this point, we can fill a gap in our derivation of 
Eq. (4.11). This derivation was valid only for p =F- O. 
However, using Model A, we have .seen that the 
required matrix element is an entire function of oc, {J, 
and y. Thus to compute {u, m loc, {J, y; elO, O} for 
y2 + 4oc{J = ° we need only find the value of Eq. 
(4.11) as p --+- o. The result is 

{u, ml oc, {J, y; e 10, o} 
(2oc)myu-m 

= , if m ~ 0, p = 0, 
(u + m)!(u - m)! 

( _2{J)-myu+m 
= , if m:S: 0, p = o. 

(u - m)!(u + m)! 
(4.13) 

We are now in a position to calculate the general 
matrix element {v, n loc, {J, y; el u, m}. Using Model 
A, we find 

T(oc, (J, y; e)!;"u) 

= (u - m)! rem + !)(2t)m 

X exp [oct + (1 - Z2){J/t + yz]C;:"::,!(z) 
co r 

= (u - m)! rem + t)! ! {r, kl oc, {J, y; e 10, O} 
r=Ok=-1' 

X c;:..::,!(z)C~~t(z)(2tr+k(r - k)! r(k + t). 
From the connection between Gegenbauer poly­
nomials and the representation theory of SL(2), it 
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follows that 

(u - m)! (r - k)! rem + t)r(k + t)c::,.::!(z)C~~~(z) 
= [7T(U - m)! (r - k)! (u + m)! (r + k)!]! 

2min (u.r)[(u + r - s - m - k)']! 
x rem + k + !) ~ . 

8=0 (u+r-s+m+k)! 

x qu, 0; r, 0 I u + r - s,O) 
X qu, m; r, k I u + r - s, m + k)C::':r~~m_k(Z), 

(4.14) 
where the q. ; .,.) are ordinary Clebsch-Gordan 
coefficients.6•13 

Thus, 
<J) " 

T(ex, p, y; e)f~u) = ~ ~ {v, nl ex, p, y; e lu, m}f~"), 
v=O n=-'V 

where 
{v, nl ex, p, y, e lu, m} 

= ~ [7T(U - m)! (u + m)! (v - u + s + n - m)! 
8 (v - n)!(v + n)! 

! 
X (v - u + s + m - n)!] 

X qu, 0; v - u + s, 0 I v, 0) 

X qu, m; v - u + s, n - m I v, n) 

X {v - u + s, n - ml ex, p, y; e 10, O}, (4.15) 
and s ranges over the finite set of nonnegative integer 
values for which the summand is defined. 

Now that all of the matrix elements of the represen­
tation Po(t) have been computed, it is a simple task 
to substitute these expressions into the addition 
theorem (4.2) and obtain identities for special func­
tions. This will be left to the reader. 

5. MATRIX ELEMENTS OF p,,(1) 

The task of computing the .matrix elements of the 
representation p,,(l) is analogous to that for Po(l) but 
somewhat more complicated. In this section, u and v 
will be arbitrary complex numbers such that 2u and 
2v are not integers and such that u - v is an integer. 
The variables m, n will take values m = u, u - 1, 
u - 2, ... ; n = v, v-I, v - 2, .. '. 

As in Sec. 4, we define the matrix elements 
{v, n Iw; gl u, m} of pi1) by 

T(w; g)f~u) = ~ ~ {v, nl w; g lu, m}f~v), (5.1) 
v n 

where the operator T(w; g) and the basis functions 
f;:) refer either to Model A or Model B. Again, it 
follows that the functions {f~u)} for both Models A 
and B form an analytic basis for the representation 
space.12 Thus the matrix elements are well defined and 
are uniquely determined by the infinitesimal operators 
(1.8)-(1.11). 

13 G. Y. Lyubarskii. The Application of Group Theory to Physics 
(Pergamon Press. Inc., Oxford, 1960). English Trans\.. Chap. 10. 

Under the action of J+, J-,]3, the vectors {f~u)} for 
fixed U, m = u, u - 1, u - 2, ... , form a basis for 
an irreducible representation of sl(2). This repre­
sentation, denoted by t u, was studied in Ref. 6, Chap. 
5, and the matrix elements were computed to be 

{v, nl 0, g lu, m} 

= d,,-nau+mbn-m(u - m)! 

(u - n)! 

F(n - u - m - U' n - m + l' bc/ad) x ' , '~ 
r(n - m + 1) v,u 

= du-mau+ncm-nr(u + m + 1) 

r(u + n + 1) 

x Fern - u, -n - u; m - n + 1; bc/ad) ~ 
r(m-n+l) ",'" 

(5.2) 
where 

g = (: ~) E SL(2), ad - bc = 1. 

These matrix elements define a local representation of 
SL(2): they are well defined and satisfy the group 
representation property only in a sufficiently small 
neighborhood of e. Note, for example, in Eq. (5.2) 
that (e2~ia)u+m :;!:. e2~i(u+m)au+m. A precise definition 
of this representation is worked out in Ref. 6 and will 
not be repeated here. 

The identity 

T(O, g)ft,::) = ~ {u, nl 0, g lu, m}f~u) 
n$;u 

is valid for both Models A and B when g is in a 
sufficiently small neighborhood of e. Substituting 
expressions (1.14) and (3.3) for Model A into this 
identity and simplifying, we obtain 

k! r(u - k + t)(X2)k 
r(2u - k + 1) 2 

X C~-k+![Z2 - Z - 1 + (2z - l)/x + 1/x2] 

X (1 + 2xz + X 2(Z2 - l»,,-k 

_I,!r(U-'+t)(X)1 
1=0 r(2u - I + 1) 2 

X F( - k, - 2u + I; I - k + 1; 1 - x) C-l+! 
r(1 - k + 1) I (z), 

12xz + X
2
(Z2 - 1)1 < 1. (5.3) 

The computation of the matrix element 

{v, n 10, 0, y; el u, m} 

is carried out exactly as for the corresponding element 
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(4.7) of Po(1): 

{ V "10 0 y' e lu m} = (i r'U(y) = (i (2/y)m+l (u - m)! (v + t) 
, ",' n,m m n,m rem + !)r(v + m + 1) 

x i (m + v - u + 2k + t)r(v + m + k + 1)r(v - u + m + k + t) 
k=O (u - m - k)! (v - u + k)! k! rev + k + i) 

x rem + k + t)r(u - k + t)lm+t>-u+2k+l(y). (5.4) 

The difference is solely the domain of definition of 
U, v, m, and n. Note that the sum in Eq. (S.4) contains 
only a finite number of nonzero terms and that the 
matrix element is an entire function of y. 

The functions I:;;U(y) form a natural generalization 
of the ordinary modified Bessel function.1o In fact, 
if m = u, we have 

1~t(y) = (2/yt+1 r(u (: ~~)~ !) 111+1(1'), 

if v - u ~ 0, 

= 0, if v - u < 0. (5.5) 

The addition theorem 

{v, ml 0, 0, y + 1"; e lu, m} 
00 

= ~ {v, ml 0, 0, y; e lu + k, m} 
k=-oo 

x {u + k,mIO,O,y';elu,m} 
implies the identity 

00 

1':;.U(y + 1") = ~ 1':;.u+k(y)1::,+k,U(y'). (5.6) 
k=-oo 

Moreover, the identity 
00 

T(O,O,y;e)f~)= ~ {u+k;mIO,O,y;elu,m}f~+k) 
k=-oo 

applied to Model A yields 

I! erzc~+l(z) = !k! 1;::+k,m+l(y)c~+1(z). (5.7) 
k=O 

The right-hand side of this expression converges for 
all 1', Z E ¢. 

Using standard techniques from special function 
theory, we can apply relations (1.8')-(1.10') to the 
generating function (5.7) and derive recursion relations 
for the generalized Bessel functions. Among the results 
which can be obtained in this way are 

(k + 1) 1;::+k+l,m+l(y) 
I' 
= 1 1m+k,m+l( ) _ (k + l)(k + 2) 

2m + 2k + 1 m I' 2m + 2k + 5 

X 1;::+k+2,m+l(y) + 1. 1;::t~l,m+!(y), 
y 

!i.. 1;::+k,mH(y) = 1 1m+k,m+!+l(y) 
dy 2m + 21 + 1 m 

+ 1(2m + I) 1m+k,m+!-1() 
2m + 21 + 1 m I' 

= 1 I;::+k-l,m+l(y) 
2m + 2k - 1 

+ (k + 1)(2m + k + 1) Im+k+l,mH( ) 
2m + 2k + 3 mY, 

k, 1 = 0, 1,2, .... 

Rather than compute directly an expression for 
the .general matrix element {v, nl ex, p, y; e lu, m} of 
PIl(I), we will derive this result indirectly by deter­
mining a relation between the matrix elements of two 
different representations pit) and p/l,(I). Denote the 
matrix elements of p/l,(I) by {v', n'l ex, p, y; e lU', m'}' 
to distinguish them from those of p

ll
(1). (Our results 

will be valid even if ,/ = 0 or ft = 0.) 
Using Model A and Corollary 3, we find 

f~u)(z, t) 

= (2t)m-m' (u - m)! 
rem - m') 

X [(U-r /2 ] (u + m' - m - 2k + t) 
k=O k! (u - m - 2k)! 

r(u - k + !)r(m - m' + k)j(m'+u-m-2k )( ) x m' z, t 
rem' - m + u - k + !) 

= (2t)m-m' ~ D(u, m, m', k)f~"!'+u-m-2k)(z, t), 
k 

where the basis functions f;;')(z, t) are given by Eq. 
(1.14). Applying the operator 

T(ex, /3,1'; e) = exp [ext + /3(l - z2)ft + yz] 

to both sides of this equation and using Eq. (5.1) to 
expand each side in terms of its corresponding basis 
functions, we obtain the identity 

~ {v, nl ex, /3, y; e lu, m}f~v)(z, t) = (2t)m-m' 
V,n 

x ~ {v', n'l ex, p, 1'; elm' + u - m - 2k, m'}' 
kJv',n' 

x D(u, m, m', k)f~Y')(z, t). 

Finally, using Corollary 3, again, to express the 



                                                                                                                                    

COMPLEX EUCLIDEAN GROUP IN 3-SPACE. I 1173 

functionsf~~')(z, t) as linear combinations of functions cients of f~v)(z, t) on both sides of the identity, we 
f~v)(z, t), (n = m - m' + n'), and equating coeffi- derive the equality 

(u - m)! (v + i) 
{ V n I 0( R y' e I u m} - --~--'......!...:..~-'----'''"----

, ,1-", , - rem - m')r(m' - m)(v - n)! 

X [(U1)/2]~ (m' + u - m - 2k + D(v - n + 2s)! r(u - k + t) 
k=O s k! s! Cu - m - 2k)! rem' + u - m - k + 1-) 

rem - m' + k)rCm' + v - m + s + !)r(m' - m + s) X ~------~~~~------~~~~----~~ 
rev + s + 1-) 

X {m' + v - m + 2s, m' + n - ml 0(, p, y; elm' + u - m - 2k, m'}'. (5.8) 

Here s ranges over all nonnegative integral values such that the summand is well defined. 
Formula (5.8) can be employed to evaluate the matrix elements of PIl(I). For example, set m = u, 

m' = 0, and use expression (4.11) for the primed elements on the right-hand side of Eq. (5.8). The 
result is 

. _ (1..)1 (i),n-U' Cv + 1W(u + 1) 
{v,nIO(,p,y,elu,u}- ()r( ) 

p7T P V - m -u 

X rein - ul + !)O(Cl n-u l+u-n)/2( _p)Cl n-u l+u-n)/2 

X L (v - u + 2s + t)(v - n + 2s)! rev - u + s + t)r( -u + s) 
s s! rev + s + ~)( I n - u I + v - u + 2s)! 

X C!~~~\~!UI+2sCy/p)Iv-u+2s+1(p), p2 = y2 + 40(p. (5.9) 

For the case 0( = (J = 0, n = m = u, Eqs. (5.8) and 
(5.5) yield 

(y/2Y-).I;.(y) 

_ ~ r(v + s)r(v - A + s)(v + 2s) I () 
- ~ V+28 Y , 

8=0 s! r(v - A)r(A + s + 1) 
A, vE ¢. 

(5.10) 

In addition to the general result (5.8), we list two 
special classes of matrix elements whose forms follow 
immediately from Lemmas 4 and 5: 

{v, nl 0(, 0, 0; e lu, m} 

= «(J./2)n-m (u - m)! 

(v - n)! (u - m: n - V)! 

(-lyu-m+n-v)/2rC + m -; + v + U)(V + t) 
X , 

(V + n ~ u - m)! r(-m + u ~ n + v + 3) 
if n - m - Iv - ul is a nonnegative even integer, 

=0, otherwise. (5.11) 

{v, nl 0, {J, 0; e lu, m} 

(
p)m-n (_1)(m-n-u+v)/2 

= 2 (m - n : u - V)! (m - n ~ u + V)! 

r(u + m + 1We - m + 2u + v + l)(V + t) 
X ----------~------------~------

rev + n + l)r(U + m - ; + v + 3) 
if m - n - lu - vi is a nonnegative even integer, 

= 0, otherwise. (5.12) 

By construction, the matrix elements of pil) satisfy 
the addition theorem: 

{v, nl w + gw'; gg' lu, m} 
00 00 

= L L {v, nl w, g lu + k, u + k - I} 
k=-oo 1=0 

X {u + k, u + k - II w', g' lu, m}, (5.13) 

for all w, w' E ¢3 and for g, g' in a sufficiently small 
neighborhood of e E SL(2). (In any given example the 
restriction on g and g' can usually be determined by 
inspection.) We will list a few special cases of this 
theorem. 
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Whenm = u,g = g' = e, W = (IX, (J, y), and w' = 
(IX', 0, 0), relation (5.13) simplifies to 

{v, nllX + IX', {J, y; e lu, u} 

00 (1X')k r(u + i) 
-k~ 2" k!r(u+k+i) 

X {v, nllX, {J, y; e lu + k, u + k}, (5.14) 
where the matrix elements on both sides of this ex­
pression are defined by Eq. (5.9). 

The relation 

{v, nl abp, -cdp, (1 + 2bc)p; e lu, m} 

= 1 {v, nl 0, g lv, sHv, sl 0, 0, p; e lu, s} 
8 

leads to the identity 

{v, nllX, {J, y; e lu, m} 

X {u, sl 0, g-llu, m} 

=! (1 + Y/P)2u+v-n-k(1 - y/p)m-u+k(IX/Pt_m 
k=O 2 2 

X ::...r(.::.:.;u_+.:-.:..:.m~+...:..-I.<...::)(,-v _-_u---,-+_k...o-)! 
r(2u - k + 1)(v - n)! 

F(n - v, -u - v + k; n - u + k; Y - P) 
X ~----------------------~y-+~p 

r(n - u + k + 1) 

F(m - u, -2u + k; m - u + k + 1; Y - P) 
X ~------------------------~y-+~p 

rem - u + k + 1) 

X I~~ip), (5.15) 

valid for 11 - z/ pi < 2. Here, p = z[1 + 4xy/Z2]!, 
In case y = 0, the identity becomes 

{v, nllX, {J, 0; e lu, m} 
00 

= 1 Ci)u+1!(IX/{J)(n-m)/2r(u + m + 1)(v - u + k)! 
k=O 

F(m - u, -2u + k; m - u + k + 1; -1) 
X X F(n - v, -u - v + k; n - u + k; -1) 

r(2u - k + l)(v - n)! rem - u + k + 1) 
X r(n - u + k + 1) 

X I~~k(2-J IX{J), if v + n - u - m is even, 

= ° otherwise. 
Finally, we note the result 

{v, nl gy; g lu, m} 
= {v, nl 0, g lv, mHv, ml y, e lu, m} 

= 1 {v, nl gy; e lu, sHu, sl 0; g lu, m}, 
• 

where 
y = (0,0, y), gy = [aby, -cdy, (I + 2bc)y], 

g = (; !), p = z(1 + 4xY/Z2)!. 

If u ~ nand u = m, this implies 

r(u + v + 1)r(u + i)(v + i) 
rev + n + 1)(V - u)! (u - n)! 

X e ~ P)v-u( - y)u-n (;)"+! 
X F(U - v, -n - v;u - n + l;z - P)Iv+l(P) 

z+p 
00 

= 1 {v, nllX, {J, y; e'lu, u - k} 
k=O 

X (Z + p)U-n-k (-yt r(2u + 1) . 

2 k! r(2u - k + 1) 

There is a similar result for n ~ u. 

6. APPLICATIONS TO MODEL B 

Now that we have succeeded in computing matrix 
elements ofthe representations Po(l) and pi!) we can 
apply our results to any model of these representations 
and obtain identities for special functions. As an 
illustration, consider Model B. 

According to the work of Sec. I, the basis vectors for 
Model B take the form 

f~u)[r, z, t] = Z(u)(r)(u - m)! rem + i)C::~!(z)(2t)m, 
where the Z(u)(r) satisfy recursion relations (1.17). 
Both the functions 

Z(U)(r) = ,-lIu+!(r) and Z(u)(r) = ,-lLu_!(r) 

(6.1) 

separately satisfy Eq. (1.17). Similarly, any linear 
combination of these functions satisfies Eq. (1.17). 
For purposes of illustration, we will use only the first 
of solutions (6.1). Recall that corresponding to the 
representation Po(l): U = 0,1,2, ... ; m = U, u-
1,' . " -u; while corresponding to PIl(1): u = p, + 
k; k = 0, ±1, ±2,'" ; m = u, u - 1, u - 2,'" ; ° ~ Re p, < 1 and 2p, is not an integer. 

Since the functions f~u)[r, z, t] form an analytic 
basis for the representation space, we have immedi­
ately 

[T(w; g)f~)][r, z, t] = 1 {v, nl w; g lu, m}f~v)[r, z, t], 
v,n 

(6.2) 

where the operators T(w; g) are given by Eqs. (3.5)­
(3.7) and the matrix elements {v, nl w; g lu, m} are 
those computed in Sees. 4 and 5. The operators 
T(O, g) yield no information which could not have 
been obtained from Model A. Therefore, we restrict 
ourselves to operators T(w, e). In this case, Eq. (6.2) 
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yields 

(u - m)! rem + t)Iu+i(rQ) 
x C:'~,!«z + y/r)Q-l)Q-m-i[2(t + 2fJ/r)]m 

= ! {v, nl w; e lu, m}(v - n)! r(n + t) 
v,n 

X Iv+i(r)C~:::!(z)(2tt, (6.3) 
where 

Q [1 2fJ(1 - z? 20c ( 2fJ) yZ 2yzJi = + +- t+- +-+- . 
rt r r rZ r 

When applied to the representation Po(1), Eq. (6.3) 
constitutes a generalization of the so-called addition 
theorem for spherical waves.14 We will list a few 
special cases of Eq. (6.3), treating the representations 
Po(l) and PI'(l) simultaneously. 

If oc = fJ = 0, Eq. (6.3) yields 

(u - m)! Iu+i(rR)C;:~,![(z + y/r)R-1]R-m-i 

= i (u + k - m)! I~+k'U(y)Iu+k+i(r)C::~'!+k(z), 
k=m-u 

(6.4) 
where 

R = (1 + 2yz/r + yZ/rz)i, 12yz/r + y2/r21 < 1. 

When m = u) this expression simplifies to the well­
known addition theorem of Gegenbauer: 

I u+i(rR)(2R)-u-i 

= r(u + t) i (u + k + t)I u+k+i(y)I u+k+i(r)C~+i(z). 
k=O 

14 B. Friedman and J. Russek, Quart. AppI. Math. 12, 13 (1954). 
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There is an interesting special form of Eq. (6.4), 
obtained by setting z = 1: 

(1 + y/r)-m-!Iu+i(r + y) 

_ ~ r(u + m + k + 1) Iu+k,U( )1 ( ) - .c.. m Y u+k+i r , 
k=m-u r(u + m + 1) 

Iy/rl < 1-
When m =u, the above identity simplifies to 

(1 + y/r)-u-i1u+i (' + y) 

= (2/ )u+i r(u + t) 
y r(2u + 1) 

~ r(2u + k + l)(u + k + t) I ( )1 ( ) 
x k-=O k! u+k+! Y u+k+i r . 

If fJ = y = 0, Eqs. (6.3) and (5.11) give 

I u+!(rS)C;:~,!(zS-l)s-m-i 
[(u-m)/Zj (oct)k( -lYr(u - j + t)(u + k - 2j + t) 

=k~O ~o (u-m-2j)!j!(k-j)!r(u+k-j+!) 

(u - m - 2j)! r( m + k + t) I ( ) 
x rem + t) u+k-zHi r 

Cm+k+! ( ) X u-m-Zi Z , (6.5) 

where 
S = (l + 2oct/r)!, 12oct/rl < 1. 

When m = u, Eq. (6.5) reduces to 

i -u-i 00 I1.
k 

Iu+![r(l + 211./r) ](1 + 211./r) = I - Iu+k+i(r), 
k=O k! 

12oc/rl < 1. 
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This paper is the second in a series analyzing the 
special function theory related to Te, the complex 
Euclidean group in 3-space. In the first paperl (which 
we shall refer to as I), it was shown that an important 
class of identities relating Bessel functions and 
Gegenbauer polynomials had a simple interpretation 
in terms of certain local irreducible representations 
of Te. In the present paper, which generalizes the 
results of I, a similar interpretation will be given for 
identities relating Whittaker functions and Jacobi 
polynomials. 

Most of the identities for special functions derived 
in this paper are well known. We will be more 
interested in systematically deriving and uncovering 
the group-theoretic meaning of known identities than 
in the derivation of new identities. 

Just as in I, the special functions obtained in this 
paper will arise in two ways: as matrix elements 
corresponding to local representations of Te and as 
basis vectors in a model of such a representation. 
Once the matrix elements of an abstract representation 
have been computed, they remain valid for any model 
of the representation. Only two models will be 
considered here, but the results of this paper can easily 
be extended to any other model which occurs in 
modern physical theories. 

Finally, the reader will note that the algebraic and 
group-theoretic aspects of special function theory are 
emphasized at the expense of the analytic aspects. In 
particular, the order of summation of an infinite series 
will often be changed without explicit justification, 
and the convergence of the infinite series will not be 
verified. Such justification exists, however, and can be 
found in Ref. 2. 

1. REPRESENTATIONS OF b6 

Just as in I, we study irreducible representations of 
the 6-dimensional complex Lie algebra be. This Lie 
algebra is defined by the commutation relations 

[j3,j±] = ±j±, [j+,r] = 2l, 

[j3,p±] = [p3,j±] = ±p±, 

[j+,p+] = [j-,p-] = [j3,p3] = C), (Ll) 

[r,p-J = [p+,j-] = 2p3, 

[p3,p±] = [p+,p-] = C). 

Here, the elements j+, r, l generate a subalgebra of 
be isomorphic to s/(2), while p+, p-, p3 generate a 3-
dimensional Abelian ideal of be. 

1 W. Miller, J. Math. Phys. 9, 1163 (1968) (preceding paper). 
• F. W. Schllfke, Einfiihrung in die Theorie der Spezie/len Funk­

tionen der Mathematischen Physik (Springer-Verlag, Berlin, 1963), 
Chap. 8. 

The 6-parameter Lie group Te consists of elements 
{w,g}, 

w = (oc, fl, y) E ¢3, 

g = (: ~) E SL(2), ad - be = I, 

with group multiplication 

{w,g}{w',g'} = {w + gw',gg'}, (1.2) 
where 

gw = (a2oc - b2fl + aby, -e2oc + d2fl - edy, 

2aeoc - 2bdfl + (be + ad)'y). (1.3) 

The identity element of Te is {O, e}, where ° = (0,0,0) 
and e is the 2 X 2 identity matrix. As mentioned in I, 
be is the Lie algebra of T6 and a neighborhood of 
19 in b 6 can be mapped diffeomorphically onto a 
neighborhood of {O, e} in Te by means of the relation 

{w, g} = exp (ocp+ + flp- + yp3) exp (-bJdj+) 

X exp (-edj-) exp (-2Indl). (1.4) 

Here "exp" is the exponential map from be to T6 • 

Let V be a complex abstract vector space and p a 
representation of be by linear operators on V. Set 

p(p±) =.P±, p(PS) = p3, 

p(j±) = J±, pcP) = J3. 

The linear operators P±, pa, J±, J3 satisfy commuta­
tion relations analogous to Eqs. (Ll), where [A, B] = 
AB - BA for linear operators A and B on V. The 
operators 

P • P = _p+p- _ paps, 

p . J = -!(P+J- + P-J+) - paJ3 

on V are of special interest, since they have the 
property 

[Po P, p(oc)] = [po J, p(oc)] = 0 

for all oc E be. These two operators turn out to be 
multiples of the identity operator whenever p is one 
of the irreducible representations of be to be studied 
in this paper. 

Let W =;f: 0 and q be complex numbers. Among the 
known irreducible representations of b 6,s.4 we shall 
examine the following: 

(1) is(w,q) 

There is a countable basis U},:')} for V such that 
m = u, u - 1, u - 2,'" ; u = -q, -q + 1, -q + 
2, ... ; and 2q is not an integer. 

3 W. Miller, On Lie Algebras and Some Special Functions of 
Mathematical Physics, American Mathematical Society Memoir, 
No. 5Q (Providence, 1964). 

• W. Miller, Lie Theory and Special Functions (Academic Press 
Inc., New York, 1968), Chaps. 5,6. 
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(2) 1,(w, q) 
There is a countable basis {f~u)} for V such that 

m = u, u - 1, ... , -u + 1, -u; u = -q, -q + 
1, ... ; and -2q is a nonnegative integer. 

(3) R3(w, q, uo) 

Here q and Uo are complex numbers such that 
o ~ Re Uo < 1, and none of Uo ± q or 2uo is an 
integer. There is a countable basis {f~u)} for V such 
that m = u, u - 1, u - 2, ... , and u = Uo, Uo ± 1, 
Uo ± 2,···. 

Corresponding to each of the above representa­
tions, the action of the infinitesimal operators on the 
basis vectors f~u) is given by 

J3f~u) = mf~u), J+f~u) = (m - U)f~~1' 

JJ~u) = -em + u)f~u:.1' (1.5) 

p3f~u) = w(u - q + 1) f~u+1) + mwq f~u) 
(2u + 1)(u + 1) u(u + 1) 

_ w(u + q)(u + m)(u - m) j(U-1) (1.6) 
u(2u + 1) m' 

p+l'(u) _ w(u - q + 1) j(U+1) _ (u - m)wq j(u) 
Jm - (2u + 1)(u + 1) m+1 u(u + 1) m+1 

_ w(u + q)(u - m)(u - m - 1) /,(U-1) 

(2u + l)u m+1 , 

(1.7) 

p-I'(u) = _ w(u - q + 1) /(u+1' _ (u + m)wq/(U) 
Jm (2u + 1)(u + 1) m-1 u(u + 1) m-1 

+ w(u + q)(u + m)(u + m - 1)/(u-1) 
(2u + l)u m-1 , 

(1.8) 
P . Pf~u) = - w~~u) ;¢ 0, 

P • Jf~u) = -wqf~u). (1.9) 

[If a vector f~u) on the right-hand side of one of the 
expressions (1.5)-(1.9) does not belong to the rep­
resentation space, we set this vector equal to zero.] 

The reader can verify that the operators defined by 
expressions (1.5)-(1.8) do satisfy the commutation 
relations (Ll) and determine the irreducible rep­
resentations of b& listed above. Corresponding to a 
fixed value of u, the vectors {f~u)} form a basis for an 
irreducible representation of the subalgebra 81(2) of 
b&. Each such representation of 8/(2) induced by 
i ,(w, q) has dimension 2u + 1 and is denoted by 
D(2u). Each irreducible representation of 81(2), 
induced by 13(w, q) or R 3(w, q, uo), is infinite-dimen­
sional and is denoted by !u. The notation for the 
representations in classes (1)-(3) is taken from Ref. 4. 
A detailed analysis of the representation D(2u) and 
!u is also given in this reference. Note that the rep-

resentations Po(w) , p,.(w) , studied in I, are 
identical with the representations 1 iw, 0), R3(w, 0, 1-') 
presented here. 

In analogy with the procedure carried out in I, we 
will analyze the relationship between the representa­
tions in classes (1)-(3) and the special functions of 
mathematical physics. That is, we will look for models 
of these abstract representations p such that the 
infinitesimal operators p(oc), oc E b&, are linear differ­
ential operators acting on a space V of analytic 
functions in n complex variables. The basis vectors 
{f!:'} are then analytic functions and expressions 
(1.5)-(1.8) are differential recursion relations for 
these "special" functions. In addition, we will extend 
each of our Lie-algebra representations of b& to a 
local group representation of T&. Each such local 
representation is defined by linear operators T(h), 
h E T&, acting on V and satisfying the group property 
T(h)T(h') = T(hh') for h, h' in a sufficiently small 
neighborhood of the identity. We will compute the 
matrix elements of T(h) with respect to the basis 
{f!:)}. The group property then immediately yields 
addition theorems for these matrix elements. The 
addition theorems so obtained provide identities 
relating Bessel functions, Whittaker functions, and 
Jacobi polynomials. 

2. MODELS OF THE REPRESENTATIONS 

All possible models of the Lie-algebra representa­
tions in classes (1)-(3) are known in which the basis 
space consists of functions of one or two complex 
variables.' In fact, there is only one such model 
(n = 2): 

Model A J3 = t ~, J+ = - t ~ , ot oz 
J- = t-1 (1 - Z2) .E.. - 2zt ~ + 2q), oz ot 

(2.1) 

p+ = wt, P- = w(1 - Z2)t-t, p3 = wz. 

Here z, t are complex variables, and w, q are fixed 
complex constants. It is easy to verify that operators 
(2.1) satisfy the commutation relations (Ll). Further­
more, we have 

p . p == _w2
, p. J == -wq. 

Corresponding to this model, the basis vectors f~u) are 
defined up to a multiplicative constant by expressions 
(1.5)-(1.8), and may be given by 

f~u)(z, t) 

= (u - m)! r(u + m + 1) p(m-q,mH)(z)tm (2.2) 
r(u _ q + 1)2m u-m , 

where rex) is the gamma function and p~fZ,fJ) is a 
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Jacobi polynomial.' The possible values of u, m, q, w 
depend on the representation in classes (l )-(3) with 
which we are concerned, and these values have been 
listed in Sec. 1. 

By substituting the Model A operators and basis 
vectors into expressions (1.5)-(1.8), we obtain the 
following well-known recursion relations obeyed by 
Jacobi polynomials: 

d 
dz p~·/I)(z) = !(ex + f3 + n + l)p~«"::l·/I+l)(z), 

[(1 - Z2) ~ - (ex + (3)z + f3 - ex Jp~«./I)(Z) 

= -2(n + I)P~"+i·/I-l)(z), (1.5') 
zp~·/I)(z) 

= 2(n + 1)(ex + f3 + n + 1) p(IZ./I)(Z) 
(ex + f3 + 2n + 1)(ex + f3 + 2n + 2) n+l 

+ (f32 - ex
2
) p(IZ./I)(Z) 

(ix + f3 + 2n)(ex + f3 + 2n + 2) n 

+ 2(n + ex)(n + (3) p~1Z1)(z), (1.6') 
(ex + f3 + 2n)( ex + f3 + 2n + 1) 

p~·/I)(z) 

= (ex + f3 + n + 1)(ex + f3 + n + 2) p(IZ+1./I+1)(z) 
(ex + f3 + 2n + 1)(ex + f3 + 2n + 2) n 

+ (ex - (3)(ex + f3 + n + 1) p~~l./I+1)(Z) 
(ex + f3 + 2n)(ex + f3 + 2n + 2) 

(ex + n )(f3 + n) p(lZ+l./I+1)( ) 
n-2 Z, 

(ex + f3 + 2n)( ex + f3 + 2n + 1) 
(1.7') 

HI - Z2)p~·/I)(z) 

= _ (n + 2)(n + 1) p(lZ-l./I-l)(Z) 
(ex + f3 + 2n + 1)(ex + f3 + 2n + 2) n+2 

+ (ex - (3)(n + 1) P~"+l./I-l)(Z) 
(ex + f3 + 2n)(ex + f3 + 2n + 2) 

+ (ex + n)(f3 + n) p(lZ-l./I-l)(Z), 
(ex + f3 + 2n + 1)(ex + f3 + 2n + 2) n 

valid for n = 0,1,2,' •. , and ex, {3 E ¢. 
(1.8') 

Those representations of b 6 , for which q = 0, 
have a model (Model B) in terms of differential opera­
tors in three complex variables. Model B was con­
structed and studied in I. If q :;!: 0, there is no model in 
three complex variables. However, in Sec. 8 we will 

construct a model (Model C) in terms of differential 
operators acting on spin or-valued functions in three 
complex variables. The special functions obtained 
from Model C are closely related to the spinor­
valued solutions of the wave equation in 3-space. 

3. ANALYSIS OF THE MODELS 
The following section contains several auxilliary 

lemmas which will enable us to extend the representa­
tions is(w,q), i4(W,q), and Rs(w,q,uo) of be to 
local group representations of T6 • Throughout this 
section it is assumed that the operators J±,]3, P±, ps 
and the basis vectors f~u) correspond to one of the 
irreducible Lie-algebra representations listed above. 
The results will be formally the same for all of these 
representations, the only difference being the allow­
able values of u, m, q, and w. 

Lemma 1: Let I be the identity operator on V: 

(wI - pSlf~u) 

(2W)kk! f(u - q + k + 1)r(2u + 1) 

f(u - q + 1) 

~ (-1)n(2u + 2n + 1) .(u+n) 
X k Ju • 

n=O n! (k - n)! f(2u + n + k + 2) 

Proof: Use of expression (1.6) and induction on k. 

Corollary 1: Let ex, (3 E ¢ and k a nonnegative 
integer: 

e ~ zr = k! f(k + ex + 1) 

xi f(ex + (3 + n + 1)(ex + f3 + 2n + 1)(_l)n 

n=o(k - n)! r(n + ex + l)f(ex + f3 + n + k + 2) 
X p~·/I)(z). 

Proof: This is the content of Lemma 1 when it is 
applied to Model A. 

As is well known,a the Jacobi polynomials are 
related to the Gauss hypergeometric functions by the 
formula 

p~·~)(z) 

= C: Y) 2Fl(-n,y + b + n + 1; Y + 1; 1 ~ z). 
(3.1) 

From this expression and Corollary 1 it is a straight­
forward computation to obtain the identity 

p(1.6)(Z) = i f(y + b + n + k + 1)f(ex + f3 + k + l)r(y + n + 1) 
n k-of(ex + (3 + 2k + l)f(y + b + n + 1)r(y + k + 1)(n - k)! 

X SF2(k - n, y + b + n + k + 1, ex + k + 1; y + k + 1, ex + (3 + 2k + 2; l)PklZ•IJl(Z), (3.2) 

expressing an arbitrary Jacobi polynomial P~'~)(z) 
as a linear combination of the polynomials p~IZ,/I)(Z). 
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Passing from Model A back to our abstract representa­
tion, we obtain: 

Lemma 2: Let y, ~ E ¢ and 11 a nonnegative integer. 

P~,~l(w-lpa)f~ul 

Although the function aF2(1) appears complicated, 
it can be explicitly evaluated in several interesting 
special cases. If IX = Y in Eq. (3.2), then aF2(1) 
reduces to the form 2Fl(1). Using the well-known 
formulas 

=:i f(2u + 1)r(u - q + k + 1) 

k=O k! (n - k)! f(u - q + 1) F (a -/1" c· 1) = f(c - a + n)r(c) 
2 1, " f( c _ a )f( c + n) , 

X _----=-r(~y_+:.-.::....~ ....!.+......:n~+....:.k=-+~l)::..:.f~(y_+~n_+~l)'----_ 
f(2u + 2k + 1)f(y + ~ + n + 1)f(y + k + 1) 

x aF2(k - n, y + b + n + k + 1, u - q + k + 1; 
y + k + 1, 2u + 2k + 2; 1)f~U+kI. 

n = 0, 1, 2,"', 

we find 

p(",~I(Z) = i f(IX + ~ + n + k + 1)f(IX + P + k + 1)f(IX + n + 1) 

n k=O f(IX + b + n + l)f(IX + k + 1)r(1X + P + k + n + 2) 

X (.o-IX_+'--!-P-..:.+_2_k_+,--,1) r(P - b + 1) 

(n - k)! f(P - ~ + k - n + 1) 

X p~«,PI(Z). 

If P = b, then aF2 is Saalschutzian6 and aF2(1) can be explicitly evaluated to yield 

p~,{ll(z) = i f(y + P + n + k + l)f(1X + P + k + l)f(fJ + n + 1) 

k=O f(y + fJ + n + l)f(1X + P + k + 11 + 2) 

(oc + P + 2k + 1)(-1)n-kf(IX - y + 1) 
X --~~~~----~~--~--~~~--

f(P + k + 1)(n - k)! f(IX - y + k - 11 + 1) 
X pi",/Jl(z). 

Finally, if IX = fJ and y = ~, we can use Watson's theorem6 

r(t)f(c + 1)f(a + b + l)f(l - a - b + 2C) 
( 

1 a b) 2 2 2 
,F, a, b, ,; :2 + :2 + :2 ' 2C; 1 = r (a ; 1) re ; 1) r e -~ + 2,) r e -~ + 2,) , 

with the result 

p(y,y\z) = :i f(2y + n + k + 1)f(y + IX + k + l)r(y + n + 1)r(!) 
n k=O f(2oc + 2k + 1)f(2y + n + 1)fCy + k + l)(n - k)! 

f(oc + k + t)f(y + k + l)f(IX - Y + l)Pi"''''(z) 
X ------------~~--~~~~~~~--~~~~~-----------

f (k ~ n + ~) f ey + 11 : k + 2) f eIX + n; k + 3) r C(l - 2y +2 k - n + 2) 

(3.3) 

(3.4) 

(3.5) 

Since r[(k - n)/2 + lJ occurs in the denominator 
of the right-hand side of Eq. (3.5), the coefficient of 
pia,al(z) is nonzero only if n - k is an even integer. 
Because of the well-known identityS 

In the following sections we shall find it useful to 
expand the product p~a,PI(z)PyL,PI(z) as a linear 
combination of Jacobi polynomials Pk",(JI(Z): 

C'I.Cz) = fCA + l)r(2A + n) po.-t).-tl(z) 
n f(2J.)fCJ. + n + t) n , 

expression C1.16) is readily seen to be equivalent to 
Corollary 3 of I. 

6 L. J. Slater, Generalized Hypergeometric Functions (Cambridge 
University Press, Cambridge, England, 1966), Chap. 2. 

n+l 
P~"'P'(z)p~a,p'(z) = !,E"',P(n, I; k)Pi",PICz). (3.6) 

k=O 

The coefficient p,PC·) can be obtained by first using 
Eq. (3.1) to express the left-hand side ofEq. (3.6) as a 
polynomial in (1 - z) and then using Corollary 1 to 
write the resulting polynomial as a linear combination 
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of P~",P)(z). The result is 

E",P(n, I; k) = i ± r(ex + n + l)r(ex + 1 + 1)r(ex + {J + k + 1) 
r=O ,=0 r(ex + {J + n + 1)r(ex + {J + 1 + 1) 

x r(ex + {J + n + r + 1)r(ex + (J + 1 + s + 1)r(ex + r + s + 1) (-l)'t(ex + {J + 2k + 1)(r + s)! 

r(ex + k + l)r(ex + r + l)r(ex + s + l)r(ex + {J + r + s + k + 2) x r!(n - r)!s!(l- s)!(r + s - k)! . 

(3.7) 

This is not a very enlightening expression. However, in certain special cases, the coefficients can be evalu­
ated very simply. For example, as was shown in I, if ex = {J = A. - t, then Eq. (3.6) becomes 

C!(z)C:(z) = mi~n,Z) (n + I - 2k)! (A. + n + 1 - 2k) 
k~O k!(n - k)!(l- k)! 

r(2)' + n + 1 - k)r(). + I - k)r(). + k)r(). + n - k) C A ( ) 

x r(2)' + n + 1 _ 2k)r(A. + n + 1 _ k + 1)r2(A.) x n+Z-2k Z • 

The reader can undoubtedly derive other formulas 
for EI1.,pO, some of which are more transparent 
than Eq. (3.7). In particular, it is not difficult to 
show [by means of the recursion relation (1.6)J that 
E",P(n, I; k) = 0, unless n + I ~ k ~ /n - 1/. Here 
we will merely point out the connection between 
these coefficients and the representation theory of 1)6' 

Expression (3.6) ha~ been established by direct 
computation for Model A,but it implies the existence 
of a similar expression obeyed by the abstract rep­
resentations of 1)6 and by any model of these 
representations. 

Lemma 4: 

Lemma 3: 

p~m-q,m+q)( w-1 p3)f<;:'+Z) 

= 'f l! r(2m + 1 + 1)r(m - q + k + 1) 
k=O k! r(2m + k + 1)r(m - q + I + 1) 
x Em-q,mH(n, I; k)f~m+k), n, I = 0,1,2, .... 

Corollary 2: 

p~m-q,mH)(w-lp3)f~m) 

= r(2m + 1)r(m - q + n + 1) f~m+n). 
n!r(2m + n + 1)r(m - q +1) 

(lP+)1',:.m+n) = w! i n! rem - q + 1 + k + 1)r(2m + n + k + 1) 
k=max(n-2Z,O) k! (n - k)! rCm - q + k + 1)r(2m + 21 + 2k + 1) 

x aF2(k- n, 2m + n + k+ 1, m -'q + 1 + k + 1; m - q + k+ 1,2m +21 + 2k+ 2; l)f~~tl+k). 

Proof: It follows from Eq. (3.2) that the lemma is 
true for Model A. Hence, it must be true for any 
model. 

Let P be a linear operator on Vand a E ¢. Define 
exp (aP) as the formal sum ~,::O (ak/k!)(p)k. We will 
use our lemmas to compute the operators exp (aP3), 
exp (aP+), and exp CaP-) on V. These results are 
purely formal when applied to the abstract representa­
tions of 1)6' However, when applied to models of 
these representations. they have a rigorous justification. 

Lemma 5: 

exp (a(p3 - wI»f~u) 

= I r(2u + 1)f(u + n - q + 1) (2aw)" 
n=O n!r(u - q + l)r(2u + 2n + 1) 

x IF1(m - q + n + 1;2m + 2n + 2; -2aw)f~u+n). 

Proof: This is a direct consequence of Lemma 1. 

It will be shown later that Lemma 5 is valid for 
Model A. Thus, we have: 

Corollary 3: Let ex, {J, a E t. Then 

x! r(ex+ {J + n + 1) MX'/JC2a)P~«'P)(z), 
n=O r( ex + {J + 2n + 1) 

where X = (ex - {J)/2, I-' = n + (ex + {J + 1)/2, and 

is a Whittaker function.5 
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Corollary 4: 

exp (aP3)f~u) 

= (2aw)-1-U 00 r(2u + l)r(u - q + n + 1) 
n~o n! r(u - q + 1)r(2u + 2n + 1) 

X M_a,u+n+t(2aw)f~u+n). 

Corollary 5,' 

exp (awp3
) 

= (2awr1-<HPl/2I r(ex + f3 + n + 1) Mx i 2aw) 
n=O r( ex + (J + 2n + 1) , 

X p~,fI)(p3), 

X = (ex - {J)/2, }L = n + (ex + (J + 1)/2. 

4. LOCAL REPRESENTATIONS OF To 

Since the Model A operators (1.10) satisfy the 
commutation relations of 136 , they induce a local 
representation of T6 by operators T(h), h E T6 , 

acting on the space of analytic functions in two 
complex variables. The details necessary for the 
computation of T(h) have been listed elsewhere.4 •7 We 
present only the results. According to the group 
multiplication law, it follows that 

T(h) = T(w; g) = T(w; e)T(O; g), 

where 

h = {w, g}, w = (ex, (J, y) E ¢3, 

g = (: ~) E SL(2). 

Letfbe an analytic function defined in a neighborhood 
of some point (z, t) E (;2 (t :;i: 0). Then 

[few; e)f](z, t) = [exp (exP+ + (JP- + yP3)f](z, t) 

= exp w[ext + (J(I - Z2)t-1 + yz]J(z, t), (4.1) 

[T(O; g)f](z, t) 

= [exp (-b/dj+) exp (-cdr) 

X exp (-2IndJ3
) f](z, t) 

= (at + e(z - 1»)/ (Z(1 + 2be) + abt 
at + e(z + 1) 

+ - (Z2 - 1), a2t + 2aez + - (Z2 - 1) . (4.2) ~ ~) 
t t 

These operators satisfy the group property 

T(hh')f = T(h)[T(h')f], (4.3) 

whenever both sides of this expression are well 
defined. 

7 H. W. Guggenheimer, Differential Geometry (McGraw-Hill 
Book Co., Inc., New York, 1963), Chap. 7. 

5. MATRIX ELEMENTS FOR jiro, q) 

We are now able to compute the matrix elements of 
the group representations of T6 induced by the 
representations 14(W, q). The restrictions of these 
representations to the real Euclidean group in 3-space 
are known to be unitary and irreducible, and have 
been studied in detail elsewhere.4.8·9 

Throughout this section, u, v = -q, -q + 1,' .. ; 
and -2q is a nonnegative integer. Furthermore, m 
andnwillrangeoverthevaluesm = -U,-u + 1,"', 
u - 1, u; and n = -v, -v + 1,' .. ,v - 1, v. The 
matrix elements {v,nlw,glu,m} of 14(W,q) are 
defined by 

00 v 

T(w, g)f~u' = 2 I {v, nl w, g lu, m}f~v), (5.1) 
2v=-2q n=-v 

where the operator T(w, g) and basis functions f~u' 
refer to Model A. According to Ref. 2, the Jacobi 
polynomials (2.2) form an analytic basis for the 
representation space. That is, the functions T(w, g) 
f~u' can be expressed uniquely as a linear combination 
of basis functions f~v' uniformly convergent in a 
suitable domain. The coefficients in the expansion are 
bounded linear functionals of the argument T(w, g)f;:) 
in the topology of uniform convergence on compact 
sets. 

Under these conditions, the matrix elements (5.1) 
are model-independent: They are uniquely deter­
mined by relations (1.5)-(1.8) and are the same for 
every model of 14(W, q) which has an analytic basis.4 

We can compute the matrix elements using either 
(1.5)-(1.8) or Model A and our results will auto­
matically be valid for any other model of i 4(W, q). 
Moreover, the relation 

T(w,g)T(w',g') = T(w + gw',gg') 

implies the addition theorem4 

00 v' 

I 2 {v, nl w, g Iv', n'}{v', n'l w', g' lu, m} 
2v'=-2q n'=-v' 

= {v, nl w + gw', gg' \u, m}. (5.2) 

The matrix elements {v, n\ 0, g \u, m} are uniquely 
determined by the J operators (1.5) and depend 
entirely on the representation theory of SI(2). Indeed, 
for fixed u the vectors f~u' form a basis for the 
(2u + I)-dimensional irreducible representation of 
SI(2). The matrix elements of these finite-dimensional 

8 N. Y. Vilenkin, E. L. Akim, and A. A. Levin, Dok\. Akad. Nauk 
SSSR 112, 987 (1957). 

• W. Miller, Commun. Pure Appl, Math. 17, 527 (1964). 
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representations are well known4 : 

{v, n/ 0, g /u, m} 
du-na,Hmbn-m(u - m)! 

= 
(u - n)! 

(n - u, -m - u; n - m + 1; be/ad) ~ 
X 2Fl r(n _ m + 1) v,u 

du- m u+n m-n (u + m)! = a e 
(u + n)! 

2Fl(m - U, -n - u; m - n + 1; be/ad) ~ 
X rem _ n + 1) V,U' 

g = (: ~) E SL(2), ad - be = 1. (5.3) 

Because of the relation 

1
. 2Fl(a,b;e;z) 
1m 

c-+-k r(e) 

= 
a(a + 1) ... (a + k)b(b + 1) ... (b + k) 

(k + 1)! 

X Zk+1
2F1(a + k + 1, b + k + 1; k + 2; z), 

k = 0, 1,2,"', 
expressions (5.3) make sense for all permissible values 
of m and n. Note that the hypergeometric functions 
can be expressed in terms of Jacobi polynomials. 

In terms of Model A, the identity 
u 

T(O; g)f~u) = I {u, nl 0, g lu, m}f~u) (5.4) 
n=-u 

implies 
[at - e(z - 1)]m+tl[at + e(z + l)]m-qp~~-:,m+qJ 

X [Z(1 + 2be) + abt + e: (Z2 - 1)J 
= i du- mau+n(2e)m-n (u - n)\ 

n=-u (u - m). 
2Fl(m - u, -n - u; m - n + 1; be/ad) 

X 
rem - n + 1) 

X p::_~,n+tlJ(Z)tn+m, 

t e(z:r 1) t < 1, ad - be = 1. (5.5) 

When u = m, Eq. (5.5) simplifies to 
[1 - e(z - 1)]u+U[1 + e(z + l)]U-q 

u 
= ! (2e)u-np~~-:,n+Q)(z), /c(z ± 1)1 < 1. 

n=-u 

Since the Model A functions f~uJ(z, t) form an 
analytic basis, Lemma 5 and its corollaries are 
rigorously true for Model A. Thus, 

T(O, 0, y; e)f~u) 
= exp (yP3)f~U) 

-l-m~ r(2m + k + 1) M (2 ) 
= (2y) k!'O r(2m + 2k + 1) -q,m+k+! Y 

X prm-q,m+tlJ(w-lp3)f~) 

= (2y)-1-m i f~"+iJ I r(2m + k + 1) 
1=-00 k=O r(2m + 2k + 1) 

M 2 (u - m)! (u + m)! (u - q + j)! 
X -u,m+k+l( y)( + ')'( + + ')'( )' u-m J.U m J.u-q. 
X Em-u,m+tl(k, u - m; u - m + j) 

ana 
{v, nl 0,0, y; e lu, m} 
= ~n,m(2y)-1-m 

X I (2m + k)! (u - m)! (u + m)! (v - q)! 

k (2m + 2k)! (v - m)! (v + m)! (u - q)! 
X Em-q,m+u(k, u - m; v - m)M_q,m+k+!(2y), (5.6) 

where the sum is taken over the finite number of 
values of k such that the summand is defined. In the 
special case m = u we obtain 

{v, nl 0, 0, y; e lu, u} 

= t5n ,,,(21')-1-U (2 );~u)~ Cv )~( q)~ )' M_q•v+!(2y), 
v.v u.u q. 

= 0, if v < u. 
To compute the general matrix element 

{v, nl oc, fl, y; e lu, m}, 

we make use of the identity 

exp w[oct + {l(1 - z2)r1 + 1'z] 

if v ~ u, 
(5.7) 

00 1 
= I I (1Twp/2)-!(4/p)/k/(ocl/k/+kJ/2(_{J)<lk/-kJ/2 

1=0 k=-i 

X 
r(lkl + lW(k + l)(j - k)! (j + i) 

(j + /kl)! 

X I Hi( w p )C~':.'.ti(y / p )C~~t( z )(2t)\ (5.8) 

which was derived in I. Here p2 = 1'2 + 4rJ.{l, C;(z) 
is a Gegenbauer polynomial and 

(Z/2)A . 2 
liz) = OFl(A + 1, z /4) 

r(1 + A) 
(2z)-12-2A M 2 

= r(1 + A) <l,l z) 

is a modified Bessel function. The right-hand side of 
Eq. (5.8) is an entire function of rJ.t, (lIt, y, and z. 
Furthermore, it is a function of p2. 

The second identity we will need is related to the 
representation theory of SL(2): 

Pm' -m,m'+m(z)pn' -'j,n'+n(z) u-m' v-n 
2mln (u,v) 

= 2: D(u, m, m'; v, n, n'; s) 
$=0 

X qu, m; v, n I u + v - s, m + n) 

X C(u, m'; v, n' I u + v - s, m' + n') 
X pm'+n'-m;-n'~'+n'+m+n(z). (5.9) u+v-s-m-n 
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Here, 

D(u, m, m'; v, n, n'; s) 

= [ (u - m)! (u + m)! (v - n)! (v + n)! 

(u - m')! (u + m')! (v - n')! (v + n')! 

x (u + v - s - m' - n')! (u + v - s + m' + n')!] 

(u + v - s - m - n)! (u + v - s + m + n)! 

and the C(. ; . I') are Clebsch-Gordan coefficients. 
(For a group-theoretic proof of this result see Refs. 
4, 10, 11.) 

Now, making use of Model A, we have 

T(ex, (3, y; e)f~u)(z, t) 

= L {v, nl ex, (3, y; e lu, m}f~v)(z, t) 
v,n 

= exp [w(ext + (3(1 - z2)/t + yz)] 

(v-u+s) 
G( u, m; v, n; q, s) = -----''-----'--''---

(v-u+s+ln-ml)! 

x (u - m)! (u + m)! p(~-q,m+a)(z)tm. (5.10) 
(u _ q)! 2m u m 

Applying the two identities to the right-hand side of 
this expression, we obtain 

{v, nl ex, (3, y; e lu, m} 
= (7Twp/2)-l:(4/p)ln-ml 

where 

( 
(3

)

(Jn-ml+m-n)/2 
X (4ex)(Jn-m l+n-m)/2 ~ 

r(ln - ml + t)r(n - m + t)(n - m)! X ~~--~--~~-------=~----~ 
(2n - 2m)! 

X L G(u, m; v, n; q, s)C(v - u + s; u, q 1 v, q) 
s 

X C(v - u + s, n - m; u, m I v, n) 

X Iv-u+S+l:(wp)ct~:-;;~ttn-ml(Y/ p), (5.11) 

X [(u+ q)! (v-u+s-n+m)! (v-u+s+n-m)! (u-m)! (u+m)! (V_q)!]l:. 
(u-q)! (v-k-m)! (v+k+m)! (v+q)! 

The sum is taken over the finite set of nonnegative 
integral values for which the summand is defined. 
These matrix elements are entire functions of ex, (3, 
and y. 

By substituting expressions (5.3) and (5.11) for the 
matrix elements of i 4(W, q) into the addition theorem 
(5.2), the reader can derive a number of identities 
relating spherical Bessel functions and Gegenbauer 
polynomials. 

6. MORE MATRIX ELEMENTS 

The expressions for matrix elements of i 4(W, q) 
were rather complicated, and the expressions for 
matrix elements of i 3(W, q) and R 3(w, q, uo) are even 
more complicated. Nonetheless, these representations 
are closely related to a number of important identities 
in special function theory. In order io keep the compu­
tations as simple as possible, we compute directly 
only a few interesting special cases of the matrix 
elements of i3(W,q) and R3(w,q,uo)' (In Sec. 7, 
however, we obtain expressions for the general matrix 
elements by relating them to matrix elements of other 
representations of b s .) 

The matrix elements {v, nl w, g lu, m} of i 3(W, q) 
and R3(w, q, uo) are defined by 

T(w; g)f~u)(z, t) = L L {v, nl w; g lu, m}f~v)(z, t), 

" n (6.1) 

10 G. Y. Lyubarskii, The Application of Group Theory to Physics 
(Pergamon Press, Oxford, 1960), English Trans!., Chap. 10. 

11 N. Y. Vilenkin, Special Functions and Theory of Group Rep­
resentations (lzd. Nauka., Moscow, 1965). 

where the operators and basis functions refer to 
Model A. [Corresponding to i3(W, q), the variables 
assume values u, v = -q, -q + 1, -q + 2,' .. ; 
m=u u-l u-2'" n-v v-I v-2'" 
where ' 2q E ¢' is no; an 'int~er: Corr~spondi~g t~ 
R3(W,q, uo), U,v = Uo , Uo ± 1, Uo ± 2,"'; 
m = u, u - 1, u - 2, ... ; n = v, v-I, v - 2, ... , 
where q, Uo are complex numbers such that 0 ~ Re Uo < 
1, and none of uo, ±q, or 2uo is an integer. The formal 
expressions giving the matrix elements are identical 
for both classes of representations; the difference 
between them is merely the different range of values 
assumed by the variables u, v, m, n, q, uo, w.] 

It is well known2 that the Model A functions 
f~u)(z, t) form an analytic basis for the representation 
space. Hence, the matrix elements are well defined 
and uniquely determined by the Lie-algebra relations 
(1.5)-(1.8). Moreover, Lemma 5 and its corollaries 
are valid. 

The action of the operators J:I:., J3 on the basis 
vectors {f;;)} for fixed u, m = u, u - 1, u - 2, ... 
defines an irreducible representation !u on s/(2). 
This infinite-dimensional representation was studied 
in Ref. 4, Chap. 5. Its matrix elements are 

{v, nl 0, g lu, m} 

= du-nau+mbn-m (u - m)! 
(u - n)! 

X 2Fl(n - u, -m - u; n - m + 1; be/ad) b 
r(n - m + 1) v, .. 
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du-m u+n m-n r(u + m + 1) = a e 
r(u + n + 1) 

X 2Fl(m - u, -n - u; m - n + 1; be/ad) c5 

rem - n + 1) V,u' 

g = (~ ~) E SL(2), ad - be = 1. (6.2) 

The matrix elements define a local representation of 
the group SL(2). That is, they are defined and sat­
isfy the group representation property only in suitably 
small neighborhoods of e. These neighborhoods have 
been determined elsewhere4 and are usually evident 
by inspection. 

Substituting expression (6.2) into the identity 
<Xl 

T(O, g)f~u)(z, t) = 2 {u, u - kl 0, g lu, m}f~~k(Z, t), 
k=O 

we find 

tm- u (a - e(z ~ 1)fH (a + e(z 7 1)r-q 

X p~~-:.m-tq) [Z(l + 2be) + abt + e: (Z2 - 1)] 
<Xl k' = !du-ma2U-k(2e)m-U+k . 

k=O (u - m)! 

2Fl(m - u, -2u + k; m - u + k + 1; be/ad) X ~~--~----~~----~--~~~~ 
rem - u + k + 1) 

X p~U-k-q.U-kH)(Z)t-\ 

I e(z a~ 1) I < 1; ad - be = 1. (6.3) 

When u = m, this relation becomes 

[1 - e(z - l)]uH[l + e(z - l)]U-q 
<Xl 

= !(2elp~U-k-q.U-k+<r)(z), le(z ± 1)1 < 1. 
k=O 

Matrix elements of the form {v, nl 0, 0, y; e lu, m} 
can be computed directly from Corollary 5 and 
Lemma 3. The result is 

{v, nl 0, 0, y; e lu, m} 

= c5n.mM~~q(2yw) 
= (2ywr1- m r(u + m + l)(u - m)! rev - q + 1) 

rev + m + 1)(v - m)! r(u - q + 1) 

X i r(2m + n + 1) 
n=O r(2m + 2n + 1) 

X Em-q.mH(n,u - m, v - m)M_q •m+n+t(2yw). 

(6.4) 
(The sum actually contains only a finite number of 
nonzero terms.) 

The functions M:;;~(y), defined by Eq. (6.4), form a 
generalization of the Whittaker functions M (y), 

X./l 

since 

MV , U( ) _ y-l-U r(2u + l)r(v - q + 1) 
u;q Y - (v _ u)! r(2v + l)r(u _ q + 1) M-q.v+t (y) 

= 0, 
Furthermore, 

if v - u < 0. 
if v - u ~ 0, 

(6.5) 

M~~(2y) = I~U(y), (6.6) 
where I:;;U(y) is the generalized Bessel function defined 
in I. 

We list a few properties or the generalized Whittaker 
functions. The relations 

T(O, 0, y; e)f~u) 
<Xl 

= ! {u + k, m/ 0, 0, y, e /u, m}f~u+k) 
k=-<Xl 

{v, m/ 0, 0, y + y'; e /u, m} 
<Xl 

= 2 {v,m/O,O,y;e/u + k,m} 
k=-<Xl 

X {u + k,m/O,O,y';e/u,m} 
imply the identities 

r(2m + 1 + 1)1! eYZp(m-q.m+q)(z) 
rem + 1 - q + 1) Z 

<Xl k' r(k + 2m + 1) =! . Mm:-k.m+z(2 )p(m-q,mH )( ) 
k=O rem + k _ q + 1) m.q Y k Z , 

(6.7) 
<Xl 

M~~(y + y') = ! M~t:'''(y)M~~+k(y'), (6.8) 
k=-<Xl 

convergent for all values of y, y'. 
By applying the recursion relations (1.5')-(1.8') to 

expression (6.7), we can derive recursion relations for 
the generalized Whittaker functions: 

(k + 1) Mm+k+l,m+Z(y) _ 1 M m+k+1 ,m+Z( ) m;q m+l;q y 
y y 

= (m + k - q + 1) Mm+k,m+z 
(2m + 2k + 1)(2m + 2k + 2) m;q (y) 

2(k + l)q Mm+k+1.m+1 
(2m + 2k + 2)(2m + 2k + 4) m;q (y) 

_ (k + l)(k + 2)(m + q + k + 2) M m+k+2.m+l( ) 
(2m + 2k + 4)(2m + 2k + 5) m;q y , 

(6.9) 
.!!..- Mm:-k,m+l(y) 
dy m.q 

= (m + 1 - q + 1) Mm+k,m+l+l 
2(m + 1 + 1)(2m + 21 + 1) m;q (y) 

mq M m+k •m+l( ) 

2(m + 1)(m + 1 + 1) m;q y 

+ 1(1 + m + q)(2m + 1) M m-:k ,m+l-l() 
(2m + 21 + 1)(2m + 21) .... q Y 
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= (m + k - q) Mm:-k-1,m+l(y) 
(2m + 2k - 1)(2m + 2k) m.q 

mq Mm+k,m+l(y) 
2(m + k)(m + k + 1) m;q 

(k + 1)(k + 2m + 1)(k + m + q + 1) 

+ (2m + 2k + 2)(2m + 2k + 3) 

X M m+k+l,m+l(y) k I = 0 1 2 .... 
m;q " '" 

The matrix elements {v, nl ex, 0, 0; e lu, m} can be 
determined easily from Lemma 4: 

{v, nl ex, 0, 0; e lu, m} 

= 
(2exwt-m(u - m)! rev - q + 1) 

(n - m)! (u - m + n - v)! 

X _---=-r~( u=-..:..+....:m.:..:.....;+,--v _-_n -:+~1 )'--_ 
rem - q + v - n + l)r(2v + 1) 

X aF2(V - n + m - u, u + m + v - n + 1, 
v - q + 1; m - q + v - n + 1, 2v + 2; 1), 

if n - m ~ I v - u I, 
= 0, otherwise. (6.10) 

The addition theorem 

{v, nl ex + ex', 0, 0; e lu, m} 

= ~ {v, nl ex, 0, 0; e lu', m'}{u', m'l ex', 0, 0; e lu, m} 
u',m' 

leads to an identity for the functions aF2(1) which the 
reader can derive for himself. 

The matrix elements of the operators exp ({JP+) 
and exp ((JP-) are very similar. In fact, if we rewrite 
expression (1.8) in terms of basis vectors f~u)' = 
(-l)Uf~~, we see that Eqs. (1.7) and (1.8) become 
formally identical. Therefore, the matrix elements of 
exp ({JP-) can be obtained from the matrix elements 
(6.10) by formally replacing ex, n, m by {J, -n, -m, 
respectively, and multiplying the resulting expression 
by (_l)V-u: 

{v, nl 0, {J, 0; e lu, m} 
_ (2{Jw)m-nr(u + m + 1)( _1)1>-U 

- (m - n)! (u + m - n - v)! 

r(u - m + v + n + l)r(v - q + 1) 
X 

r(n - q + v - m + l)r(2v + 1) 

X aF2(V - m + n - u, u - m + v + n + 1, 

v - q + 1; n - q + v - m + 1, 2v + 2; 1), 
if m - n ~ Iv - ul, 

= 0, otherwise. (6.11) 

Another identity for the functions aF2(1) can be 
derived from the addition theorem: 

~ {v, nl ex, 0, 0; e lu', m'}{u', m'l 0, {J, 0; e lu, m} 
u',m' 

= ~ {v, nl 0, {J, 0; e lu', m'}{u', m'l ex, 0, 0; e lu, m}. 
u',m' 

In general, the matrix elements satisfy an addition 
theorem 

{v, nl w + gw'; gg' lu, m} 

= ~ {v,nlw,glu',m'}{u',m'lw',g'lu,m}, (6.12) 
u',m' 

for g, g' in a sufficiently small neighborhood of 
e E SL(2). This theorem can be used to derive identities 
relating the special functions constructed above. 
Several of these identities have been proved in 1. 

7. RELATIONS BETWEEN MATRIX 
ELEMENTS 

We now investigate the relationship (for g = e) 
between corresponding matrix elements of two differ­
ent representations of b 6 , p, and p'. We suppose, first 
of all, that p and p' are distinct representations in the 
list (1)-(3), Sec. 1, except that they have the same w. 
The representations may lie in different classes and 
may have different parameters q, uo; q', u~. Denote the 
matrix elements of p by {v, nl ex, {J, y; e lu, m} and 
those of p' by {v', n'l ex, {J, y; e lu', m'}'. 

Making use of Model A and expression (3.2), we 
can express the p basis vectors as linear combina­
tions of the p' basis vectors: 

u-m 
f~u)(z, t) = ~ H(u, m, q; m', q', k)tm-mj~r:"+k)(z, t)', 

k=O 

(7.1) 

. m' '. k) _ 2m'-m(u - m)! r(u + m + k + 1)r(m' - q' + k + 1) 
H(u,m,q, ,q, - k!(u-m-k)!r(2m'+2k+l)r(m-q+k+l) 

x aF2(m - u + k, u + m + k + 1, m' - q' + k + 1; m - q + k + 1, 2m' + 2k + 2; 1). (7.2) 

Application of the operator 

T(ex, (J, y; e) = exp [w(ext + (J(1 - Z2)/t + yz)] 

to both sides of Eq. (7.1) yields the identity 

~ {v, nl 0(, (J, y; e lu, m}f~v)(z, t) 
v,n 

u-m 
= tm- m' ~ H(u, m, q; m', q'; k) 

k=O 

x 2 {v', n'l 0(, (J. y; elm' + k, m'}'f~~')(z, t)'. 
v',n' 

The vectors f~'l')(z, t)' in this last expression can be 
expanded as linear combinations of vectors f~v)(z, t), 
where n = m - m' + n' [use (7.1), interchanging 
primed and unprimed quantities]. Equating coeffi­
cients of f~v)(z, t) on both sides of the resulting 
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identity, we find 
(u - m)' f(v - q + 1) 

{v, nllX, (3, y; e lu, m} = ---~-~.~-~...:..-~--
(v - n)! f(2v + l)f(v - m + m' - q' + 1) 

X ui,m ! r(u + m + k + l)r(m' - q' + k + 1) 
k=OI=v-m k! (u - m - k)! f(2m' + 2k + 1)r(m - q + k + 1) 

(m - n + I)! f(2m' + v - m + l'+ 1) 
X ~----~~~--~------~~~ 

(m - v + 1)! 

X aF2(m - u + k, u + m + k + 1, m' - q' + k + 1; m :... q + k + 1, 2m' + 2k + 2; 1) 

X aF2(V - m - 1,2m' + v - m + 1 + 1, v - q + 1; m' + v - m - q' + 1,2v + 2; 1) 

X {m' + 1, m' + n - mllX, (3, Y; elm' + k, m'}', 1, k, integers. (7.3) 

Equation (7.3) is a generalization of a number of 
important identities in special function theory. For 
example, if IX = (3 = 0; n = m = u = v, then this 
equation becomes 

ym'-1>M-q.t>+!(Y) 

= ~. (m' - q' + 1)1 
1=0 I! (2m' + 1 + 1)1 

X aF2(-I, 2m' + 1 + 1, v - q + 1; 
m' - q' + 1, 2v + 2; 1)M_q'.m'+I+!(Y)' (7.4) 

where 

(P,)I = f(,u + l)jr(,u). 

In case q' = 0, m' = v - q, identity (7.4) simplifies 
to 

-q-! 

f(~v + 2) M-M+!(Y) 

= 22V- 2Q+1r(v _ q + !) 
X !(-I)I(v - q + 1 + t)(2v - 2q + 1)! 

1=0 I! f(2v + 1 + 2) 

X (v - q)zC -2q)z/v-q+l+!(y/2). (7.5) 

Next, the most general case, we will determine a 
relationship between the matrix elements of the 
representations p and p' when these representations 
correspond to different values of the nonzero param­
eter w. The representation p has parameters q, Uo, w, 
while p' has parameters q', u~, w'. There will be no 
loss of generality, if we assume w' = 1. As before, the 
matrix elements of p will be denoted by 

{v,nllX,(3,y;elu,m} 

and those of p' by {v', n'llX, (3, y; e lu', m'l'. 
If (3 = y = 0, it is obvious from expression (6.10) 

that the matrix elements of p depend on w according 
to the multiplicative factor w n- m• If IX = Y = 0, it 
follows from Eq. (6.11) that the matrix element varies 
as wm-n. However, if IX = (3 = 0, Y =F 0, the w 
dependence of the matrix elements is much more 
complicated. 

To uncover the w dependence we need a slight 
generalization of the identity (3.2): 

Lemma 6: If 1 - x = w(I - z), then 

p(Y'~)(z) = ± f(y + c5 + n + k + 1)r(1X + (3 + k + l)r(y+ n + 1) 
n k=O f(1X +(3 + 2k + 1)r(y + c5 + n + 1)r(y + k + 1)(n - k)! 

X aF2(k - n, y + c5 + n + k + 1, IX + k + 1; y + k + 1, IX + f3 + 2k + 2; w-l)p~a·p)(x). 

This lemma is proved in exactly the same way as 
the identity (3.2). Making use of Model A again, we 
observe that 

T(O, 0, y; e)f~u)(z, t) 
= eCJ)YZf~u)(z, t) 

= exp [(w - l)y + yx]f~u)(z, t) 
u-m 

= exp [(w - 1)y + yx] ~ HCJ)(u, m, q; m', q'; k) 
k=O 

X tm-mj~r:"+k)(x, t)', (7.6) 

where HW(,) is defined by Eq. (7.2), except that the 

function aF2(1), occurring in Eq. (7.2), is replaced by 
aFlw-1). Thus, 

~ {v, nl 0, 0, y; e lu, m}f~v)(z, t) 
v.n 

u-m 
= e(w-l)Ytm- m ' ~ HW(u, m, q; m', q'; k) 

k=O 
X ~ {v', n'l 0, 0, y; elm' + k, m'}'f~'()(x, t)'. 

v',n' 

Expanding the right-hand side of this expression in 
terms of the basis f~v)(z, t), n = m - m' + n', and 
equating coefficients of the basis vectors, we obtain 
the identity 
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(u - m)! rev - q + 1) exp H(w - l)y] 
= (v - m)! r(2v + l)r(v - m + m' - q' + 1) 

x uim I r(u + m + k + l)r(m' - q' + k + 1)1! r(2m' + v - m + 1 + 1) 

k=OI=v-m k! (u - m - k)! r(2m' + 2k + l)r(m - q + k + 1)(m - v + I)! 
x aF2(m - u + k, U + m + k + 1, m' - q' + k + 1; m - q + k + 1, 2m' + 2k + 2; w-

1
) 

X 3F2(V - m -1,2m' + v- m + 1+ 1,v - q + 1;m' + v- m - q' + 1,2v+ 2;w)M::::~~·m'+k(y). (7.7) 

If m = u = v, this identity becomes T of T6 on X(w) by (in matrix notation) 

ym'-1>M_q.v+i(Yw) [T(a, g)X~;u.m](w) = UV(g)X~;u.m(g-l(w + a». (8.3) 

00 (m' , + 1) CI I = exp [!(w - l)Y]WV+l I - q 1 ear y, 
1=0 I! (2m' + 1 + 1)1 

X aF2(-1, 2m' + 1+ 1, v - 9 + 1; 
m' - q' + 1, 2v + 2; w)M_q',m'+I+i(Y). (7.8) 

When v - q = m' - q', Eq. (7.8) simplifies to 

m'-vM ( 1 - ~) Y -q'+m'-v,v+i Y -2-

= exp [ - y(1 : $)J C ~ $y+1 
X ~ (m' - q' + 1)! 1 

1=0 (2v + 2)1 (2m' + 1 + 1)! 
X p(2v+l.2m'-2v-l)(I:)M ley) (79) 

l ~- -Q',m'+l+'! , . 

where $ = 2w - 1. 

8. MODELS IN THREE COMPLEX VARIABLES 

It was shown in I that the representations {-l(w, 0), 
{a(w,O), and R3(W, 0, uo) have models in terms of 
differential operators and analytic functions in three 
complex variables. Those representations for which 
q :F- 0, however, have no such models. On the other 
hand, we will show that the matrix elements 

{v, nllX, p, y, e lu, m} 
of the representations {4(W, q), {3(W, q), arid R3(w,q, uo) 
themselves define models in terms of differential 
operators acting on vector-valued functions of three 
complex variables. To see this, we consider a represen­
tation p from one of the classes listed above and note 
the relation 

{w, g} = {O, g}{g-lw, e} = {w, e}{O, g}, 

which leads to the addition theorem 

I U~,n·(g){v, n'l g-lw, e Iu, m} 
n' 

= I {v, nl w, e lu, m'}U;:', meg) (8.1) 
m' ' 

for the matrix elements of p. Here, 

U~.n,(g) = {v, nl 0, g Iv, n'} 
and g is in a small enough neighborhood of e E SL(2) 
so that all terms in Eq. (8.1) make sense. 

Fix v, and consider the vector-valued function 
X~;u,m(w) =({v, nl w, e lu, m}). (8.2) 

Here, n runs over the values n = -v, -v + 1, ... , + 
v, if p = {4(W, q) and n = v, v-I, v - 2, ... if 
p = (3(W, q) or p = R3(w, q, uo). Define the action 

T(ga' + a, gg') = T(a, g)T(a', g'). 
According to Eq. (8.1), the vector-valued function 
X~;u.m(w) transforms like the basis vector f~u) under. 
the operator T(O, g). Furthermore, it is easy to verify 
the relation 

[T(a, e)X~;u.m](w) = I {v', n'l a, e \u, m}X~;v"n'(w). 
v~ n' 

. (8.4) 
It follows from these expressions that the operators 
T(a, g) and the vectors XP.. (w) =!(u) define a v,u,m m 

model (Model C) of the abstract representation p. 
Standard methods in the theory of Lie transformation 
groups4.7 can be used to compute the infinitesimal 
operators corresponding to this model. The results 
are a a 

r = y - + 2{J - + S+, 
011. oy 

J- = -y ~ + 211. ~ + s-op oy , 

Ja = -(l..i + {J ~ + S3 
011. o{J , 

(8.5) 

p+=.i. p-=~ p3=~ 
011. op' oy' 

where 
S±{v, n 1'1 u, m} = (±n - v){v, n =F 1 1'1 u, m}, 
S3{V, n \.\ u, m} = n{v, n \.\ u, m}. 

It is an immediate consequence of these results that 
the vectors X~;u.m(w) = f~u) and the infinitesimal 
operators (8.5) satisfy the recursion relations (1.5)­
(1.8). Lemmas 1-5 can now be used to provide 
additional information about the Model C basis 
vectors. For example, Corollary 2 yields the identity 

p(m-q,m+q) (w-1 ~) XP. (w) 
! oy v.m,m 

_ r(2m + l)r(m - q + I + 1) P 

- I! r(2m + 1 + l)r(m _ q + 1) X,,;mH,m(w), (8.6) 

This identity, as well as all others obtained from 
Lemmas 1-5, constitute generalizations of the 
"Maxwell theory of poles" for solutions of the wave 
equation.12 

:2 A. Erdelyi, W. Magnus. F. Oberhettinger. and F. Tricomi, 
HIgher Transcendental Functions (McGraw-Hill Book Co., Inc., 
New York. 1953), Vol. 2. Chap. 11. 
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Degenerate Representations of the Symplectic Groups. 
I. The Compact Group Sp(n) 
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The degenerate, irreducible, unitary representations of the compact group Sp(n), .characterized by 
one and two invariant numbers, are considered. The explicit expressions for the basis functions spanning 
the corresponding representation spaces and the decomposition with respect to the maximal subgroup 
are given. 

1. INTRODUCTION 

Many attempts have been made in the last few 
years to understand the properties of physical systems 
such as elementary particles, the hydrogen atom, 
nuclei, etc., using the theory of representations of the 
underlying symmetry group. The main effort was 
devoted to the rotation and unitary groups, while the 
class of symplectic' groups did not receive much 
attention. This may be due to the peculiar property 
of these groups, that of conserving an antisymmetric, 
bilinear form. 

Some interest in symplectic groups was raised by 
remarks of Lipkinl on possible applications of the 
group Sp(n, R) to systems of bosons which do not 
conserve the number of particles. Budini2 has pointed 
out that, using Sp(6, 6) as a higher symmetry group, 
it is possible to obtain a mass formula for elementary 
particles without symmetry breaking. The questions 
of the symplectic symmetry of hadrons and of the 
embedding of the harmonic oscillator in the sym­
plectic group have been discussed in 'Ref. 3. On the 
other hand, the theory of the degenerate representa­
tions of the rotation and unitary (both compact and 
noncompact) groups has been developed in a series 
of papers.4 In this work we present the extension of 
that approach to the unitary symplectic groups, i.e., 
those which conserve both symmetric and anti­
symmetric bilinear forms. 

In general, the irreducible unitary representations 
of a semisimple Lie group G are realized as mappings 
of a Hilbert space Je(X) into itself, the domain of 

* Present address: Nuclear Research Institute, Rez, Czecho­
slovakia. 

t On leave of absence from Institute of Nuclear Research, 
Warsaw, Poland. 

1 H. J. Lipkin, Lie Group for Pedestrians (North-Holland Pub, 
Iishing Company, Amsterdam, 1965). 

I P. Budini, private communication. 
S H. Bacry, J. Nuyts, and L. Van Hove, Nuovo Cimento 35, 510 

(1965); R. Hwa and J. Nuyts, Phys. Rev. 145, 1188 (1966). 
& N. Limit, J. Niederle, and R. R~czka, J. Math. Phys. 7, 1861, 

2026 (1966); J. Fischer and R. R~czka, Commun. Math. Phys, 3, 
233 (1966); 4, 8 (1967). 

corresponding functions being some homogeneous 
space X of the type 

x= GIGo, (Ll) 
when Go is a closed subgroup of G. 

Gel'fands has proved the important theorem which 
states that the number of independent invariant 
operators in the enveloping algebra acting in the 
Hilbert space of functions .1£(X) with domain X6 is 
equal to the rank' of the space X (and is therefore 
independent of the rank of the fundamental group G). 
Since we are primarily interested in construction of 
representations characterized by the minimum number 
of invariants, we can use this theorem to select an 
appropriate domain X, namely, that of rank one. 

In order to select the proper invariant operator we 
can use the theorem of Helgason,8 according to which 
the ring of invariant operators in the algebra 3t of the 
group G, realized on the space of rank one, is gener­
ated by the Laplace-Beltrami operator 

A(X) = ~ o«g"P(X)(IUl)iop (1.2) 
(lUI) 

on X. Here ('"P(X) is defined by 

g"p(X)gpiX) = b~, (1.3) 

where g"p(X) is the metric tensor on the space X and 
Igl = Idet {g"fJ(X)}I· 

Then the problem of construction of the most 
degenerate, irreducible, unitary representations is 
reduced to the problem of determining eigenfunctions 
and eigenvalues of the Laplace-Beltrami operator on 
the appropriate symmetric space X = G/Goofrankone. 

We select a suitable domain X and solve the eigen­
problem of the Laplace-Beltrami operator on it in 

6 I. M. Gel'fand, Am. Math. Soc. Trans!. Ser. 2,37,31 (1964}. 
6 Note that sometimes in the set of invariant operators there 

appear operators which are not elements of the enveloping algebra. 
(For an explicit example see Ref. 4.) 

7 The rank of a space X = G/Go is defined as the number of 
invariants of any two points x, y E X with respect to the action of the 
fundamental group G on X. 

8 S. Helgason, Differential Geometry and Symmetric Spaces 
(Academic Press Inc., New York, 1962), Chap. 4, p. 397. 
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TABLE I. Homogeneous spaces connected with symplectic groups. 

Cartan's list: Go compact Rozenfeld's list: Go noncompact 

X = ~ Rank of X Dimension 
Go of X 

G 
X=­

Go 
Rank of X Dimension of X 

Sp(n) 
n n(n + 1) 

Sp(p,q) 
p +q (p +q)(p +q +1) 

'l1(n) 'l1(p, q) 

Sp(n, fR) 
n n(n + 1) 

Sp(p + q, fR) 
p +q (p +q)(p +q +1) 

'l1(n) 'l1(p, q) 

Sp(p + q) min (p,q) 4pq 
Sp(p + q, fR) 

min (p,q) 4pq 
Sp(P) ® Sp(q) Sp(p, fR) ® Sp(q, fR) 

Sp(p,q) min (p,q) 4pq 
Sp(p,q) 

min [(k + m), 4(P + q - k - m) 
Sp(p) ® Sp(q) Sp(k, m) 

® Sp(p - k, q - m) 
(p + q - k - m)] X (k + m) 

Sec. 2. Section 3 is then devoted to the study of the 
properties of the most degenerate representation of 
the group Sp(n) obtained in this way. In Sec. 4 we 
discuss some aspects of the determination of the 
series of less degenerate representations of Sp(n) 
characterized by two independent numbers. Thus in 
the present paper we deal only with the case of 
the compact group Sp(n). We shall, however, use the 
results obtained here in forthcoming papers, in which 
we would like to solve the following problems: 

(i) The construction of a representation space for 
(most) degenerate irreducible unitary representations 
of the noncompact, unitary, symplectic group Sp(p, q) 
determined by a discrete or a continuous invariant; 

(ii) The decomposition of the tensor product of 
two representations of Sp(p, q) group into irreducible 
components and the decomposition of the irreducible 
unitary representations of Sp(p, q) with respect to 
compact and/or noncompact subgroups. 

2. CONSTRUCTION OF THE 
REPRESENTATION SPACE 

According to Gel'fand's theorem,5 the properties 
of the irreducible unitary representations of a group 
G realized on a Hilbert space .le(X) are determined by 
the geometrical properties of a domain X of functions 
f(X) E .le(X), the domain X being some homogeneous 
space. 

Symmetric spaces of the type (1.1) with a compact 
stability group Go have been classified by Cartan, 
whereas those with noncompact stability group have 
been listed by Rozenfeld.9 We reproduce in Table I 
Cartan's list of symmetric spaces (see Ref. 8) for the 
fundamental group G of the symplectic type. There 
also is collected the spaces from Rozenfeld's list, 
together with their ranks and dimensions. 

• B. A. Rozenfeld, Dokl. Akad. Nauk SSSR 110, 23 (1956). 

We see that the only suitable candidate for a space 
of rank one on which the compact group Sp(n) acts 
transitively is the space 

Xl 
__ Sp(n) 

(2.1) 
Sp(n - 1) ® Sp(1) 

This space is known to be a quaternionic projective 
space.8 •9 But it is rather difficult to construct a 
convenient and simple geometrical model for it. 
Fortunately, we may use for our purposes the space 

X 4n- 1 = Sp(n) ® Sp(1) R; Sp(n) , (2.2) 
Sp(n - 1) ® Sp(1) Sp(n- 1) 

which is evidently closely related to the space (2.1). 
Furthermore, the space X4n-l is isomorphic to the 
unitary sphere in the n-dimensional quaternionic 
unitary space Q(n), defined by the equation 

(2.3) 

It has been proved by Chevalleylo and Hsien-Chungll 

that the group Sp(n) ® Sp(l) acts transitively on 
(2.3) and that its stability group is Sp(n - 1) ® Sp(l). 

As is well known, the noncommutative algebra of 
quaternions Q is defined as an algebra of dimension 4 
over the field fR of real numbers with a base composed 
of four elements 1, i,j, k whose multiplication table is 

j k 

j k 

-1 k -j 

j j -k -1 

k k j -i -1. (2.4) 

10 C. Chevalley, Theory of Lie Groups (Princeton University 
Press, Princeton, N.J., 1964). Vol. 1. 

11 Wang Hsien-Chung. Ann. Math. 55, 177 (1952). 
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Then any quaternion q E a may be expressed either in 
the form 

q = Xl + X2i + X3j + x4k, (2.5) 

where x. (i = 1, ... , 4) are real numbers, or 

q = Zl + Z2j, (2.5') 

where Zi (i = 1, 2) are complex numbers. The qua-
ternionic conjugation is the mapping . 

q -- il = Xl - X2 i - xa,i - x4k = z: - Z2j (2.6) 

of a onto itself. (For a detailed treatment of properties 
of the body of quaternions, as well as for the questions 
about the relation of symplectic groups to the vector 
spaces over the body of quaternions, see, for example, 
the book of ChevaIIey.IO) 

It is important that the n-dimensional quaternionic 
unitary sphere (2.3) is homeomorphic to the usual 
sphere in 4n-dimensional Euclidean space IR 4n. Be­
cause of it, its properties are rather simple. 

Now let us introduce an inner coordinate system on 
the sphere (2.3). Let us suppose that we have defined 
a cl)ordinate system on the quaternionic unitary 
sphere (2.3) of dimension p < n. Let these coordinates 
be denoted by q~ (k = 1, ... ,p). Then the coordinate 
system on the "sphere" of dimension p + 1 will be 
defined by 

qk = q~ sin ';1>+1 for k = 1, ... , p, (2.7) 

qv+1 = (ei'Pp+1cos f}v+1 + ei'Pp+l sin f}:P+1j) cos ~V+1' 
(2.8) 

Now starting from 

ql = (ei'Pl cos f}l + ei
'Pl sin f}lj), (2.9) 

we get the coordinate system for an arbitrary dimen­
sion of the quaternionic unitary sphere (2.3) using 
recursive formulas (2.7) and (2.8). This choice is 
convenient because there appears (in parentheses in 
(2.8) and (2.9)] a general expression for a quaternion 
of modulus equal to one. The ranges of variables 
'Pk' tpk' f}k' and ~k must be chosen so that the co­
ordinates (2.7) cover the space X4n-l only once. In 
this way, on the space X4n-1 we introduce 

n variables 'Pk E [0, 21T) (k = 1, ... , n), 

n variables tpk E [0, 21T) (k = 1, ... , n), 

n variables f}k E [0, 1T/2] (k = 1, ... , n), 

and 
(n - 1) variables ';k E [0, 1T/2] (k = 2, ... , n), 

(2.10) 
i.e., 4n - 1 variables altogether. 

The metric tensor g"p(X4n-1) , induced by the metric 
tensor of the quaternionic unitary space aCn ), is given 
by the symmetric part of the tensor g~p defined by 

g~p(X4n-l) = i g.t(aln » ail. oqt , (2.11) 
.,1=1 an" onp 

, 

where 

and 
(l = (s, 0'), {J = (t, 'T) 

nC.,I) = 'P., nC.,2) = tps> .oC.,3) = {}B> .0(.,4) = ~ •. 
In our parametrization the metric tensor g"p(X4n- 1) 
is diagonal, and therefore the Laplace-Beltrami 
operator (1.2) can be represented in the form 

d(X4n- l ) 

1· 0 3 450 _ - (cos'; ) (sin'; ) n- -
(cos'; n)3( sin'; n)41i-5 o~ n n n 0'; n 

+ 1 K + 1 d(x4(n-I)-I) (2.12) 
(cos ~n)2 n (sin ~n)2 ' 

where 

.f)- 1 o'{} f}o 
An = - sm· n COS n-

sin f} n cos f}n of}n of}n 

1 02 1 02 

+ - + - (2.13) 
(cos {}n)2 0'P! (sin {},i otp! 

and d(X4Cn-ll-I) is the Laplace-Beltrami operator on 
the quaternionic unitary sphere embedded in the 
space aln- I ). For n = 1 we have 

d(X3) = 1(1' (4.14) 

To find the basis functions for the Hilbert space 
Je(X) on which the representations of the Sp(n) group 
may be realized, we have to solve the equation 

d(X4n
-

I
) vA(RI(nCn

» = Aln) VA(RI(.oln»), (2.15) 

where .o(n) stands for the set of variables {n1 , ••• , .on}. 
Representing solutions VA(nl(.oln» of (2.15) in the form 

VA(n/n Cn» = IPn( 'PSf n( tpn)0n{ {} n) 

x En(~n)V).(TI_ll(.oCn-l», (2.16) 

we obtain the set of ordinary differential equations 
of second order: 

tfIPn 2m. ° 
--2 + mn'Vn = , 
dfPn 

d
2
'f n - 2np ° 22+ mnTn = , 

d tpn 

----- -- SIn n cos n - + Kn [
1 d'f} f}d 

sin f}n cos f}n df},. df}n 

- m; _ m! ] e (f) ) = ° 
( f})2 (. f})2 n n , cos n sm n 

(2.17) 

(2.18) 

(2.19) 

[ 
1 -.!!.... (cos'; )3(sin .; )4n-5 ~ 

(cos ';n)3(sin ';n)4,.-5 d';n n n d~n 

- ACn) + ~ln-l) 2 - Kn 2JEn(~n) = 0, (2.20) 
(sm ~n) (cos ;n) 

d(X4Cn- I)-l)V (.oCn-I» = A V (.oln-1». 
A(n_II Cn-I) A("-lI 

(2.21) 
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General solutions of Eqs. (2.19) and (2.20) are given 
in terms of hypergeometrical functions as follows: 

0 n(Dn) = (tan Dn)lmnl(cos DS" 

F (
Imnl - In + Imnl Imnl - In - Imnl . 

X 21 2 ' 2 ' 

Im,,1 + 1; -tan2 Dn), (2.22) 

EnC~n) = (tan ~n)L"-l(cos ~n)L" 

F (Ln_1 - Ln + In Ln 1 - Ln - In - 2 . 
X 21 2-' 2 ' 

Ln-1 + 2(n - 1); -tan2 ~n)' (2.23) 

where the eigenvalues mn and mn are integers and the 
spectrum of remaining eigenvalues is given by 

Kn = In(ln + 2) (2.24) 
and 

(2.25) 

with positive integers In and L". 
These solutions are square-integrable with respect 

to the 'measure df.t(X) if the following restrictions on 
eigenvalues are satisfied12 : 

Im,,1 + Im,,1 = In - 2k, k = 0, 1,' .. , [/n/2] 

(2.26) 
and 

L"_1 + In = Ln - 2k', k' = 0, 1,' .. , [Ln/2]. 

(2.27) 

The solutions (2.22) and (2.23) are expressible in 
terms of the usual d functions of the theory of angular 
momenta.13 Then the eigenfunctions of (2.15) are 
explicitly given by 

yLn,L"_l'" ~,L2;!n'~" ,11;(o(nl) 
mnJ '" ,ml;mn,'" ,mt; 

= yL,L~;!i(o(nl) 
- m;tmf. 

- (N )-tei(ml'l'l+ml'Plldil (2D) 
- n ahbl 1 

where 

ak = Hlmkl - Imkl), bk = Hlmkl + Imkl), 
OCk = Hlk - Lie-I + 4 - 2k), (2.29) 

(3k = Hlk + Lie-I + 2k - 2), 
and 

(2.30) 

11 Here [a] means the integral part of a defined as usual. 
13 M. E. Rose, Elementary Theory of Angular Momentum (John 

Wiley & Sons, Inc., New York, 1961). 

The normalization constant N n is then 
n 

N n = 7T2n(l1 + 1) IT (lk + l)(Lk + 2k - 1). (2.31) 
k=2 

The functions (2.28) with a given value L == Ln are 
square -integrable with respect to the left-invariant 
measure 

(2.32) 

on the domain X4n-l. The explicit expression for the 
measure df.t is 

df.t(o(nl) = cos Dl sin Dl depl d1jJ1 dDI 
n 

X IT cos Dk sin Dk(cos ~k)3(sin ~k)4k-5 
k=2 . 

X depk d1jJk dDk d~k' (2.33) 

Hence, the set of functions Y~:.~:;li(.Q(nl) span the 
Hilbert space JeL(X4n-1) with the scalar product 
related to the left-invariant measure (2.32) by 

( X) = ( 1)(o(n» X(o(n» df.t(o(n», (2.34) 
1), )X4n- 1 

for any 1), X E JeL(X4n-l). In fact, the space JeL(X4n-l) 
is a representation space of the group Sp(l) ® Sp(n), 
which occurs as a fundamental group of the space 
(2.2). However, a closer study of the properties of the 
Lie algebras of Sp(l) and Sp(n) groups reveals that 
we can realize irreducible unitary representations of 
Sp(n) on certain subspaces of the Hilbert space 
JeL(X4n-1). 

3. ~OST DEGENERATE 
REPRESENTATIONS OF Sp(n) 
A. Structure of the Lie Algebra 

The group Sp(1) ® Sp(n) which acts on the mani­
fold (2.2) is a direct product of two simple groups. 
Therefore its Lie algebra 9t decomposes into two 
commuting subalgebras which we call 9t~ and 9tn , 

respectively. The algebra 9tn of Sp(n) is then formed' 
by the n(2n + 1) generators 

'Uti' 'Ui;i' '\Ji,i' and '\Ji,i' i, j = 1, ... ,n, (3.1) 

which have the symmetry properties 

'lL~i = 'lLt, '\Ji,i = '\J1,;, and '\Ji,i = -'\Jj,j. 

(3.2) 
The commutation relations of these generators are 

+ ± 
['Uti' 'Uk;zl _ _ _ _ 

= ;:q{ bik '\J;,! + bjl'\J;'k + bik '\J~l + bi'CU;:k}' (3.3) 
+ ± 

['\Jti ' '\Jk; I] 

= :Hbjk'\Jtl2: 8il'Utk! bik'\J~I~ bil'U~k}' (3.4) 
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In Appendix A we have collected the explicit ex­
pressions for the generators (3.1) as linear differential 
operators in quaternionic and complex variables as 
well as their connection with the generators of the 
group 9L(2n). 

The algebra :R~ of Sp(l) is generated by the three 
operators 'U\ (l = I, 2, 3) which, on the manifold 
X 4n-1, have the form 

n n n 
~~+ ~~- ~~+ 

'Ul l = 4, 9Lk•k, 'Ul2 = 4, 9Lk•k , 'Ul3 = 4, 'lJk•k· (3.6) 
k=I k=l k=l 

There is a close relation between the operators ctLA, 
cfJ0c ' and 9LA, 'lJ0c' It is easiest to see from expres­
sions (All) and (AI8) of Appendix A, which 
define the generators in terms of complex variables. 
The meaning of the tilde in Eqs. (3.6) then consists in 
the substitution "Zk ±; z: for only k = -I, ... , -n, 
while remaining variables are unchanged (Zk -- Zk 

andz: ---+ z: for k = I, ... , n). 
The commutation relations for the generators (3.6) 

ate 
('W;, 'Ul j ] = 2€ijk'Ulk (k = 1,2,3). (3.7) 

Throughout this paper we often use, instead of (3.1) 
and (3.6), the set of generators of the complex ex­
tension of the real Lie algebras :R" and :R1 . These are 
especially convenient when dealing with the basis 
functions (2.28) and can be normalized in such a way 
that they form the Weyl's standard basis. We define 
these operators by 

and 

E±2ek = 2-!{9Lt,k ± i9Lk.k), 

E±ek±eZ = (9Lt.z ± i9Lk;I)' 

E±ek'FeZ = ('lJk.1 ± i'lJt,z), 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

In Appendix A we give their commutation relations 
and their explicit form as linear differential operators 
on the manifold X 4n- 1 in the parametrization (2.10). 

B. Properties of the Generators 

As we are using the quaternionic unitary sphere 
(2.3) instead of the quaternionic projective space 
(2.1), we must be aware of the fact that the irreducible 
unitary representations of the group Sp(l) ® Sp(n) are 
directly realized on the space JeL(X4n-l) spanned by 
functions (2.28). Nevertheless, the space JeL(X4n- l

) 

should be reducible with respect to the action of the 
group Sp(n). To show this, we use the formulas for the 
action of generators of algebras :R,n and :R,~ of Sp(n) 
and Sp(l), respectively, on the basis functions (2.28). 
They are collected in Appendix B, and one can easily 

, 

see that the generators have the following properties. 
(i) The generators H'J) (p = 1, ... ,n) form the 

Cartan subalgebra of :Rn and are diagonal in para­
metrization (2.10). They have the eigenvalues 

(3.12) 

(ii) The generators E2ep (p = 1, ... ,n) conserve 
all numbers L; and Ii and also the value of 

(3.13) 

(iii) All remaining generators conserve the value of 

n n 

M- = IM; = I(m'J) - m'J)' (3.14) 
'J)=l 'J)=l 

The last property is simply a consequence of the fact 
that the generator 'Ul3 of Sp(I), which has the eigen­
value (3.14), commutes with the algebra :R n of Sp(n). 
Therefore, the space JeL(X4n-I), spanned by functions 
(2.28), . decomposes into subspaces JeXi-(X4n-l) of 
simultaneous eigenfunctions of the Laplace-Beltrami 
operator d(X4n-l) and of the generator 'Ula of Sp(1). 

Now, the value of M- is restricted by the conditions 
(2.26) and (2.27), so that 

1M-I:::;; L. (3.15) 

The structure and properties of subs paces Jef't_(X4n-l) 
strongly depend on the value of M-. In the case when 
1M-I = L, the subspaces Je~L(X4n-l) are irreducible 
under'the action of the group Sp(n) , and therefore 
they can be considered as representation spaces for a 
unitary, irreducible representation of Sp(n). Because 
these representations are characterized by a single 
number L, we call them "most degenerate representa­
tions." They will be treated in detail in this section. 
In the case when 1M-I < L, the situation is not so 
simple. The space Je3:t_(X4n-l) is in this case reducible 
with respect to the action of the algebra of Sp(n), 
and, to obtain its irreducible components, one needs 
further investigation. We have devoted Sec. 4 to 
these questions. 

C. Unitarity and Irreducibility of the most Degenerate 
Representations of Sp(n) 

The condition M- = +£14 reduces the two sets of 
equations (2.26) and (2.27) to 

(3.16) 
and 

L'J)-l + I'J) = L'J) (p = 2,' . " n). (3.17) 

U We are limiting ourselves only to the case M- = + L because the 
choice M- = - L leads only to the change of sign in the right-hand 
side of Eq. (3.16), which means changing the sign at any j's in lower 
indices of functions (3.18). The corresponding representations are 
equivalent. 
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These are strict conditions on the eigenvalues, and 
they select from the set of eigenfunctions (2.28) of the 
Laplace-Beltrami operator the subset of functions 

y:;f';(o(n») 
_ yL,Ln-"··· ,L2;2in,' .. ,2i, (n)(n) 
= tAIn++in,··· ,tAI,++i,;fAIn+-in,' .. ,tM ,+-i , .!., 
= (Nnrt exp {i[!Mi(<J!l + '!{Jl) + jl(<J!1 - '!{Jl)]} 

X d!M,+,iPOl) 
n 

X IT exp {i[!Mt(<J!s + '!{Js) + j.(<J!s - '!{Js)]} 
.=2 
. (sin ~ )3-2. 

X d!1'rJ.+,i.(20.) s~ d~:_2J._"J.(2~s). (3.18) 
cos 8 

Here we have introduced the notation 

js = HL. - L._1) (3.19) 
and 

J. = HLs + 2s - 2). (3.20) 

In the special case s = 1 we have 

h = iLl == tit = J1 • (3.21) 

We have also put L == Ln. 
In the considerations which follow a key role is 

played by the second-order invariant operator 1~2) 
which is proportional to the second-order Casimir 
operator of the group Sp(n). We have found the 
following connection of this operator with the 
Laplace-Beltrami operator ~(X4n-l) and the second­
order invariant operator li2) of the Sp(l) group which 
enters the direct product Sp(l) @ Sp(n): 

1~2) = t(~ + liZ»). (3.22) 
Here we define 

n 

1~2) = 1 H; - ~ [E"E_" + E_"E.] (3.23) 
s=1 ,,>0 

and 
3 

1; = -1'ID;, (3.24) 
s=1 

while ~ is defined by Eq. (2.12). 
The functions (3.18) are simultaneous eigenfunctions 

of the operators ~ and liZ), and therefore also of I~, 
the eigenvalues being L(L + 4n - 2), L(L + 2), and 
L(L + 2n), respectively. They span a Hilbert space 
JeZ(X4n-1) defined by the scalar product (2.31) with 
the left-invariant measure (2.33). 

a. Unitarily 

The space JeZ(X4n-l) creates a representation space 
for the group Sp(n) because, for any generator 

Za E :Rn and any r; E JefeX4n-l), we have 

[~, Z,,]r; = 0, [1!2), Za]r; = 0 

and 
['ID3' Z,,]1J = O. (3.25) 

We shall denote representations of the group Sp(n) 
related to this space by Df[Sp(n)1 or simply Df. 
They are realized by associating to any element 
g E Sp(n) an operator Tg in Jef(X4n-l) such that 

(3.26) 

for any 1'1(L)(O) = ~ ~ + c(L M+) yL,L·;(O) of ./ 4.L. k}}J. • , • 111. + 
Jef(X4n-l). Here 0 is a point of the manifold X4n-1, 
and rIO is its left translation by the element g-1 of 
Sp(n). Then unitarity of representations Dr follows 
immediately from the left invariance of the measure 
df-t(O). 

b. Irreducibility 

From the explicit form (3.18) of the eigenfunctions 
Yfi~'; we see that the structure of the Hilbert space 
Jef(X4n-1) is relatively simple. Namely, we can 
decompose Jer(X4n-1) into the direct sum of sub­
spaces as follows: 

JeZ(X4n- 1) = EEl EEl JeZ:~1;;-!(x4n-1), (3.27) 
L n _ 1 Mn+ 

where the direct sum over L n- 1 and M~ is extended 
through 

L n_1 = 0, 1, ... , Ln (3.28) 
and 

M~ = -2jn, -2jn + 2,' .. ,2jn' (3.29) 

respectively. Each of the spaces JefL{f'.;+,(X4n-l) forms 
a representation space for an irreducible unitary 
representation of the Sp(n - 1) subgroup of Sp(n). 
We see that any representation of the maximal 
subgroup Sp(n - 1) occurs only once in the decom­
position (3.23). This is illustrated diagrammatically 
in Fig. 1. To each point (Ln- 1 , In) in the diagram 
Fig. l(a) there corresponds a diagram Fig. l(b) which 
gives the possible values of mn and mn for a given In. 

Now, to prove the irreducibility of representations Dr of Sp(n), it is sufficient to prove that, starting from 

Ln_1 iii. 

~y)( ... 
(0) ~\ 

tb) 

FIG. 1. The most degenerate representation of Sp(n). (a) Decom­
position with respect to the subgroup Sp(l) @ Sp(n - I). (b) 
Possible values for mn and mn at a given In in the case when M- = L. 
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any point in diagrams (a) and (b) of Fig. 1, we can, by 
successive application of the generators of the algebra 
:Rn of Sp(n), reach any other point in these diagrams. 

It is simple to prove this for Sp(l) (n = 1) because 
the algebra of Sp(l) is formed by the three generators 
E±2e and HI; the former act as step operators, while 
the l~tter is diagonal. The presence of the "stopping" 
factor [(I =t= m =t= fii)]! in the formula (B3) of 
Appendix B for the action of the generators E±2el 
assures us that, starting from some point of Fig. l(b), 
we can reach any other point on the diagram and only 
these points. This means that the irreducibility of 
representation Df (L = 11) of Sp(l) is proved. Simi­
larly, one proves the irreducibility of the most 
degenerate representations for the Sp(2) and Sp(3) 
groups. Now let us assume that we have proved the 
irreducibility of Df for the group Sp(n - 1). It 
means that the spaces Jef~t:~(X4n-l) are irreducible 
with respect to the action of the generators of the 
algebra :Rn- 1 of Sp(n - 1). 

Now, to prove the irreducibility of Jef(X4n-1) space 
with respect to the actions of the algebra :Rn of Sp(n), 
it is sufficient to consider only the action of generators 
E±2en' E±e,,±en_l' andE±ene'fn_1 (see also Appendix.B). 
The corresponding formulas are formulas (Bll)­
(BI4) and (B3) of Appendix B. We see that the 
considered generators conserve the conditions (3.16) 
and (3.17). Moreover, the stopping factors are always 
combined in such a way that relations 

In ~ 0; Ln- 1 ~ 0 
and 

Imn + fiinl ::;; In; Imn- I + fiin-Il ::;; In- 1 

are fulfilled. This procedure enables us to prove the 
irreducibility of representations Df of Sp(n) by full 
induction. 

D. Properties of the Most Degenerate 
Representations of Sp(n) 

The basis functions (3.18) of the Hilbert space 
Jef(X4n-l) are characterized by n numbers L. and n 
numbers M-; (s = 1, ... , n). The former are related 
to the eigenvalues of the set of the second-order 
invariant operators 1/,2) of the chain of subgroups 

Sp(n) :::> Sp(n - 1) :::> ••• :::> Spell. (3.30) 

These eigenvalues are 

J.. = L.(L. + 2s). (3.31) 

Numbers M: are then eigenvalues of the generators 
H. of the Cartan subgroup of Sp(n). . 

Therefore, the set of commuting operators IS 

, 

explicitly formed by 2n operators: 

{1~2), H n , f~~l' H n_ l ,"', 11(2), HI}' (3.32) 

Their number is reasonably small compared to 
the corresponding number in the case of a nondegener­
ate series of representations of Sp(n), in which case 
it is in(n + 5) - 1. This may be of particular interest 
from the point of view of physical applications 
because we would usually like to have the smallest 
possible number of invariants for characterization of 
a given physical state. The fact that all Cartan sub­
group generators are diagonal, which is due to the 
parametrization we have employed, is also convenient 
because it makes it possible to relate each of these 
generators to an additive conservation law. 

Another property which is a direct consequence of 
the choice of the parametrization of the domain 
X4n-l is the pattern of the decomposition of 
the Hilbert space Jef(X4n-l) into the subspaces 
JeL,L"-~(X4n-l) on which the subgroup Sp(n - 1) L,1I-ln . . 
acts irreducibly. One can easily find a parametnzatlOn 
in which the representation Df of Sp(n) decomposes 
similarly with respect to a subgroup Sp(n - k) with 
arbitrary k (n > k ~ 1). 

In Appendix C we give the detailed calculation of 
the highest weight of the representation of Sp(n). 
From it, it follows that the representation Df corre­
sponds to the representation D(L, 0, ... ,0) 'in the 
notation used in Ref. 15, or it can be represented by a 
one-row Young tableaux (see Ref. 16) and therefore 
may be interpreted as a fully symmetrical representa­
tion of Sp(n),17 

4. LESS DEGENERATE REPRESENTATIONS 
OF Sp(n) AND THE REPRESENTATIONS OF 

THE GROUP Sp(I) ® Sp(n) 

A. The Less Degenerate Representations 
of Sp(n) 

The condition 
1M-I = const < L 

imposes a restriction on the eigenvalues, which can 
be conventionally written as 

1M-I ~ In + Ln- 1 • 

But from (2.27) it follows that 

1M-I::;; L - 2k, 

(4.1) 

(4.2) 

15 M. Konuma, K. Shima, and M. Wada, Progr. Theoret. Phys. 
(Kyoto) Suppl., No. 28 (1963). ..' 

16 M. Hamermesh, Group Theory and Its Appllcatlons (AddIson­
Wesley Publishing Company, Inc., London, 1962? 

17 The explicit examples of lowest. representatIOns .of Sp(2) and 
Sp(3) have been published in AppendIX IV to the preprmt [lC/66/77, 
ICTP, Trieste (1966») of this paper. 
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L 

FIG. 2. Diagram of the structure of the space Je~I-' 

where now k may be one of the numbers 

We can again represent the possible values of L n- 1 

and In by. points in the net of Fig. 2. From the formula 
(B13) of Appendix B we see that the operator 
lP) and (therefore also) the second-order invariant 
operator 1~2) of Sp(n) are not diagonal on the space 
JeL _(X4n-l). Generally the operators 1(2) and /(2) ;.11 , 1 n , 

when acting on functions (2.28), conserve, besides 
all the numbers Ls and Is (s = 1, ... ,n), also the 
numbers AI; (s = 1, ... , n) and M-. Generally they 
change the values of M; (s = 1, ... ,n). The last 
numbers are eigenvalues of operators fj. which do 
not belong to the set of commuting operators of the 
algebra 3ln of Sp(n). Therefore, it is necessary to 
diagonalize the operators li2) and 1~2) on the subspaces 
Jekj~·.M-(X4n-l). This leads to the usual procedure of 

= 

diagonalization of matrices which represent the 
generators on a given representation space. 

In order to see the structure of the space Jet_(X4n-l) , 
let us first investigate the points for which L n- 1 = O. 
Then we have all numbers equal to zero except In and 
M~ . The value of M;;;, is fixed by 

(4.4) 

Therefore the condition (4.4) defines the function 
yL,O" .. ·· ~~;.ln .. O,··...:.o .,. (o.(n». The eigenvalue of /(2) will 

111n ,0. .0,111" ,0, .0 1 

then be 
(4.5) 

This means that functions with L,,_l = 0 and different 
values of In in JeXr(X4n-l) belong to different irreduc­
ible representations of Sp(n). We denote the eigenvalue 
of li2l by L(L + 2), and then from (4.5) and (4.1) we 
get 

L = 1M-I, 1M-I + 2,'" ,L. (4.6) 

Now taking into account the generators of the algebra 
3ln , we see that to the same representation as the 
point (L,O) in diagram (Ln- 1 , In) must also belong 
the points (L ± 1, 1). Proceeding in this way, we get 
the following decomposition of the space Jet_(X4n-l) 
into the subspaces which are irreducible under the 
action of Sp(n): 

L 

Je;r(X
4n

-
1
) = _ EEl _ Jel,M-(X4n-

1
). (4.7) 

L=IM 1 

This is illustrated diagrammatically in Fig. 3. Of 
course, the set of functions which span the space 

Jei.1Ir is obtained by the diagonalization of the 

operator J?) in all subspaces Je~~'~l-' Therefore, the 
function fit; y;;~;l8(0.) is the ssi~ultaneous eigen­
function of the s~t of 4n - 1 operators 

{'ill3; 6.(x4n-l), J~21, Kn , H n; 6.(x4(n-H-l), 

1(2) K H . .. 1(2) H } 
n-l , n-l' n-l , '1, 1 (4.8) 

L
n

_
1 

~n ~n 
~--------~----~ 

L 
4t. L-2 'M-

I 

FIG. 3. Decomposition of the space Jet- into the subspaces irreducible under the action of the algebra :R" of Sp(n). 
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and is generally expressed as a certain linear com­

bination of functions which span the space Je;~.::1-. 
It will be given explicitly in the forthcoming paper on 
noncom pact groups. 

On the spaces JeLu-(X4n- l) one can introduce the 
irreducible unitary representations of the Sp(n). 
Unitarity of these representations can be proved in 
the same way as it was in the case of the most de­
generate representations. 

The highest weight of a representation Df realized 

on the space .retM-(X4n-l) is calculated in Appendix 

C. Then the representation Df can be denoted, 
according to the notation of Konuma, Shima, and 
Wada,15 by 

D-=DL-- 0··· 0 L (_ L - L ) 
L '2"" 

(4.9) 

which corresponds to the Young tableaux with two 
rows defined by the symmetry scheme17 

[
L + L L - L 0 ... oJ (4.10) 

2 ' 2 " , . 

The representations realized on spaces JetM(ll- and 
L JeL- lI" -, where 

, '(il 

M(i) :P!; M(2), 

are equivalent because they have the same highest 
weight. 

B. Representations of Sp(1) (9 Sp{n) 

Finally, we should remark that the full set of 
functions (2.28) spans a Hilbert space JeL(X4n-l) 
which acts as a carrier space fo'r irreducible unitary 
representations of the group Sp(l) ® Sp(n). The 
corresponding decomposition of the Hilbert space 
JeL(X4n-l) into subspaces is then given by 

JeL(X4n
-

1
) = EB EB EB EB JC;;:'::h~';ln(x4n-l), (4.11) 

L n _ 1 In ffln mn 

where the summation is restricted by conditions (2.26) 
and (2.27). There is no need to repeat the same kind 
of considerations as above to prove the irreducibility 
and unitarity of the representations DL of Sp(l) ® 
Sp(n) on this space. Since Sp(l) ® Sp(n) is a direct 
product, and we have treated Sp(n) in the previous 
sections, it is only necessary to use generators from 
both .'1t~ and .'1tn algebras of Sp(1) and Sp(n), respec­
tively, to prove the irreducibility of representation 
DL. Representations DL of Sp(1) ® Sp(n) decompose 
into the representations of the subgroups Sp(l) and 
Sp(n) according to the formula 

- L 
DL[Sp(1) ® Sp(n») = EEl {DL[Sp(l») ® Dz[Sp(n))}, 

Z (4.12) 
as may be easily verified. 

, 

5. CONCLUSION 

The main results can be summarized in the following 
way. 

(i) A set of harmonic functions which span the 
representation space for the most degenerate unitary 
irreducible representations of the compact symplectic 
group Sp(n) has been found. These representations 
are characterized by a single number which is related 
to the eigenvalue of the second-order Casimir operator 
of Sp(n). They can be also described by a one-row 
Young tableaux. 

(ii) Besides this, the series of unitary irreducible 
representations of Sp(n) characterized by two inde­
pendent numbers Land L has been obtained. These 
numbers are related to the eigenvalues of the Laplace­
Beltrami operator d(X4n-l) on the quaternionic unitary 
sphere X4n-l and of the second-order Casimir operator 
of Sp(n), respectively. To these representations corre­
spond the Young tableaux with two rows. 

(iii) The number of operators in the maximal set 
of commuting operators, the eigenvalues of which 
characterize the basis functions of the representation 
space, in the case of the most degenerate representa­
tions is 

(5.1) 

and in the case of the less degenerate representations 
it is 

N2 = 4n - 1. (5.2) 

These numbers are sufficiently small when compared 
to the corresponding number in the case of non­
degenerate representations of Sp(n); 

N n = in(n + 5) - 1. (5.3) 

This underlines the importance of the degenerate 
representations for physical applications. 

(iv) In the parametrization introduced on the 
quaternionic unitary sphere X 4n- 1 , the generators 
H. which form the Cartan subalgebra are all diagonal, 
which, again, is useful for applications. 

(v) Finally, the patterns of the decomposition of the 
given irreducible representation of Sp(n), with respect 
to the maximal compact subgroup Sp(l) ® Sp(n - 1) 
of it, occur because of the parametrization. 
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APPENDIX A: ALGEBRA OF Sp(n) AND OF Sp'(l) 

In order to obtain the algebras of Sp(n) and Sp'(l) 
groups, let us consider an infinitesimal symplectic 
transformation in the unitary n-dimensional quater­
nionic space Q(n): 

Aq -+ q for q, q' E Q(n). (AI) 

The necessary and sufficient condition for the n X n 
matrix of quaternionic elements A to be symplectic is 

AA+ = A+A = I, (A2) 
where 

(A3) 

We point out that the "plus sign" here represents the 
quaternionic conjugate defined in Sec. 3 and the 
transposition of matrix A. Representing any element 
of A in the form 

and considering the real parameters ast , bst ' Cst and 
dSI (8, t = I, ... , n) as infinitesimally small quantities, 
we obtain, imposing condition (A2), 

ast = -ats 

b.t = hts, 

Cst = cts ' 

dst = dts, 

or 

ass = 1 (8 = 1, ... , n), (AS) 

($ "fl, ) 

(st=l"'n) , , " (A6) 

for 8 ¢ t. 

Let us now define four formal, linearly independent, 
quaternionic quantities: 

qs+ = as + ibs + jc. + kds = Zs + z_sj, 

qs- = as + ibs - je s - kds = z. - z_sj, 
* 'b + . kd * *, (A7) q.+ = as - I s ]c. - s = z. + Z_s), 

* 'b' + kd * *. qs- = as - I s - ]Cs • = z. - Z_s]' 

We define the representation of the group Sp(n) as a 
transformation in the space of functions of these 
variables determined by 

(T f)(q . .. q* ..... q . .. q"') 
A 1+ , '1-' 'n+ ' '12-

= f[(A-1ql)+' ... , (A-lql)~; ... ; 

(A-1qn)+, ... ,(A-lqn)~] (A8) 

we can expand the right-hand side of Eq. (AS) into 
a Taylor series. Then the generators of the Sp(n) 
group are obtained if we consider the one-parameter 
subgroups of Sp(n). This procedure leads to the follow­
ing set of generators: 

La., = [qtos< + + + +) - qsoi + + + +)] == 2'\J1., 
L o" = i[qso.( + + - -)] == '\Ji;, 
Lb •• = i[qtOg( + + - -) + qgotC + + - -)] == 2'\Jt;, 
Leu = j[qgag( + - + -)] == cu,i;, 

L e., = j[qtag( + - + -) + q.Ot( + - + -)] == cu,i., 
Ld" = k[qsa.( + - - +)J == cu,~, 
La" = k[qto.( + - - +) + qsOt( + - - +)] == cu,1.. 

(A10) 

Here we have introduced the notation that, for ex­
ample, Q80t( + - - +) represents the expression 

qs+aH - qs_Ot_ - q~o:+ + q:_o:_. 
The commutation relations (3.3)-(3.5) of the genera­
tors cu,.7 and '\J~, which are given in Sec. 3, are 
easily verified either by using the definition of quater­
nionic derivatives (A9) or by expressing generators 
cu,~ and '\J~ in variables zs' z_s' z:, and z~o as 
follows: 

+ 1[ 0 0 0 cu,ot = '2 z'-a + Zt;-- - z_o;-
Z_1 uZ_s UZt 

- Z_t o~. + complex conjugate} 

cu,- - ~ [z ~ z ~ a a J 
sl - 2' sa + to + z_s;- + z-Io- - C.C. , 

I Z_t Z_s UZ t Zo 

'\Jt = 21. [ZsOO + Zt';,O - z_o';, 
0 

- Z_t_
O
- - c.c.], 

I Zt uz. UZ_t oZ_o 
- 1[ 0 a 0 0 ] 'D st = 2- zs;- - Zt-o + z_.;-- - Z-t-

o
- + C.c .• 

UZt z. uZ_ t Z_s 

(All) 

Now we may express these generators through those 
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ofcu,(2n) given in Ref. 4 as 

L;;t= [z.~ - Zt~ + c.c.], 
OZt GZM 

L- t = -i[Z ~ + Zt ';j0 - c.c.]. 
8, B OZt rlZ. 

We see that 

cu,.~t = HL.~_t + Lt_.], 

'11~t = HL~t =F L~ •. _t]· 

(AI2) 

(A 13) 

(A14) 

Because the algebra 3tn of the Sp(n) group is the 
compact real form of the algebra of the complex 
group Cn , we can easily find the Weyl's standard 
basl's H E E E of C by using the k' ±2ek' ±ek±e,' ±ek'Fe, n 
generators (AIO). This relation is given by formulas 
(3.8)-(3.11) of Sec. 3. 

The commutation relations of these generators are 

n 

[E .. , E_ .. ] = 2~kHk' 
k=1 

[E .. , Ep] = N .. ,pE .. +p, 

[Hk' Ell] = -~kEIl' 

[Hk' HI] = 0, 

(AtS) 

where ~ and f3 are roots and where Nll,p = N_ ... _p ¥= 0 
only if ~ + f3 is also a root. We obtain a Dynkin 
diagram (see Fig. 4) of the group Cn if we put 

(AI6) 

For k < I we have 

, 

2 2 2 2 • •• ~----.~----.~---------~"~===9.I) a(l) a(2) a(3) a,.-II a,n, 

FIG. 4. Dynkin diagram of the group e,.. 

where e1,"', en are unit vectors which form an 
orthonormal basis in the root space. 

Generators E± .. play the role of raising and lowering 
operators when acting on the basis functions (2.28) 
of the space JeL(X4n- 1), while the generators H,. form 
a Cartan subalgebra. In the following we present 
explicit expressions for these generators as linear 
differential operators in the parametrization of the 
manifold X 4n- 1 which we introduced in Sec. 2. 
Similarly, the three generators of C1 which correspond 
to the Sp' (l) group are defined by 

E:±:2eo = z-* i (91t.k ± icfLk. k) = 2-*! E!2eo, 
k=1 k=1 

n 

Ho = -i'illa = -i 2 ctJt.k , (A17) 
k=1 

where 

(AI8) 

ctJt.k = - i[Zk l.... - Z~k ~ - c.c.]. 
OZk OZ_k 

In the parametrization of X4n-l we now have 

(A19) 

(A20) 

E = ~ {fl [:rie:±:i('Pk-fIl,) sin f}l ~ :r ie:±:i('P,-fIlk) c~s f}1 ~ 
±ek±el 2 fk cos f}k Oq;k sm {}k 01Jlk 

+ (e:±:i('PI-lJ'k) cos {}k cos {}j + e±j(tpk-IJ'I) sin {}k sin f},) a~J 

+ ~ [=F ie±i('PI-'fk) sin {}k ~ :r ie±i(tpk-'f') c~s f}k ~ 
fl cos f},oq;z sm {}, 01Jlz 

+ (e:±:i('Pk-lJ'l) cos f}k cos f}, + e:±:t('P'-lPk) sin f}k sin f},) ~J 
Of}l 

(A21) 



                                                                                                                                    

and 

Here 

and 

REPRESEN'FATIONS OF THE SYMPLECTIC GROUPS. I 1199 

E = ! {II [± ie±i('I"-'I'k) cos {}I 1.-. :r: ie~i('I"-'I'k) sin {}! ~ 
=Fek±ez 2 I" {}::I T • {} ::I 

Jk cos k UCPk sm k ulPk 

+ (e±i('I'I-'I'k) cos {} sin {} - e~i('I"-'I'k) sin {} cos {} ) ~J 
I k I k O{}k 

+!J: [± ie±i('I'Z-'I'k) cos {}k ~ 1= ie~i('I'I-'I'k) sin {}k ~ 
Iz cos {}l OCPI sin {}l OlPl 

- (e±i('I'Z-'I'k) sin {} cos {} - e~i('I"-'I'k) cos {} sin {} ) ~J 
I k I k o{} 

I 

+ (e±i('I'I-'I'Ic) cos {}l cos {}k + e~i('I'I-'I'k) sin {}! sin {}k)GZ,k}' (A22) 

jj = cos ~i 

APPENDIX B: ACTIONS OF GENERATORS ON 
BASIC FUNCTIONS 

Ik cos ~k sin ';k+l ... sin ';z 
(A23) 

Gl.k = . cos~! sin :k ~ 
SIn ~k+1 ••• SIn ~z O~k 

To prove irreducibility of the representations 

Df(X4n- 1) and Df(X4n-1) we need explicit formulas 
for the action of different generators of the algebras 
:R~ and:Rn of Sp'(l) and Sp(n), respectively. However, 
we do not need to know this action for all generators 
of Sp(n) because, if we know, for instance, the action of 
E ±ep±ep_1

' E ±ep~ep_l' and E 2ep for any p = 2, ... , n, 
we can use the commutation relations (A15) to get, 
for example, E±ep±e,,_k for any k < p. For this reason 
in this appendix we give the formulas for the action 

II cos ~l cos. ~k sin ~k+1 . ... sin ~r-1 cos ~r ~ 
r~k+1 sm ~r+1 ... sm ~z o~r 

- cos ~k sin ~k+1 ... sin ~1-1 ~ . (A24) 
O~l 

The algebra of Sp'(l) in Sp'(1) ® Sp(n) is formed by 
the three generators of the generators E±ep±ep_1 ' E±ep~ep_l' and E±2ep on 

the basis functions (2.28). 

E = 2-1 ~ e±i('I'Ic+'I'k) 
±2eo £.. 

As may easily be seen from the explicit expressions 
of the generators in Appendix A, the generators 
E ±2ep do not change values of either Lk (k = 2, ... , n) 
or Ik (k = 1,'" ,n), whileE±ep±ep_l andE±ep~ep_l in 
these sets of eigenvalues change only L p _ 1 , 11" and 
11'-1' All the generators, except those of Hp which 
form the Cartan subalgebra, change the values of 
m 1' , iii1' , m 1'_1 , and iii 1'_1 . Therefore, in what follows, 
we label the eigenfunctions only by the eigenvalues 
L1' == L, L 1'_1 == L', Ip == I, 11'-1 == 1', m1' == m, 

1,~1 

X [±i tan {}k ~ 1= i cot {}k ~ + ~J (A25) 
OCPk OlPk O{}k 

and 

Ho=+iL-+-' n(o . a) 
k~1 0CP/c O'!jJk 

(A26) 

It is rather easy to show that these generators com­
mute with the algebra of Sp(n). 

m 1'_1 == m', iiip == iii, and m p_1 == iii'. Thus we have 

H yL,L'il",z';_, = (m _ iii)yL,L':Z,,-z'~, 
1J m,m ;m,m m,m ;m,m , 

H- yL L"Z Z" ( -) L L"Z !' 
V m',m:;,ff",;n, = m + m Y n:,m~;riiJm" 

E YL,L';Z,I'; - 2-1[(1 :r: m ± m-)(I ± m:r: - + 2)]1 y L,L';I,Z'; 
±2ep m,m';m,m' -.,- ,... m m±l,m';lii=fl,rn/' 

~1' yL,L';I,Z'; _ 2-1[(1 :r: m :r: m-)(1 ± ± - + 2)]yL,L';I,I'; 
L±2eo m,m';m,m:, - T T m m m±l,m';m±l,m" 

E yL,L',z,~,\, = 16[(1 + 1)(1' + 1)(L' + 2p - 3)]-1 ±ep±ep_l m,m ,m,m 
~ ~ ~ . (!il.T') b (-~d± L L'+~L"!H! !'+~!' 

x£..£.. "'" Sign UL a~L',~! n',~!' C61 ~I' y"';,m'±1;nI'Fl,nI' 
dL'~±1 d!~±1 6!'~±1 

+ C±d-~ yL,L'+~L,,!+6Z,I'+~!') tH ~l' m±l,m';m,m'=fl , 

(B1) 

(B2) 

(B3) 

(B4) 

(B5) 
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a+I,H = [(L - 11 - I)(L + 11 + I + 4p - 2)]1, 

a-I,H = [(L - 11 + I + 4)(L + 11 - I + 4p - 6)]1, 

a±l,_l = [(L - 11 ± I + 2)(L + 11 T I + 4p - 4)]1, 

bH,H = [(11 + 2p - 2)(11 - I1' + I' + 4)(11 + I1' + I' + 4p _ 6)]1, 

bH,-1 = [(11 + 2p - 2)(11 - I1' - I' + 2)(11 + I1' - I' + 4p- 8)]1~ 
b-I,H = [(11 + 2p - 4)(11 - I1' - 1')(11 + I1' - I' + 4p - 6)]1, 

b_l,_l = [(11 + 2p - 4)(11 - I1' + I' + 2)(11 + I1' + I' + 4p - 8)]1, 

C!l = [(I + 2)(1 ± m + Iml + 2)(1 ± m - Iml + 2)]1, 

c:::1 = [l(1 T m + Im/)(l T m - Im!)]l, 
C!l = [(I + 2)(1 + Iml ± m + 2)(1 - Iml ± m + 2)]1, 

Cl = -[l(l + Iml T m)(I- Iml T m)]l. 

(B7) 

(B8) 

(B9) 

The coefficients d~ and J~ are the same as c~ and c~ , respectively, if one substitutes I', m', and m' for I, m, 
and m, respectively. 

In the case of the representations Df(X4n- 1) of Sp(n), when 

L = 11 + I, 11 = I1' + I' 
and 

I = m - m, [' == m' - m', 
we have 

aH,H = b-I,H = c:::1 = d:::1 = c~ = d~l = O. (B10) 

This reduces expressions (B5) and (B6) to the following form: 

E y L,L;:I!I~, = 16[([ + 1)([' + 1)(L' + 2p - 3)]-1 ±e,,±ep_l m,m .m,m 

{ b -± d± yL,L'±l;I'fl,I'±l + b ± d- ± yL,L''fl,I±l,I''f1} (B11) 
X -a±l,'fl ±l,±lC'fl ±l m,m'±l,m±l,m' a'fl,±l 'fl,'flC±1 'fl m±l,m',m,m'±l, 

E yL,L';!,y _, = 16[(1 + 1)(/' + 1)(I.: + 2p - 3)]-1 ±ep=Fep_l m,m ,m,m 

{ b 'f d± yL,L'±l,l'fl,I'±i b -± d-'f yL,L''fl,I±l,I''f1} (B12) 
X ±aof;l,'fl ±I,±lC'fl ±l 'm'fl,m'±l,m,m' T a'fl±,l 'fl,'flC±l 'fl m,m';lii=fl,m'±l . 

The action of the invariant operator I?) connected with the Sp(l) component of Sp(l) ® Sp(n) is given by 
the formula 

li2)yi;5:;~''',M/;Mn-'··· ,Ml- = [i [ll(lll + 2) + 2 L M;M;] y.;ft:;~'·· ,M/;Mn-,·· ',M1 -

ll=l l:511<r:5n 

'" [C yL,L,; I, + ~ Dr M,,+,···,Ml+;Mn-,···,Mp -+2,···,Mr--2,···,Ml-
l:511<r=Sn 

~4~ ] + CrI'YM,,+, ... ,Ml+;M"-"",M,,--2, ... ,Mr-+2"",Ml-' 
where 

(B13) 

APPENDIX C: CALCULATION OF THE IDGHEST 
WEIGHT 

In a representation D of a semisimple Lie group G 
of rank n, in which the matrices D(Hi) of the 
Cartan subgroup generators Hi are diagonal, the 
eigenstates and eigenvalues of D(Hi) are defined by 

D(Hi)f = mJ (CI) 
The set of eigenvalues {mi } may be considered as a n­
dimensional vector in the so-called weight space.1S A 

11 R. E. Behrends et al., Rev. Mod. Phys. 34, I (1962). 

(B14) 

weight m is called higher than another weight m' if the 
first nonvanishing component of m - m' is a positive 
number. The weight A, which is higher than any 
other weight in a given representation, is called the 
highest weight. As is well known,19 the highest weight 
fully characterizes the irreducible representation of a 
compact group. We shall denote its components by A. 

It has been proved by Cartan that there exist n 

10 E. B. Dynkin, Usp. Math. Nauk 2, 4(20) 59 (1941). 
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1..J1 .... 
..J 

FIG. 5. The less degenerate representation of Sp(n); decom· 
position with respect to the subgroup Sp(l) ® Sp(n - 1). 

fundamental weights 1\(1)"", 1\(n), and that any 
highest weight 1\ is a linear combination 

n 
1\ = ~ A

k
1\(k), 

k=1 

(C2) 

where the Ak are nonnegative integers. Moreover, 
these fundamental weights are uniquely defined by the 
root system of the algebra of G. From the system 
{oc(I) , •.• , oc(n)} of simple roots, we can cillculate the 
Cartan matrix {Ai;} by 

2( ocw, oc(;) 
Aij = (ocw, oc(1) . (C3) 

Then the fundamental weights are given by 
n 

1\(k) = ~ (A-1)klocW, (C4) 
1=1 

where A-I is the matrix inverse to {Aij}' Usually an 
irreducible representation of the group G is denoted 
by D()'1, ... , An). This notation appears throughout 
Secs. 3 and 4 and in Paper II. 

Let us calculate the coefficients 1.1, ... , An for the 

representations DZ of the group Sp(n). The eigen­
value of the generator 

Hn = i(~ +~) (CS) 
offn 01pn 

is clearly 
-In':::;; mn + mn .:::;; In' (C6) 

Therefore the highest weight is the one with the highest 
value of In' From Fig. S we see that the highest 
possible value of I", is 

In = L + L (C7) 
2 

To this value corresponds 

L-I L n_ 1 =-- . 
2 

(C8) 

Hence there is a highest possible value of 110- 1 , given by 

L-L 
' 10- 1 =--2 

(C9) 

But, when (C7) and (C9) hold simultaneously, it is 
easy to see that 

In_ 2 = ... = 11 = O. (CIO) 
So we have 

( 
L-L L+L) (Al ,'" ,An) = 0," ·,0'-2-'-2- . (Cl1) 

Now in the case of group Sp(n) the Cartan matrix is 
given by 

2 -1 

-1 2 

o 0 
o 0 
o 0 

0 

0 

2 

-1 

0 

0 0 

0 0 

(CI2) 

-1 0 

2 -1 

-2 -2 

if we use the definition of 1X(i) (i = 1, ... ,n) given 
in Appendix A (AI6). Then the set of fundamental 
weights of Sp(n) is 

1\ h) = oc(l) + OC(2) + ... + oc(n-I) + (f)oc(n) = en, 

1\(2) = oc(l) + 2ex(2) + ... + 2ex(n-l) + ex(n), 

= en- 1 + en' 

1\(n-1) = ex(l) + 2ex(2) + ... + (n _ l)ex(n-1) 

+ [en - 1)/2]ex(n) = e2 + ... + en, 
1\(n) = ex(l) + 2ex(2) + ... + (n _ l)ex(n-1) 

+ (n/2)ex(n) = e1 + ... + en' 

(C13) 

In the case of the representation Djr of Sp(n) this gives 

A =L+L_L-L=L 
1 2 2 ' 

L-L 
1.2 = --, 

2 
(CI4) 

1.3 = ... = An = O. 

Therefore, we have obtained the formula 

D- - D L -- 0··· 0 L (- L -L ) 
L- '2" , , (CIS) 

as indicated in Secs. 3 and 4. 
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Korteweg-de Vries Equation and Generalizations. I. A Remarkable 
Explicit Nonlinear Transformation* 

ROBERT M. MIURAt 
Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 

(Received 8 October 1967) 

. A:n expli~it nonline~r t~ansformation rel~ting solutions of the Korteweg-de Vries equation and a 
slml!ar non.lul:ear equa~lOn IS prese.nted. This transformation is generalized to solutions of a one-parameter 
famIly of sImIlar. nonlme~r equatIons. A transformation is given which relates solutions of a "forced" 
Korteweg-de Vnes equatIon to those of the Korteweg-de Vries equation. 

1. INTRODUCTION 

Interest in nonlinear dispersive wave equations 
has focused recently on the simplest model equation 
of this type, namely, 

(1) 

where subscripts denote partial differentiations. 
Korteweg and de Vriesl first derived (1) (the 
KdVequation) in their study of long water waves in a 
(relatively shallow) channel. Recently, this equation 
has been derived in plasma physics2•3 and in studies 
of anharmonic (nonlinear) lattices.4.5 Existence and 
uniqueness of solutions of the KdV equation for 
appropriate initial and boundary conditions have 
recently been proved by Sjoberg.6 The simplest 
modification of the nonlinear term in (1) leads to a 
similar equation 

Vt + v2v", + V"""'" = 0, (2) 

which also arises in the study of anharmonic lattices. 5 

The present paper is the first in a prospective series 
of works on properties and solutions of the KdV 
equation and its generalizations.7 

* The work presented here was supported by the Air Force Office 
of Scientific Research under Contract No. AF49(638)-1555. 

t Present address: Courant Institute of Mathematical Sciences, 
New York University, New York, N.Y. 

1 D. J. Korteweg and G. de Vries, Phil. Mag. 39,422 (1895). 
2 C. S. Gardner and G. K. Morikawa, Courant Institute of Mathe­

matical Sciences Report No. NYO-9082, 1 May 1960 (unpublished). 
3 H. Washimi and T. Taniuti, Phys. Rev. Letters 17, 996 (1966). 
t M. D. Kruskal, "Asymptotology in Numerical Computation: 

Progress and Plans on the Fermi-Pasta-Ulam Problem" in Proceed­
ings of the IBM SCientific Computing Symposium on Large-Scale 
Problems in Physics (IBM Data Processing Division, White Plains, 
N.Y., 1965), p. 43. 

5 N. J. Zabusky, "A Synergetic Approach to Problems of Non­
linear Dispersive Wave Propagation and Interaction" in Proceedings 
of the Symposium on Nonlinear Partial Differential Equations, 
W. Ames, Ed. (Academic Press Inc., New York, 1967), p. 223. 

• A. Sjoberg, "On the Korteweg-de Vries Equation, Existence and 
Uniqueness" (Uppsala University, Department of Computer 
Sciences, Uppsala, Sweden, 1967) (unpublished). 

7 This program of research has been conducted mainly by C. S. 
Gardner, J. M. Greene, M. D. Kruskal, C.-H. Su, and the author 
at the Plasma Physics Laboratory, Princeton University, Princeton, 
N.J., and by N. J. Zabusky at the Bell Telephone Laboratories, Inc., 
Whippany, N.J. Specific individual contributions will be reflected 
in the authorship of the various papers. 

I am privileged to write this first paper in the 
series, which presents a remarkable explicit nonlinear 
transformation between solutions of (1) and (2). 
Also, a transformation to an accelerating coordinate 
system is presented which relates solutions of (1) and 
a "forced" KdV equation. The second paper in the 
series8 will discuss the existence of conservation laws 
and constants of motion for these equations. Also, 
it will show how the nonlinear transformation leads 
to associated eigenvalue problems. The third paper 
will show that the KdV equation governs small but 
finite perturbations from homogeneous equilibrium 
for a wide class of nonlinear dispersive systems. The 
fourth will show how the KdV equation and some 
generalizations can be viewed as Hamiltonian systems. 
The fifth paper will give a detailed discussion of 
polynomial conservation laws, including ·uniqueness 
and nonexistence proofs. The sixth paper in this series 
will consider the associated eigenvalue problems and 
will show how a study of them leads to exact general 
solution of the KdV equation. These papers will be 
referred to as I, II, III, IV, V, and VI. 

2. TRANSFORMATION RELATING EQUATIONS 
(1) AND (2) 

Equations (1) and (2) are particularly interesting, 
since they are exceptional among equations of the form 

Ut + uPu", + u"''''''' = 0, p = 1,2,3, ... , (3) 

as the only ones possessing more than three "poly­
nomial conservation laws" (not trivially equivalent; 
see II, Sec. 2. This result will be proved in V). 

The similarity between (1) and (2), both in form 
and in possession of many polynomial conservation 
laws (see II), suggested that their solutions might be 
intimately related. A detailed comparison of these laws 
led to the discovery that if v satisfies (2), then u, 
defined by 

u == v2 ± (-6)!v"" (4) 

3 J. Math. Phys. 9, 1204 (1968), following paper. 
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satisfies (1). By explicit calculation, in fact, 

Ut + UU'" + u"''''''' 

== (2V ± (-6)! O~)(Vt + v2v", + v",,,,,,,). (5) 

The presence of the operator (2v ± (-6)!%x) 
hinders us from concluding inversely that if U 

satisfies (I), then any solution v of the Riccati equation 
(4) is a solution of (2). 

The reader need not be concerned about the occur­
rence of the imaginary coefficient in (4). It is an 
historic accident that we chose to study (1) and (2) 
with the signs of the terms as given. For (I), the 
particular choice of signs is unimportant, since 
appropriate changes of sign of the variables yield 
transformations between any two possibilities. (See 
V for transformation properties of the KdVequation.) 
However, for (2), the relative sign of the last two 
terms is invariant to such transformations, but can 
be reversed by the substitution v - iv. We could have 
confined our discussion here to real solutions by 
considering two versions of (2), one with like and 
one with unlike signs. 

The transformation takes (2) with cubic nonlinearity 
into the quadratically nonlinear KdV equation (1). 
It is rare and surprising to find a transformation 
between two simple nonlinear partial differential 
equations of independent interest. One is reminded 
of the Hopf-Cole transformation9,lo of the quadrati­
cally nonlinear Burgers equation into the linear heat 
conduction (diffusion) equation. A number of investi­
gators (including us) have attempted unsuccessfully 
to find a similar simple linearizing transformation 
for the KdV equation, but a complicated one will be 
given in VI. 

3. A GENERALIZATION 

A generalizationll of the transformation (4), which 
in II is used to prove the existence of infinitely many 
conservation laws, is that a one-parameter family of 
nonlinear equations similar to (I) and (2), but 
containing both types of nonlinear terms simultane­
ously, can be transformed into (1). Noting that (1) 
is invariant to Galilean transformation (again, see 
V), whereas (2) is not, we define 

3 
t' == t, x' == x - - t, 

2€2 

U(x, t) == U'(X', t') + i.. , 
2€2 

• E. Hopf, Commun. Pure App!. Math. 3, 201 (1950). 
10 J. D. Cole, Quart. App!. Math. 9, 225 (1951). 
11 I am grateful to C. S. Gardner for this generalization. 

(6) 

(7) 

_ € "v16 ) VeX, t) = ,- w(x , t) + - , (8 
y6 2€ 

where the specific dependence on the arbitrary param­
eter € has been chosen for convenience in II. Then (1) 
remains invariant, of course, but (2) (dropping the 
primes) becomes 

and (4) (with the plus sign) becomes 

(10) 

We observe that (9) reduces to (1) for € = 0, and 

after the rescaling w' == (€/.J6)w it reduces to (2) 
for € - 00. 

4. TRANSFORMATION TO ACCELERATING 
COORDINATE SYSTEM 

The KdV equation (I) can be generalized by adding 
a time-dependent "forcing term," and for convenience 
we write it as 

Ut + uu'" + u"''''''' = Ytt, (11) 

where we assume that Ytt = Ytt(t) is a known function. 
This equation arises in the study of ion-acoustic 
waves.3,12 It also arises in a study of the propagation 
of electrostatic waves through an ion sheath where 
Ytt = 1,13 

We now give a transformation which reduces the 
"forced" KdV equation (11) to the KdV equation 
(I). This transformation is also applicable to more 
general equations (e.g., the Burgers equation) where 
U",xx is replaced by any arbitrary function of x deriva­
tives of u not depending on either U itself or explicitly 
on x or t. Define new variables 

t' == t, x' == x - yet), (12) 

u(x, t) == u' (x', t') + Yt'(t'). (13) 

Direct substitution of this transformation into (II) 
shows that the KdV equation (I) is indeed obtained 
for the primed variables. We note a strong similarity 
to the Galilean transformation (6) and (7). 

The physical interpretation of this transformation 
is clear. The quantity yet) represents a time-dependent 
translation of the x axis, and, therefore, the forcing 

12 This equation does not appear in the paper by Washimi and 
Taniuti because they failed to account for the arbitrary integration 
"constant" y,(t} in their solution relating the first-order electron 
density. a~d ion velocity. This has been corrected in a recent paper, 
T. TamutI and c.-c. Wei, J. Phys. Soc. Japan 24, 941 (l968). 

13 S. H. Lam and C. Berman, Department of Aerospace and 
Mechanical Sciences, Princeton University (private communication). 



                                                                                                                                    

1204 ROBERT M. MIURA 

term in (11) may be interpreted as due solely to an 
acceleration of the x axis. 

Since we have assumed only that Ytt(t) is known, 
we have the freedom to set y(O) = Yt(O) = O. With 
this information the transformation becomes particu­
larly useful, since the initial values for the two equa­
tions are identical: 

u(x,O) = u'(x', 0) = u'(x, 0). (14) 

Therefore, if the solution of the KdV equation (1) 
is known, then the full solution is obtained from (12) 
and (13) with only two simple quadratures to obtain 
Yt(t) and y(t). 

JOURNAL OF MATHEMATICAL PHYSICS 

Note added in proof: The transformation (12) and 
(13) was used by Moore14 for studying the viscous 
boundary layer on an accelerating semi-infinite flat 
plate. I wish to thank H.-H. Chiu of the Department 
of Aeronautics and Astronautics at New York Univer­
sity for this reference. 
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14 F. K. Moore, "Unsteady Laminar Boundary-Layer Flow," 
National Advisory Committee for Aeronautics, Tech. Note 2471, 
September 1951. 
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With extensive use of the nonlinear transformations presented in Paper I of the series, a variety of 
conservation laws and constants of motion are derived for the Korteweg-de Vries and related equations. 
A striking connection with the Sturm-Liouville eigenvalue problem is exploited. 

1. INTRODUCTION 

In this second paper of the series on the properties 
and solutions of the KdV equation, U t + uu~ + u~~ = 
o and its generalizations, we present our current body 
of knowledge on the existence of conservation laws 
and of constants of motion (i.e., "temporal invari­
ants") for the KdV equation (1.1) and two similar 
nonlinear equations (1.2) and (1.9) given in the first 
paper of this series, l referred to as I. The present 
Paper II is meant to be read in conjunction with I, 
where nonlinear transformations relating solutions of 
(1.1) to those of (1.2) and (1.9) are given. (References 
to physical applications are also given there.) Most 
of the results on the conservation laws and the 
constants of motion are based on, or are in some way 
related to, these transformations. 

A conservation law associated with an equation such 

* The work presented here was supported by the Air Force 
Office of Scientific Research under Contract No. AF49(638)·1555. 

t Present address: Courant Institute of Mathematical Sciences, 
New York University, New York, N.Y. 

t Present address: Department of Applied Mathematics, Uni· 
versity of Texas, Austin, Texas. 

1 R. M. Miura, J. Math. Phys. 9, 1202 (1968), preceding paper. 

as (1.1) is expressed by an equation of the form 

Tt + X~ = 0, (1) 

where T, the conserved density, and - X, the flux of 
T, are functionals of u. If T is a local functional of u, 
i.e., if the value of T at any x depends only on the 
values of u in an arbitrarily small neighborhood of x, 
then T is a local conserved density; if X is also local, 
then (1) is a local conservation law. In particular, if T 
is a polynomial in u and its x derivatives and not 
dependent explicitly on x or t, then we call T a 
polynomial conserved density; if X is also such a 
polynomial, we call (1) a polynomial conservation law. 
[We need never allow for dependence on t derivatives 
of u, since (Ll) permits them to be eliminated in 
favor of x derivatives; similarly with the other such 
equations we deal with.] In Sec. 2 we present a number 
of polynomial conservation laws which have been 
found explicitly, and in Sec. 3 we prove that there are 
infinitely many of them for each of (1.1), (1.2), and 
(1.9). 

There is a close relationship between constants (of 
motion) and conservation laws. For example, if one 
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as (1.1) is expressed by an equation of the form 

Tt + X~ = 0, (1) 

where T, the conserved density, and - X, the flux of 
T, are functionals of u. If T is a local functional of u, 
i.e., if the value of T at any x depends only on the 
values of u in an arbitrarily small neighborhood of x, 
then T is a local conserved density; if X is also local, 
then (1) is a local conservation law. In particular, if T 
is a polynomial in u and its x derivatives and not 
dependent explicitly on x or t, then we call T a 
polynomial conserved density; if X is also such a 
polynomial, we call (1) a polynomial conservation law. 
[We need never allow for dependence on t derivatives 
of u, since (Ll) permits them to be eliminated in 
favor of x derivatives; similarly with the other such 
equations we deal with.] In Sec. 2 we present a number 
of polynomial conservation laws which have been 
found explicitly, and in Sec. 3 we prove that there are 
infinitely many of them for each of (1.1), (1.2), and 
(1.9). 

There is a close relationship between constants (of 
motion) and conservation laws. For example, if one 
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assumes either that u is periodic in x or that u and its 
x derivatives vanish sufficiently rapidly at the (finite 
or infinite) ends of some interval, each polynomial 
conservation law (1) immediately yields a constant of 
local conservation type 

1== f T dx. (2) 

(Throughout this paper integrals are to be taken as 
complete.) An example of a constant of "nonlocal 
conservation type" occurs in Sec. 5. However, we can 
also derive constants without use of conservation laws 
(e.g., the discrete eigenvalues discussed in Sec. 4), 
and, on the other hand, conservation laws yield con­
stants of conservation type only under special 
conditions. 

In Sec. 4 we show that the nonlinear transformation 
(1.4) leads naturally to a Sturm-Liouville equation 
(or time-independent Schrodinger equation). The 
discrete eigenvalues turn out to be constants of motion. 
Still another family of constants arises from a study 
of the time-evolution equations for the eigenfunctions, 
as shown in Sec. 5. Finally, in Sec. 6 we give a single 
constant of local conservation type with conserved 
density depending explicitly on x and t as well as on u. 

2. THE EXPLICITLY KNOWN POLYNOMIAL 
CONSERVED DENSITIES 

For a polynomial conservation law of (1.1) or 
(1.2), T and X are each a finite sum of terms of the 
form ugou~' ... Ufl, where U j == aiujaxi and the a j are 
nonnegative integers. For each such term we define 
a rank r. In dealing with (1.1) the rank is the sum of 
the number of factors Uj and half the number of x 
differen tia ti ons, 

I 

that, for both (U) and (1.2), there is a polynomial 
conservation law with nontrivial conserved density 
Tr of each positive integral rank r (and corresponding 
flux Xr of rank r + 1). 

Equation (1.1) can itself be expressed as a poly­
nomial conservation law with r = 1, and multiplica­
tion by U yields one with r = 2. These are obvious, 
and in the usual applications correspond physically to 
conservation of momentum and energy. A polynomial 
conserved density with r = 3 was found by Whitham,2 
two more with r = 4 and 5 were found by Kruskal 
and Zabusky,3 and we have explicitly computed five 
additional ones of consecutive rank. (A systematic 
method for such computations will be given in V.) 
For (1.2), similarly, we have explicitly computed 
polynomial conserved densities with r = t, I, 2, 3,4, 
and 5. These polynomial conserved densities are all 
the ones we know explicitly, and we record them here, 
together with the corresponding polynomial fluxes as 
far as we have calculated them. The freedom to add x 
derivatives has been utilized to write the conserved 
densities in a canonical form where the highest­
derivative factor (if any) in each term occurs at least 
squared (as explained in detail in V), so the following 
formulas are unique up to multiplication by a constant. 

For Eq. (1.1) we have 

T1 =uO , (5a) 

Xl = tu~ + U2 , (5b) 

T2 = tu~, (6a) 

X2 = tu~ + U Ou2 - tuL (6b) 

T3 = !u~ - u~, (7a) 

X3 = tu~ + U~U2 - 2uou~ - 2U1U3 + ui, (7b) 

r1 == L (1 + V)ai' 
i~O 

(3) T4 = lu~ - 3uou~ + l-u~, (8a) 

X 4 = iu~ + U~U2 - !u~u~ + 204 UOU; - 6UOU1U3 
as is consistent with the scaling properties of the last + 3U~U2 + .!.lU

2
U

4 
- l-uL 

two terms of the equation. In dealing with (1.2) the 

rank is To = iu~ - 6u~ui + ~l-uou~ - .!.3.Q.6Jl.U~, 

(8b) 

(9a) 
I 

r2 == t L (1 + j)a j , (4) 
j~O 

similarly consistent. A polynomial of rank r is one 
whose terms are all of rank r. Since any x derivative 
is trivially a conserved density, two polynomials 
which differ by an x derivative will be called equivalent. 
Any polynomial conserved density for (1.1) or (1.2) 
can be uniquely expressed as a sum of polynomials of 
differing ranks. It is easily seen that these polynomials 
individually are conserved densities, since t differentia­
tion increases the rank by l In this section we prove 

Xs = tug + U~U2 - 8u~ui + .!I.o.!l.u~u~ - 12u~u1u3 

+ 12uou~u2 - 3u~ + 25~UOU2U4 - 27~UOU~ 

- ;~U1U2U3 + H-u~ - ~3.!.5.!1.U3U5 + .!.3\Jl.U;, (9b) 

Ts = tu~ - lOu~ui + 18u~u~ - 5u~ - .l.puou~ 

+ '!'~.Q.u~ + ~7.!1.U!, (lOa) 

2 G. B. Whitham, Proc. Roy. Soc. (London) A283, 238 (1965). 
S N. J. Zabusky, "A Synergetic Approach to Problems of Non­

linear Dispersive Wave Propagation and Interaction" in Proceedings 
of the Symposium on Nonlinear Partial Differential Equations, 
W. Ames, Ed. (Academic Press Inc., New York, 1967), p. 223. 
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Xs = tu~ + ugu2 - 1I25U~U~ + 28u~u~ - 20U~U1Ua 

+ 30U~U~U2 - 20uout + 36u~U2U4 - ~-J~u~u; 

+ 1~.!!.uoU~ - 72UoU1U2Ua + 66uiu~ - 20u~ua 

- ~t.!!.UoUaU5 - .I.t.iuou! + ·~-lQ.U~U4 - 1%.l!.U2U; 

+ ~.!!.U1UaU4 + 772U4US - ~7.!!.U~, (lOb) 

T7 = tu~ - l5u~u~ + 36u~u~ - 30uou~ - ~~.iu~u~ 

+ 7~.!!.UOU~ + l08u~u~ + ~t.!!.uou~ 
(lla) 

X7 = iu~ + UgU2 - l8ugu~ + 5lu~u~ - 30U~U1Ua 

+ 60U~U~U2 - 75u~u~ + 72U~U2U4 - lit.!!.u~u; 

+ .!!..p-u~u~ - 2l6u~U1U2Ua + 504uou~u~ 
- l20uou~ua + 90U~U2 - 6~.l!.u~UaU5 

+ .5.t.!!.u~u~ - ~.1f.l!.UOU2U; + H7J!.!!.UoU1UaU4 

- 1~HU~U~ + H/.!!.uoU~U4 - li~2U~ 

- ~\UU1U~Ua + 216u~u2u4 + ~FUOU4U6 
- -\\~uou~ - .i~2U1U4U5 + \-\.l!.U2U~ - 1WU;U4 

(llb) 

Ta = iuZ - 2lugu~ + 63u~u~ - 105u~u~ - 108ugu; 

+ 360u~u~ + 756uouiu~ + 108u~u~ - 324u~u; 

- 1080uou2u; + 378u~ - 6A.l!.uou~ 

(12) 

T9 = i-u~ - 28u~u~ + 5g4ugu~ - 280ugut - 216u~u; 

+ 960u~u~ + 3024u~uiu~ - l68u~ + 288u~u~ 
- 4320u~U2U; - 2592uouiu; + 3024uou~ 
+ ~6tJ!.'!!'U~U~ - ~tPu~u~ + ~6l2l.l!..l!.UOU2U: 
+ 864uiu~ - .!.!!.:~HU1U~ - HHa4u~u~ 

+ 1Ug ll uoU: - !.-\\li~U2U: + Hlis84U: 

- !.HPu~, 

TlO = lou~o - 36u~ui - 630u~ut + l.!.!!.ugu~ 
- 15l2uou~ + 2l60u~u~ + 9072u~uiu~ 
- 195i4ugu; + l3608u~u~ + H8r4uouiu~ 

(13) 

+ 13608u~u~ - 12960u~u2u; - 11664u~u~u; 
+ 648u~u: + 11.f-~u~ - 152l5'!!'J!.!!.UOU1U~ 

- H.!!./5.!!.li.!!.UOU~u~ - HV H uiu2u; 

+ .!.!!.HJ!.!!.U~U2U: + 7776uouiu~ - l.H.!!.u~u~ 

- H.!!.-N5!l.tiU~ + li8 a!li.!!.uou: 

+ ~7~.l!.5ll.!!.U1UaU: + ~657710lllu~u: 
- HHtHuoUIlU~ - HliHU~U~ + .!!.Hg4u~u~ 
- ..5.·~"HgHu4U~ + 16~fg.!.!!.U2U: 

(14) 

For Eq. (1.2) we have 

Tt = vo, 

Xt = tvg + V2, 

Tl = iv~, 

Xl = !v~ + VOV2 - ivi, 

T2 = !v~ - !vi, 

X 2 = tvg + V~V2 - 3vM - 3vl va + !vL 

Ta = tvg - 5vM + 3v~, 
T - !.VS - ~!.V4V2 + .!!.~V2V2 _ llV4 _ ~1.V2 
4-"8"0 201 502101 5a, 

(l5a) 

(15b) 

(16a) 

(16b) 

(17a) 

(17b) 

(18) 

(19) 

3. EXISTENCE OF INFINITE SEQUENCES OF 
POLYNOMIAL CONSERVED DENSITIES 

The orderliness of these conservation laws led us 
quite early to conjecture that there exists one of every 
positive rank, both for (1.1) and for (1.2). The rapid 
proliferation of terms with increasing rank, however, 
makes a straightforward inductive argument extremely 
difficult. We prove the conjecture in this section by 
finding a recursion algorithm for constructing the 
conserved densities; the corresponding fluxes are then 
obtained in terms of them. In V we will discuss these 
polynomial conserved densities in more detail and 
prove that they are unique up to addition of an x 
derivative and multiplication by a constant. Also we 
will prove there that nontrivial polynomial conserved 
densities of half-integral rank do not exist for (1.1), 
nor for (1.2) except with '2 = t. 

By solving (1.1 0) recursively, w can be expressed as 
a formal series of increasing nonnegative integral 
powers of E, the coefficient of En being a polynomial 
in u and its derivatives of rank 1 + in. (Informally, 
E may be thought of as a small expansion parameter.) 
Equation (1.10) transforms (1.1) into 

0= (1 + iE :x + t E2W) [Wt + (w + l-E2
W

2
)W", + w"'''''''], 

(21) 

and, since we are dealing with formal series, obviously 
the expression in square brackets must itself vanish 
(to all orders), which gives (1.9) formally. Thus we 
obtain a conservation law with 

(22) 

Ifwe now substitute the series for w into these, we ob­
tain a formal-series conservation law for (1.1). Then, 
since (1.1) is independent of E, for each n, the coeffi­
cients of En in T and X constitute a conservation law 
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for (1.1). [It actually suffices to generate the conserved 
densities, since the corresponding fluxes are always 
obtainable by antidifferentiation from (1).1 

It remains to demonstrate that the conserved 
density for each even n is nontrivial, i.e., not an x 
derivative (unlike the odd ones, as we shall see 
shortly). To do this we show that each such density 
contains a term (with nonzero coefficient) which is 
purely a power of u, as will suffice since such terms 
can never arise from differentiation. Now, by the 
last remark, all such terms must be generated by 
recursion from (LlO) with the w'" term omitted. This 
equation can even be solved explicitly, yielding 
_(3/€2)[\ - (l + !€2u)f] as the sum of all terms not 
depending on the derivatives of u. But when this is 
expanded, evidently every nonnegative even power of 
€ actually appears. This concludes the proof of the 
conjecture. 

We now show that the coefficients of the odd 
powers of €, which comprise the imaginary terms, 
are all x derivatives, so that these conserved densities 
of half-integral rank are trivial. Assume that u is real 
and define 

WE: Y + iz, (23) 

where y and z are real. From (LlO) it is obvious that 
y contains only even and z only odd powers of E. 

Now (LlO) becomes 

u E: y - €Z'" + i€2(y2 - Z2) + i(z + EY", + !E2yZ). 

(24) 

The imaginary part of this equation may be written 

Z = - ~ [In (1 + !€2y)]",; (25) 
€ 

therefore z is an x derivative to every order in €, as 
claimed. Incidentally, by using (25) to eliminate z in 
the real part of (24), we can obtain a recursion 
formula which generates the nontrivial conserved 
densities y but, unlike (1.10), "skips over" the inter­
vening trivial ones. 

Although (LlO) is a simple recursion formula for 
the conserved densities, it would be quite awkward 
to write an explicit formula for the conserved density 
of rank r obtained from it. A much simpler and more 
elegant formula for the conserved density of rank r 
will be obtained in V. 

Having established the existence of an infinite 
sequence of (nontrivial) conserved densities for (Ll), 
from (I.4) we obtain such a sequence for (1.2), and 
from (LlO) for (1.9). In fact, it was a correspondence 
noticed between conserved densities of (I.l) and (1.2) 
which originally suggested the transformation (1.4). 
Under appropriate boundary conditions, we immedi-

ately have the existence of infinitely many constants 
of motion given by (2). 

It may be remarked that if we had used, instead of 
(22), one of the just mentioned higher polynomial 
conserved densities of the W equation (1.9), e.g., 
T = iw2 , we would also have obtained an infinite 
sequence of conserved densities for (1.1). But the 
results would necessarily be included in the previous 
ones, because of the uniqueness to be proved in V. 

We note that th single conserved density W for (1.9) 
yielded infinitely many conserved densities for (1.1). 
However, the inverse does not hold. One reason for 
this is that u as expressed in terms of W by (1.10) is a 
finite series, and another is that, even if it were infinite, 
because (21) depends on € we could not conclude 
that the coefficient of each power of € would be a 
conserved density. 

4. ASSOCIATED EIGENVALUE PROBLEM 

Viewing (1.4) (with plus sign) as a Riccati equation 
for v, we introduce the usual linearizing change of 
variables 

(26) 

transforming it into 

u = -6 "P",,,,. (27) 
"P 

For most of this section, we consider the case that 
all functions involved (i.e., u, v, "P) are periodic with 
a common period. If (27) is interpreted as an equation 
for "P, then for almost any u there is no (periodic) 
solution. We may, however, take advantage of the 
Galilean invariance of (Ll) and shift u by a constant. 
We therefore replace u in (27) by u - A and obtain 

"P",,,, + i(u - A)"P = 0, (28) 

which is the well-known Sturm-Liouville equation. 
We briefly summarize some familiar properties of 

the eigenvalues A and corresponding eigenfunctions "P 
for the periodic Sturm-Liouville eigenvalue problem4: 

(i) There is a denumerable infinity of eigenvalues, 
all real, satisfying Ao > Ai ~ A2 > 1.3 2 A4 > As 2 
A6 > ... and approaching - IX); 

(ii) The corresponding (real) eigenfunctions "P(n) 
form a complete orthogonal system; 

(iii) The zeros of "P(n) are all simple, and the number 
of them per period is n for n even and n + 1 for 
n odd; 

(iv) A function "P' is an eigenfunction if and only 

• E. A. Coddington and N. Levinson, Theory of Ordinary Differ­
ential Equations (McGraw-Hill Book Co., Inc., New York, 1955). 
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if it makes the functional 

A{ V'} == f (UV'2 - 6V'~) dx / f '1'2 dx (29) 

stationary, and the corresponding eigenvalue A' is 
A{V"}. 

If we allow u to evolve according to the KdV equa­
tion, then it is natural to ask how A and V' evolve. 
Eliminating u by (28) from the KdV equation, the 
result may be written 

0= At - ..§. ~[(V' ~ - '1'",) 
'1'2 ox OX 

x (V't - 3 '1'''';'''''' + '1'",,,,,,, + AV'",)J. (30) 

Multiplying by 1jJ2 and integrating over the period 
gives 

(31) 

thus each eigenvalue is a constant of motion! These 
new, infinitely numerous constants appear not to be 
associated with any nontrivial conservation laws, 
i.e.: with nontrivial conserved densities (see Sec. 2). 

Appropriately integrating (30) twice gives for the 
last expression in parentheses, rewritten again by 
(28) to remove even the apparency of a possible 
singularity when V' = 0, 

V't + tcu + A}lp", + '1'",,,,,,, = rJ.V' + (JV' f"'V'-2 dx, (32) 

where oc(t) and (J(t) are the constants of integration: 
(For the interpretation of the integral when V' has 
zeros, see Sec. 5.) By periodicity, {J = 0 unless 
f '1'-2 dx = 0, this latter being the condition on V' 
that (28) have a second linearly independent periodic 
solution. Thus V't is determined as nearly uniquely as 
could be expected: the freedom to - normalize V' 
arbitrarily at different times is represented by the 
choice of rJ., and to add in the second eigenfunction, 
when A is a double eigenvalue by the choice of {J. 

Conversely, we can verify that if u and V' evolve 
according to (Ll) and (32), then (28) remains satis.fled. 
For denoting the left side of (28) by Q, straIght­
forward calculation leads to 

Qt + t[(u + I.)Q]", + Q.,.,., = O. (33) 

If Q = 0 initially, it remains so for all time, as shown 
by an "energy" argument in whic~ (33) is mult~plied 
by Q and integrated, and S Q2 dx IS shown by. slmp!e 
estimation to grow no faster than exponentially lD 

time. 
It is interesting to examine the eigenfunctions for 

large (negative) I. by means of the familiar WKB 
formalism. We set 

V' ~ Re [B exp {(1./6)t f'" A dX}} (34) 

where A and B are asymptotic series in nonpositive 
integral powers of At, all coefficients of which have 
the common period in x; the factor B will be chosen 
later for convenience, but we could set B = 1 without 
loss of generality. We require the expression in 
brackets to satisfy (28), obtaining a condition which, 
when solved for the A in the leading terms, yields 

A = [1 - (6/A)t(A", + 2:", A) -1(u + 6!",,,,) r 
(35) 

as a recursion formula for A. Periodicity of (34) 
requires 

fA dx = 27TN( -6/A)t, (36) 

N being the (large) number of zeros of V' in a period. 
[Taking the imaginary instead of the real part in (34) 
gives the other eigenfunction with N zeros; thus the 
complex version of (34) represents both V'(N-ll and 
V'(N) at once, and I.N-l = I.N to all orders as N -- 00.] 
Seen to be even more effective than B = 1 is the choice 
B = A-t, which eliminates the A-t term in (35). 
With either choice, the coefficient of any power of A 
in A is e~idently a polynomial in u and its derivatives, 
and is a conserved density by (36). With B = A-t, 
in fact, the simple replacements A == 1 + le2y and 
A == -h-2 transform (35) into the recursion formula 
for the nontrivial polynomial conserved densities 
mentioned after (25). The derivation here is more 
general, however, since it shows that if the evolution 
of u in (28) is governed by any equation whatsoever 
which leaves the eigenvalues invariant, then that 
equation possesses all the same polynomial con­
served densities as the KdV equation. Lax5 has 
initiated a search for such equations and found 
several, and Lenard6 has recently derived an infinite 
sequence of such equations. 

Turning now to the case of the infinite interval with 
u vanishing sufficiently rapidly as x -- ± 00, we have 
the time-independent Schrodinger equation eigen­
value problem. The spectrum of eigenvalues is now 
a semi-infinite continuum together with a finite 

6 P. D. Lax, Courant Institute of Mathematical Sciences, New 
York University (private communication). 

• A. Lenard, Department of Mathematics, Indiana University 
(private communication). 
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number of discrete values; however, the constancy 
of the eigenvalues shown by (31) is informative only 
for the discrete ones (if any). The eigenfunctions of 
the discrete spectrum are square-integrable, whereas 
those of the continuous spectrum, although bounded, 
are not square-integrable and are thus "improper." 
We can associate complex reflection and transmission 
coefficients with these improper eigenfunctions. For 
an incoming plane wave at 00 or - 00, the transmis­
sion coefficient turns out to be a constant of motion 
and the reflection coefficient to depend on time in a 
very simple way. These results have been published 
elsewhere7 in brief and, together with the earlier 
material of this section, will be elaborated in VI. 

5. FURTHER CONSTANTS OF THE KdV 
EQUATION FROM THE fjI EQUATION 

From (28), u may be expressed as a rational func­
tion in "P and its derivatives which is homogeneous of 
degree zero. Thus any polynomial conserved density 
for the KdV equation can be transformed into a 
rational homogeneous conserved density of degree 
zero for (32). Similarly, such conserved densities for 
(32) are obtained from the conserved densities for 
(1.2) and (1.9). In addition, it is easy to verify that 
(32) has two rational homogenel)us conserved densities 
of degrees other than zero, namely, "P2 and "P-2, which 
therefore obviously do not correspond to any for the 
KdV equation. For the periodic case, however, we can 
form the two associated constants, whose product 

(37) 

is itself a constant and, being homogeneous of 
degree zero, may evidently be considered a functional 
of u. (This constant can be associated with either of 
the two distinct non local conserved densities "P2 S "P-2 dx 
and "P-2 S "P2 dx.) Since there are infinitely many 
eigenfunctions, we have obtained a new family of 

7 C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. 
Miura, Phys. Rev. Letters 19, 1095 (1967). 

infinitely many constants of motion for the KdV 
equation [and hence for (1.2)]. 

Note, however, that since any eigenfunction 
(except the first) has zeros, J "P-2 dx is not properly 
defined. To overcome this difficulty, first assume that 
u is analytic. Then so is "P,' and we may extend "P 
by analytic continuation to some strip containing 
the real axis and choose a path of integration a little 
off the axis to avoid the zeros of "P. Since the residue 
of "P-2 is zero wherever "P = 0 because, by (28), 
"P.,., = 0 there, the value of the integral is the same 
whether the path goes above or below a pole. With 
this interpretation of the integral, the proof of its 
constancy remains valid. The integral turns out to 
equal the finite part, in the sense of Hadamard, of 
the integral as originally written along the real axis. 
Taking this now as the definition, we may relax the 
assumption that u be analytic as long as u is sufficiently 
smooth, and the integral is still a constant. 

6. CONSERVED DENSITY EXPLICITLY 
DEPENDENT ON x AND t 

It occurred to us to look for local conserved 
densities of the KdV equation in the form of a 
general function of u and a finite number of its 
derivatives (instead of just a polynomial) and of x 
and t as well. The only new one we found (besides the 
irrelevant universal one consisting of a general function 
of x and t alone) is T = xu - ttu2 , the complete 
conservation law being 

(xu - ttu2)t + (txu2 + xu.,., - u., 

- !tu3 
- tuu.,., + ttu!)., = o. (38) 

We have shown straightforwardly that there is no 
other new conserved density which is a (several 
times differentiable) function of x, t, u, u." u=, uz=, 
and u=. We conjecture that there are no others at 
all, so that the new conserved density is unique of 
its type. In any case, (38) concludes the roster of all 
conservation laws and constants of motion known to 
us. 
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Sol~tions of the Sch~odinger equ.ation with a velocity-~e~nde~t potential are discussed. The analytic 
be~a~JOr of the S matrIX as a functIon of ~he momentum IS InvestIgated, and some properties of general 
valIdIty are de~onstra!ed. ,!he co~figuratJOn of the poles of the scattering matrix in the complex-mo­
mentum plane IS desCrIbed In detaIl for the case of a spherically symmetric potential. 

1. INTRODUCTION 

The observation that the interaction between two 
nucleons is strongly repulsive at short distances, and 
the consequent difficulties in the treatment of such 
singular potentials has originated the introduction 
of the velocity-dependent forces in nuclear physics.1.2 
It was shown that, in the description of the two­
nucleon interaction, hard-core terms in the Schrodinger 
equation could be replaced with advantage by 
velocity-dependent potentials.3•4 

The introduction of new terms containing momen­
tum operators changes the form of the differential 
equation, and a restudy of the properties of its 
solutions may be then necessary in such cases. In a 
previous papers we have discussed the properties 
of the wavefunction, special attention being given to 
the consequences of the existence of singularities in 
the differential equation. 

We may now argue whether the S matrix derived 
from velocity-dependent potentials presents analytic 
properties in the complex-momentum (or energy) 
plane which differ in some respect from the well­
known properties of the S matrix for static potentials. 
The momentum-dependent terms introduced in the 
SchrOdinger equation may cause the corresponding 
S matrix to present a dependence on momentum 

* Permanent Address: Instituto de Fisica, Pontificia Universidade 
Catolica, Rio de Janeiro Z.C. 20. 

1 M. Razavy, G. Field, and J. S. Levinger, Phys. Rev. 125, 269 
(1962). 

• A. M. Green, Nucl. Phys. 33, 218 (1962); E. Werner, Nucl. Phys. 
35, 324 (1962); F. Peischl and E. Werner, Nucl. Phys. 43, 372 
(1963); M. Razavy, Nucl. Phys. 50, 465 (1964); B. H. J. McKellar, 
Phys. Rev. 134, BII90 (1964); B. K. Srivastava, Phys. Rev. 133, 
B545 (1964); 137, B71 (1965); Nucl. Phys. 67, 236 (1965). 

3 O. Rojo and J. S. Levinger, Phys. Rev. 123, 2177 (1961); 
O. Rojo and L. M. Simmons, Phys. Rev. 125,273 (1962). 

• J. S. Bell, The Many-Body Problem (W. A. Benjamin, Inc., New 
York, 1962), p. 214; G. A. Baker, Phys. Rev. 128, 1485 (1962); 
J. Tharrats, O. Cerceau and O. Rojo, J. Math. Phys. 6,1315 (1965); 
R. M. May, Nucl. Phys. 62, 177 (1965); S. Sunakawa and Y. Fukui, 
Progr. Theoret. Phys. (Kyoto) 34, 693 (1965). 

• E. M. Ferreira, N. Guillen, and J. Sesma, J. Math. Phys. 8, 2243 
(1967). 

which does not fall into general forms occurring for 
static potentials. When analytically extended to 
the complex-momentum or energy plane, this S 
matrix may exhibit a behavior which deviates from 
the usual (static case) one. Thus a study of the analytic 
properties of the S matrix for velocity-dependent 
potentials seems to deserve attention. This paper is 
dedicated to this study. We remark that the behavior 
of the scattering amplitude derived from velocity­
dependent potentials as a function of the complex 
angular momentum (i.e., its Regge poles) has been 
discussed recently.6 

According to the original proposal of Razavy, 
Field, and Levinger,1 we introduce in the one­
particle Schrodinger equation a potential of the form 

V(r, p) = VI(r) - (AJ2m)p eJ(r)p, (1.1) 

where m is the mass of the particle, A. is a dimension­
less constant, and p is the momentum operator. VI(r) 
and J(r) are assumed to be real functions. This 
potential is invariant under the time-reversal opera­
tion, conserves parity, and is Hermitian. 7 With this 
potential we obtain the wave equation 

-(1i2j2m)Ve [(1 - AJ)V1p] + VI 1p = ino1pjof. 

For stationary-state wavefunctions of the form 

1p(r, t) = e/>(r)e-iEt/fi 

we have 

-(1i2j2m)Ve [(1 - AJ)V<l>] + VIe/> = Ee/>. 

(1.2) 

(1.3) 

(1.4) 

2. SPHERICALLY SYMMETRIC PROBLEMS; 
PROPERTIES OF THE S MATRIX FOR 

FINITE-RANGE POTENTIALS 

With VI and J in Eq. (1.1) depending only on the 
radial distance r, the wave equation can be separated 

• M. Weigel, Z. Physik. 185, 186, 199 (1965). 
'L. Eisenbud and E. P. Wigner, Proc. Natl. Acad. Sci. 27, 281 

(1941); S. Okubo and R. E. Marshak, Ann. Phys. (N.Y.) 4, 166 
(1958). 
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in partial waves (Ref. 5) by putting 

cfo(r) = !RI(r)Yz.nC0, q;), 
I,m 

where YhnCO, q;) are the spherical harmonic functions, 
and the radial part satisfies the differential equation 

(1 - AJ)(R~ + ~ R' _l(l + 1) RI) 
r I r2 

+ (d(1 - AJ)jdr)R; + (k2 
- U1)R I = 0, (2.2) 

with k2 = 2mEj1i2, U1 = 2mV1/1i2. The differential 
equation for the reduced wavefunction ul(r), defined 
by 

RI(r) = u/(r)/r, (2.3) 
is 

(1 - AJ)( u~ _ 1(1 ~ 1) U l ) 

+ (d(1 :;, AJ») (u; _ ; ul ) + (k2 
- Ul)U I = O. 

(2.4) 

We assume that U1 and ).1 are real functions. Com­
bining in the usual way Eq. (2.4) and its complex 
conjugate, we obtain 

d[(l - AJ)(u;ui - u7'u l )]/dr + (k2 - k*2) lu l1
2 = o. 

(2.5) 

By integrating this expression from 0 to r, with the 
assumption that J(r) is regular at the origin, we get 

[1 - AJlr[u;u~ - u~'uar + (k2 - k*2) J:1u112 dr = O. 

(2.6) 

If U(r) and Ul(r) are both finite-range potentials, 
that is, if 

U(r) = 0, U1(r) = 0, for r ~ ro, (2.7) 

Eq. (2.4) in the region outside the range of the 
potential has free-wave solutions which we call 

fl(k, r) = krhl1
) (kr) ---+ exp {i(kr - [1T12)}, (2.8a) 

r .... 00 

gl(k, r) = krh\2)(kr) ---+ exp {-i(kr - I1T/2)}, 
r .... oo 

(2.8b) 

corresponding to outgoing and incoming waves, 
respectively. The general solution of the differential 
equation for r ~ ro is then 

u/(k, r) = AI(k)fl(k, r) + BI(k)gl(k, r), r ~ ro. 

(2.9) 

From the definition of the S matrix (or, more precisely, 
of the SI function) 

SI = AI(k)/BI(k), (2.10) 

we then obtain 

It is well known8 that for real static potentials the 
SI function has no poles in the upper part of the 
complex k plane except for points on the positive 
imaginary axis. In our case, however, the terms of 
the differential equation which depend on k are not 
real for complex values of k. Besides this, the wave 
equation is different from a Schrodinger equation 
with static potential, due to the presence of the first 
derivative of the wavefunction. Thus the above­
mentioned property of the poles of the SI function 
should not be taken as valid a priori. We now prove 
that it is in fact true in our case (in spite of the fact 
that it need not be true for complex potentials of 
arbitrary form). 

Poles of Slk) exist for values of k such that the 
denominator in Eq. (2.11) vanishes; that is, 

[flU; - .t;'u1]r:::ro = O. (2.12) 

Dividing Eq. (2.6) by luk)I;, we obtain 

[1 - Ulr[uUu l - (U;IUI)*]r 

+ «k2 
- k*2)/lud;) lr/ ud2 dr = O. (2.13) 

Bringing the condition Eq. (2.12) for the existence of 
a pole into Eq. (2.13), we get, for any a > ro, 

[1 - AJ]a(fUfl - (fUfl)*]a 

+ «k2 - k*2)/Iu ll!> la,ud2 dr = O. (2.14) 

Applying to the free-wave equation a technique 
similar to that used to obtain Eq. (2.5), we can get for 
the outgoing solution 

d(fUI* - 11*'fI)ldr + (k2 - k*2) 11112 = O. (2.15) 

We now integrate this equation from a to 00. If we 
take 1m (k) > 0, we have that flC (0) = 0, and the 
integral results 

-[J(f: - ft'fl]a + (k2 - k*2) Loolfl1 2 dr = O. (2.16) 

Dividing by If!I~, we get 

-[j/lfl- (fI'lfl)*]a + «k2 - k*2)/lfd;) 1OOlf/12 dr = O. 

(2.17) 

We can now add Eqs. (2.14) and (2.17). Since, ac­
cording to Eq. (2.7), we have [1 - U]r=a = 1, there 
results that the condition for the existence of poles 

8 A. Martin, Nuoyo Cimento 14,403 (1959). 
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with 1m (k) > 0 is that 

(k
2 

- k*2>[ (fIU! 12 dr) JIU"! 
+ (Lallf,12dr) jlfd!] = O. (2.18) 

Since the term in the brackets is positive-definite, 

k 2 - k*2 == 4i Re (k) 1m (k) 

has to be zero, and this is possible only when Re (k) = 
O. Thus, we conclude that, in the problem here con­
sidered, poles of S,(k) can exist only in the lower k 
plane or in the positive imaginary axis. This is a 
consequence of the form assumed for the potential 
introduced in the SchrOdinger equation. A discussion 
of the particular case of I = 0 presented in the next 
section will suggest a possible origin for this simple 
behavior. 

It is known that the nonexistence of poles of the S 
matrix in the upper half of the complex-momentum 
plane has some connection with the causality prin­
ciple. In relativistic theories, where there is a limit 
velocity for the propagation of signals, the connection 
of tne causality principle with the analytic properties 
of the S matrix is well understood. 9 For nonrelativistic 
quantum mechanics it has been shown by van 
Kampenlo that whenever it is possible to define a 
probability density (obeying a conservation law) in 
all space, it can be proved that poles of S, can occur 
only on the lower part of the momentum plane and 
on the positive imaginary axis. Since in our problem 
we have the usual expression P = tp*tp for the 
probability density and a continuity equation (al­
though the expression for the current density is 
different from the usual one),6 the result derived 
above is in fact a consequence of van Kampen's 
proof. 

Let us now examine the symmetry properties of 
S,(k). From simple inspection of Eq. (2.4) we see 
that its solutions satisfy 

u,(k, r) = C,(k)u ,( -k, r), 

u,(k*, r) = D,{k)u~(k, r). 

(2. 19a) 

(2.19b) 

On the other hand, the solutions of the free-wave 
equation satisfy 

fz(-k, r) = (-1)'g,(k, r), gl( -k, r) = (-l)'f,(k, r); 

(2.20) 

Uk*, r) = g~(k, r), gt(k*, r) = ft*(k, r). (2.21) 

• N. G. van Kampen, Phys. Rev. 89, 1072 (1952). 
10 N. G. van Kampen, Phys. Rev. 91, 1267 (1953). 

Then there results immediately that 

SI{ -k) = [SI(k)]-l 
and 

( * * SI k ) = St (-k), 

(2.22) 

(2.23) 

which are analogous to the properties of the SI 
function for static real potentials, and say that poles 
and zeros of S, are syntmetric with respect to the 
imaginary axis in the k plane, and that if for a v~lue 
k there is a pole of S10 in -k there is a zero of the 
same function. These results are again a direct con­
sequence of the particular form, Eq. (Ll), assumed 
for the velocity-dependent potential. 

3. AN "EQUIVALENT" STATIC POTENTIAL 
FOR THE S-WAVE CASE 

We now discuss the particular case of / = 0, where 
the origin of the general properties discussed in the 
previous section can be better understood. 

Due to the term -)..{dJ(r)/dr)(dR,(r)/dr), Eq. (2.2) 
cannot in general be written in the form of a usual 
Schrodinger equation. We now show how we can do 
it in the case of I = 0, with VI = O. The s-wave 
radial equation is then 

d[(1 - IJ) dRo/dr]/dr 

+ (2/r)(1 - IJ) dRo/dr + k2Ro = O. (3.1) 

Let us introduce a new function 

XR = (1 - IJ) dRo/dr. (3.2) 
We obtain 

dXR/dr + 2XR/r + k2RO = O. (3.3) 

Taking the derivative of this equation and eliminating 
dRo/dr by using Eq. (3.2), we get 

diXR/dr2 + (2/r) dXR/dr 

+ (k2/(1 - IJ) - 2/r2)XR = 0 (3.4) 
or 

where 
U(r) = 21r2 - k 2),J(r)/(l' - ),J(r». (3.6) 

Now, Eq. (3.5) has the form of a s-wave radial 
SchrOdinger equation with potential (/i2/2m)U(r), or 
alternatively, by considering 21r2 == 1(1 + 1)/r2 as a 
centrifugal term, we can consider it as a p-wave 
radial equation with a simpler potential of assumed 
finite range 

(1i2/2m)k2f'(r) == - (/i2/2m)k2IJ(r)/(1 - IJ(r». (3.7) 

In terms of a reduced wavefunction 

(3.8) 
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Eq. (3.5) becomes 

d2Yt/dr2 + k2Yt - k 2fl(r)Yl - (2/r2)Yl = O. (3.9) 

Properties of the wavefunction for usual static 
potentials will then be valid for XR' and the behavior 
of Ro can be obtained from Eq. (3.2) or Eq. (3.3). 
If Ro is a bound-state wavefunction, that is, if it has 
the form F(r)e-ar for large r [with F(r) tending to a 
constant as r -+ 00], then XR has the form G(r)e-ar 

for large r [where G(r) tends to a constant; we assume 
that M(r) becomes a constant for large r]. Thus, XR 
will also be the wavefunction for a bound state with 
the same binding energy. 

If Ro{r) has an asymptotic behavior 

Ro(r) ~ Aeikr + Be- ikr
, 

then the asymptotic behavior of XR is 

(3.10) 

XR ~ Aeikr - Be-ikr • (3.11) 

The scattering-matrix elements in the two problems 
differ only by having opposite signs, and the phase 
shifts are different by 71'/2; that is, if 

Ro ~ (1/r) sin (kr + 00), (3.12) 
then 

XR ~ (1/r) sin (kr + 150 + 71'/2). (3.13) 

Thus, the poles and zeros of the S-matrix element 
corresponding to I = ° are the same in the velocity­
dependent potential as in the equivalent static problem 
with potential U(r). We must, however, notice that 
the energy enters U(r) as a parameter, and if we 
study the behavior of the S matrix for complex 
values of the momentum, we shall have that the static 
potential under study is actually complex, and general 
results for real static potentials may not be true. Let 
us examine some properties of the S matrix in the 
case of complex potentials of the form k 2fl(r), where 
k can be complex and fl(r) is real and of finite range. 
For a wave equation of the form 

y~ + k2Yl - k~(r)Yl - [l(1 + 1)/r2]Yl = 0, (3.14) 

of which Eq. (3.9) is a particular case for I = 1, we 
have free-wave solutions outside the range of the 
potential given by Eqs. (2.8), and the Sl function 
is given by Eq. (2.11) with Yl in the place of Ul . The 
solutions Yl of Eq. (3.14) have properties similar to 
those given in Eqs. (2.19), so that the symmetry 
properties of the Sl function expressed in Eqs. (2.22) 
and (2.23) again hold. These symmetry properties 
are a consequence of the particular form k2fJ,(r) of the 
complex potential entering Eq. (3.14). 

To prove' that the Sl function does not admit poles 
in the upper part of the complex k plane (except for 

points of the imaginary axis), we can use a technique 
similar to that used in the previous section. We now 
have to multiply Eq. (3.14) by k*2Yi and the complex 
conjugate by k 2Yl' subtract the two expressions, and 
integrate from ° to a (a being larger than the range 
of the potential) to obtain 

[k*2y~y{ - k2Yly~']a 

+ (k2 _ k*2) La(lY;12 + (1(1 + 1)/r2) lyzl2) dr = 0, 
(3.15) 

or, dividing by Ik212IyzI~, 

[y;Jk2Yl - (y;Jk2Yl)*]a + «k2 - k*2)lI k212IYll!) 

x {(IY;1 2 + (1(1 + 1)/r2) IYlI 2) dr = 0. (3.16) 

From the free-wave equation we obtain for the out­
going solution, if 1m (k) > 0, 

-[f(/k'1l - (fUk'1!)*]a + «k2 - k*2)lIk212Ifll~) 

x 1'" (IRI 2 + (1(1 + 1)/r2) Ill) dr = 0. (3.17) 

The condition for existence of poles [Eq. (2.12), with 
Yl substituted for uzl can be written 

[fUefl - (/z'/k2fz)*]a + «k2 - k*2)lIk212IYzl~) 

x f(ly;/2 + (l(l + 1)/r2) /yz/2) dr = 0. (3.18) 

Using Eq. (3.17), which is an identity valid for 
1m (k) > 0, we obtain 

«k2 _ k*2)//k212) 

x [(L"'(lf/1 2 + (1(1 + 1)/r2) /fz/2) dr)//fzl~ 

+ (f(/YiI 2 + (l(l + 1)/r2) IYzI2) dr)/IYzl!] = 0. 

(3.19) 

Since the term in the brackets is necessarily positive, 
it follows that poles will only exist if Re (k) = 0. 

Thus, although we have a complex potential in the 
Schrodinger equation, poles do not pass to the upper 
plane. We can understand this in the following way. 
Let us think of the configuration of the poles of Sl 
as a function of the parameter A. which determines 
the strength of the potential. As the poles of Sz are 
given by the zeros of an analytic function [which is 
the denominator of Eq. (2.11)], they move contin­
uously in the k plane as A. varies, without new poles 
being created or existing poles being destroyed. It is 
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knownll that for very weak potentials the poles are 
situated far down in the k plane, and for all of them 
1m (k) -+ - 00 as A -+ O. As A increases, the poles may 
move up to the k plane and try to cr9~s the real axis. 
But as k approaches the real axis, the potential 
becomes real, and it is well known that the Sz function 
for a real potential cannot present a pole on the real 
k axis. Thus, it becomes forbidden for any pole to 
pass to the upper half-plane by crossing the real axis. 
An alternative which remains is that of a pole 
climbing up the imaginary axis, crossing the real axis 
at the origin (or just reaching the origin), and then 
passing to the complex plane. But now we can show 
that once the pole is in the positive imaginary axis, it 
does not leave it. For imaginary values of k the 
potential is real (since it depends only on k2); if A 
changes by a small amount, there can always exist a 
change of the position of the pole along the imaginary 
axis such that the new position of the pole wiIl corre­
spond to a pole for a real potential with the appropri­
ate strength. If the pole can move along the imaginary 
axis as A changes, it cannot move in any other 
direction since a pole never splits itself into several 
poles. 

4. VELOCITY-DEPENDENT SQUARE WELL 
OR BARRIER; POLES OF Sz 

We shall study in some detail the problem of a 
velocity-dependent spherically symmetric constant 
potential; that is, in Eq. (U) we shall put VI = 0 
and 

J(r) = 1, r < b, 

= 0, r > b. 
(4.1) 

We shall be mainly concerned with the description 
of the distribution of the poles of Sz function in the 
momentum plane, as a function of the strength A 
of the potential. The analytic properties of the S 
matrix for such potential in the complex angular 
momentum plane have been studied by Weigel.6 We 
here only consider real integer values of the angular 
momentum. 

The radial wave equation for this potential bocomes 

(1 - AJ(r»(R7 + (2jrc)R;)· 

'x (k2 
- (1 - AJ(r»I(l + l)jr2)Rl = -AR;b(r - b). 

(4.2) 

The internal solution which is regular at the origin 
and the general external solution are given by 

RlI(r) = B1Nk'r), r < b, (4.3 a) 

Rm(r) = A/[J/(kr) - tan b/n/(kr»), r > b, (4.3b) 

where 
k' = k/[l - A)! (4.4) 

is the wavenumber inside the range of the potential. 
The continuity conditions from the solution of the 

differential equation5 impose that 

Rll(b) = Rm(b), 

(1 - A)R;I(b) = R;n(b). 

We obtain for the phase shift 

(4.5a) 

(4.5b) 

tanb = kj;(kb)jzCk'b) - (1 - A)k'j;(k'b)iz(kb) (4.6) 

z kn;(kb)iz(k'b) - (1 - A)k'j;(k'b)nz(kb) 

and for the Sz function 

S kb = _ kh:
2
)'(kb)iz(k'b) - (1 - A)k'j;(k'b)hI

2f
(kb) 

z() khll\kb)jzCk'b) _ (1- A)k'j;(k'b)h:1)(kb)' 

(4.7) 

If we write the spherical Hankel functions in the 
form 

h?)(p) = -iMz(p)eiPjp, (4.8a) 

h:2)(p) = iN1(p)e-'Pj p, (4.8b) 

where Mz(p) and Nz(p) are polynomials of degree I 
in 1( p, we can then write the Sz function as 

(4.9) 
where 

F (kb) = khCk'b)[lNz_l(kb) - (l + I)N!+I(kb)] - (1 - J,.)k'j;(k'b)Nz(kb) 

z kjz(k'b)[IMz_I(kb) - (l + I)M!+I(kb)] - (1 - A)k'j;(k'b)MzCkb) 
(4.10) 

is a meromorphic function with isolated poles deter­
mined by the zeros of the denominator. The factor 
e-2ikb in Sz(kb) shows that it presents essential singu­
larities in the upper plane for 1m (k) -+ 00. This 
behavior is the same as that observed in the cases of 

11 J. Humblet, Mem. Soc. Roy. Sci. Liege 12, No 4, 70 (1952). 

static potentials. From well-known properties of the 
spherical Bessel functions [jz and nz are functions of 
parity (_I)Z and (-1 )Z+l, respectively, and are real 
functions when their arguments are real], we can 
easily verify the validity of the symmetry properties 
of Sz(kb) given in Eqs. (2.23) and (2.24). Since these 
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properties say that the poles of Sz are symmetric with 
respect to the imaginary axis, we need only describe 
the configuration of poles in one half-plane, let us 
say Re (k) ~ O. 

The equation which determines the poles of Sz(kb) 
is obtained by putting the denominator in Eq. (4.7) 
equal to zero. This condition can be written 

kb([1 - ;ijl+l(k'b)/Uk'b) - h:~l(kb)/h?)(kb)] 
+ Al = O. (4.11) 

We shall next discuss the behavior of the roots of 
this equation. 

A. The Limit of Weak Potentials 

If in Eq. (4.11) we put A = 0, we get 

jl+l(k )/Ukb) - h:~tCkb)/h~l)(kb) 

== i/[(kb)2jl(kb)h~1)(kb)] = 0, 

which has no solution for any finite value of kb. Thus, 
as A -'>" 0 the poles of Sz(kb) must tend to infinity. 
Taking asymptotic forms of the Bessel and Hankel 
functions vaJid for Ikbl-- ex) and Ik'bl-- 00, we 
obtain for the equation determining the poles as A -'>" 0 

exp {-2i(k'b - hr/2)} 

R:! (A/4)[1 + Af4 + i([2 + 1+ 2)/kb]. (4.12) 

Let us write 
k = x + iy, (4.13) 

where x is the real part and y the imaginary part of k. 
Analogously we write 

k' = x' + iy'. 

Taking the modulus of Eq. (4.12) we obtain 

exp {2y'b} 

(4.14) 

= (IAI/4)[(l + A/4 + yb(/2 + / + 2)/(xW + y 2b2
»2 

+ (Xb([2 + [ + 2)/(x2b2 + yW»2]~. (4.15) 

Since the right-hand side of this equation goes to 
zero with A, we must have y'b -- - 00 (and then also 
yb -- - (0) as A -'>" 0 so that the left-hand side also 
goes to zero. We thus conclude that the poles move 
downwards in the complex k plane as the potential 
becomes weaker. The values of xb at the poles may 
remain finite and, taking the main terms of Eq. 
(4.15), we obtain 

exp {2yb/ [1 - ).)~} 

c:::: (IAI/4)[l + A/4 + yb([2 + [ + 2)/(x2b2 + y2b2»), 
(4.16) 

and then, to the lowest orders in A, 

yb ~ 0) In IAI - In 2. (4.17) 

Thus, all poles tend to acquire the same value of yb as 
IAI -'>" 0: they move downwards in the k plane in such 
a way that their distance to the real axis tend to be 
the same. From Eq. (4.16) it can be seen that the 
larger the value of xb for a given pole, the more 
delayed it is in moving downwards as IAI-- O. 

Separating real and imaginary parts in Eq. (4.12), 
we obtain 

(-I)!exp {2y'b} cos (2x'b) 

= (A/4)[1 + A/4 + yb(l2 + 1 + 2)/(x2b2 + yW»), 
(4.1Sa) 

_(_1)1 exp {2y'b} sin (2x'b) 

= (Af4)xb(/2 + I + 2)/(x2b2 + y2b2). (4.1Sb) 

Dividing one of these equations by the other, we get 

tan (2x'b) = _(Xb([2 + / + 2)j(x2b2 + yW»j 

(1 + ?/4 + yb(/2 + / + 2)/(x2b2 + yW», 

(4.19) 
from which it is easily seen that, as A -- 0, 

tan (2x'b) -- 0 - ab, 

where E is a positive infinitesimal quantity. Thus, the 
poles move towards asymptote lines defined by 

xb = nTr/2, n integer, (4.20) 

in such a way that they approach these lines from the 
left [we are discussing only the half-plane Re (k) > 0; 
the situation is symmetric for poles with Re (k) < 0]. 
This behavior is different from that observed with 
weak static potentials, where poles approach the 
asymptote lines xb = n7T/2 always from the right.12.13 

If we take Eg. (4.20) into Eq. (4.1Sa), we obtain 
that the sign of the left-hand side of Eg. (4.lSa) is 
(_l)l+n, while the sign of its right-hand side is that 
of A. Thus, as A -+ 0+, the poles tend to asymptote 
lines xb = n7T/2 such that! + n is even; in other words, 
the values of xb tend to even multiples of 7T/2 if / is 
even and to odd multiples if / is odd. This behavior is 
observed in attractive static potentials whose strength 
tends to zero [note the minus sign that precedes our 
potential in Eg. (1.1), so that the sign of the static 
potential is the same as that of -A/2m]. 

On the other hand, as A -» 0-, the asymptote: are 
lines xb = n7T/2 with n odd when / is even, and with 
n even when / is odd, just as in the case of static 
repulsive potentials. 

12 H. M. Nussenzveig, Nucl. Phys. 11,499 (1959). 
13 E. M. Ferreira and A. F. F. Teixeira, J. Math. Phys. 7, 1207 

(1966). 
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FIG. I. Trajectories of poles of S, for I = 0 shown in the kb plane, for A varying from - 00 to + I. Values of A are indicated on the curves. 
For ~ ..... 0- the poles go to i,nfini.ty approaching asymptoti~ally the lines. xb = mr/2 ~ith n od~. As A ..... -00, all poles, except the so-called 
specIal pole, move towards mfinIte values of xb, approachmg asymptotIcally the honzontallme yb = -I. The special pole remains in the 
fifolite kb plan.e as A ..... - 00 .reaching the point (3)l/2 - (~)i in this lifollit. As A ..... 0+ the poles move towards the asymptote lines xb = mr/2 
WIth n e~en mt~ger. As A mcreases to I all poles, except the specIal one, move towards the origin. For A varying from 0+ to I the two 
symmetnc specIal poles move as a double pole upwards along the imaginary axis, reaching the point kb = -i as A reaches 1. 

This behavior of the poles as IAI -+ 0 can be seen in 
Figs. I and 2, where trajectories of the s- and p-wave 
poles in the kb plane are shown._ 

B. The Limit A ..... - 00 

We have just seen that as A -+ 0- the poles of Sz 
tend to asymptote lines xb = mrf2 with n being odd 
for even I and being even for odd I. We notice that in 
the limits IAI-+ 0 the values k' and k tend to be the 
same. In the Eq. (4.11) defining the position of the 
poles, A enters into k' through the relation k' = 
kf[l - A]!. We thus do not expect any very peculiar 
behavior of the poles as A varies from 0 to - 00. 

Let us then study directly what happens in the limit 
of A being negative and very large. 

We first examine the existence of solutions of Eq. 
(4.11) with A -+ - 00, with the assumption that 
Ikbl -+ 00. This may lead to solutions with finite 
values of Ik'bl. Using asymptotic formulas for the 
Hankel functions, we obtain that Eq. (4.11) becomes 

,kb([l - A]!jz+I(k'b)/Nk'b) + i) + Al = O. (4.21) 

Dividing by A and taking the limit A .... - 00, we get 

-k'bjz+1(k'b)/jz(k'b) + 1= 0, (4.22) 

which has solutions given by 

y'b = 0, 

x'bjz+1(x'b) -ljz(x'b) = O. 

(4. 23 a) 

(4.23b) 

Equation (4.23b) has an infinite number of solutions. 
(We exclude from these the solution x'b = 0, since 
this case demands a special treatment which will be 
made later.) For instance, in the case of I = 0, these 
solutions are the values of x'b which equal the roots 
of the Bessel function jl' We then have that, as A 
varies from 0- to - 00, the poles move in the k'b 
plane from the lower regions of the plane towards 
the real axis (as A varies from 0- to - 00, the values 
of y' b at the poles vary from - 00 to 0). The displace­
ment of the poles in the k'b plane for the cases / = 0 
and I = 1 is shown in Figs. 3 and 4. 

These finite values of x' b when A .... - 00 correspond 
to infinite values of xb = x' b [1 - A]!. In the Appendix 
it is shown that the corresponding values of yb tend to 

yb = -[1 - /(l + l)/(x~b?r\ (4.24) 

where <b are the roots of Eq. (4.23 b). Thus, in the 
k plane, as A varies from 0- to - 00 the poles move 
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FIG. 2. Trajectories of the poles of S, for I = I, shown in the kb plane for A. varying from -00 to + 1. The numbers on the curves indicate 
the values of A.. For A. -+ 0- and for A. ...... 0+ the poles tend asymptotically to the vertical lines xb = mr/2, with n even and odd integers, 
respectively. As A. increases to the value I, a special pole moves towards the point kb = 1 - i, and all other poles move to the origin. As 
A. varies from 0- to -00 the special pole and its symmetric form a double pole which moves upwards along the negative imaginary axis, 
tending to the point kb = -i. As A. -+ -00 all other poles move toward horizontal asymptote lines defined by Eq. (4.24) of the text. 

from the lower regions of the plane towards finite 
values of yb and infinite values of xb. That is, the 
trajectories described by the poles are asymptotic to 
vertical lines when A. is very small negative and asymp­
totic to horizontal lines, given by Eq. (4.24), when 
A. -- - 00. This behavior is illustrated for sand p 
wave poles in Figs. 1 and 2. 

The asymptote lines, Eq. (4.24), all coincide with 
the sarne line yb = -1 when / = 0; for / ~ 1 the 
asymptotes are all different, all being below the line 
yb = -1, which is a kind of "accumulation asymptote 
line." 

Let us now examine the possibility of the existence 
of solutions of Eq. (4.11) with A. -- - 00, with the 
assumption that Ikbl remains finite. We then have 
that Ik'bl-- 0 and using the well-known formulas 
for the Bessel functions for small arguments, Eq. (4.11) 
becomes 

kb[kb/(21 + 3) - hl~l(kb)/h~l)(kb)] + A.l = O. (4.25) 

For I = 0, this equation has solutions given by 

kb = ±(3)!/2 - (I)i, 

symmetrically placed in the k plane. For i ~ 1, the 
solutions of Eq. (4.25) with A. -- - 00 are given by 

the roots of 
(4.26) 

This last equation has / solutions. [For instance, for 
/ = 1, there is only one solution kb = -i; for / = 2, 
the roots are kb = ±i - (Q2)!/2'»~.] 

We then have, in the limit A. -- - 00, beside the 
poles which go to infinity in the kb plane in search of 
the asymptote lines given by Eq. (4.24), / poles 
(counting poles in both sides of the complex plane) 
which tend to points in the finite kb plane; in the 
special case / = 0 these poles are in number of two. 
In the k'b plane, they tend to the origin as A. -- - 00. 

We shall call them "special poles." They will be dis­
cussed in more detail in Secs. 4D and 4E. 

C. The Limit A. ...... 1 

In the limit A. -- 1, for k'b finite kb goes to zero, 
and if kb is kept finite, nonzero, k'b increases without 
limit. Let us first consider the possibility that as 
A. -- 1, Eq. (4.11) presents solutions with finite values 
of Ik'bl. Since then Ikbl becomes infinitesimal, we 
can write the equation determining the poles as 

kb[l - A.]!jl+l(k'b) + (-(2/ + 1) + A.l)jz(k'b) = 0, 

(4.27) 
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to the roots Ofjl(k'b) as A --+ -00. There is a special (double) pole which moves upwards along the negative imaginary axis as A varies from 
0+ to about 0.3, and moves downwards along the same axis as A. is further increased, tending to infinity as A approaches 1. 

or, with ..1= 1, 
Nk'b) = O. (4.28) 

This equation has an infinite number of roots given by 

y'b = 0, 

Nx'b) = o. 
(4.29a) 

(4.29b) 

Thus, in the k' b plane, as A -+ 1, the poles tend to 
points on the real axis. In the kb plane all these 
infinitely many poles move towards the origin and 
get there when A becomes equal to 1. This behavior 
is shown in Figs. 1, 2, 3, 4, for s- and p-wave poles. 
Let us now examine what happens when A increases 
above 1. 

For A> 1 we have [1 - ..1]1 = ±i[A - 1]1, so 
that k'b = ±(yb - ixb)/[A - 1]1 and keeping the 
definitions x'b = Re (k'b) andy'b = 1m (k'b), we have 
that now 

x'b = ±yb/[A - 1]1, 

y'b = Txb/[A - 1]1. 

(4.30a) 

(4.30b) 

Thus, for A larger than 1, the planes k and k' (which 
for A < 1 only differ by a scale factor depending on 
A) are related to each other by a rotation of TT/2. The 
sense of the rotation is defined by the choice of + or 

- sign in Eqs. (4.30). For definiteness we shall 
choose the upper signs in these equations. We know 
that in the k plane S! is symmetric with respect to the 
imaginary axis. [This can be observed directly in Eq. 
(4.11) by taking its complex conjugate and using 
properties of the Hankel functions.] For A < 1 the 
same symmetry exists in the k' plane. For A > 1, 
however, the relation between the two variables is 
given by Eqs. (4.30) and the left-right symmetry 
in the k plane will correspond to an up-down sym­
metry with respect to the real axis of the k' plane. 
Thus, the poles of S! for A > 1 will be distributed 
symmetrically with respect to the real axis of the 
k' plane. 

We have seen that as ..1-+1 - 0, the poles move 
to the points of the real axis of the k' plane given by 
Eqs. (4.29). As A increases above 1, the poles 
move along the x' axis; correspondingly, in the k 
plane the poles will be moving over the imaginary 
axis. Poles can only leave the x' axis (or the y axis) 
when they meet in pairs, so that they can pass sym­
metrically) to the complex plane. Since for A = 1 the 
poles are separated by finite distances in the x' axis 
[as given by the roots of j!(x'b)], they cannot move 
immediately into the complex plane; A would have 
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to vary for finite amounts so that two poles are able 
to meet. We thus conclude that, as A increases from 
1, all poles in the positive (or negative, depending 
on the sign chosen for the rotation) x' axis will 
correspond to poles moving in the positive imaginary 
axis of the k plane. Thus, an infinite number of bound 
states appear suddenly as A passes the value 1. In the 
case of the I = 0 wave this behavior is easily under­
stood in terms of the "equivalent" static potential, 
by observing that for A slightly larger than 1, U(r) as 
given by Eq. (3.6) is strongly attractive for negative 
values of the energy. 

Figures 5(a) and 5(b) show the displacement of 
s- and p-wave poles along the imaginary axis of the 
kb plane as A varies above 1. It is seen that as A 
increases, the poles continuously move away from 
the origin. This means that for A larger than I the 
binding energy of the bound states increases with 
A. Figures 6(a) and 6(b) show the displacement of 
the poles along the real axis in the k'b plane for 
A. > 1. 

D. Special Poles 

We have thus studied the behavior of the poles in 
the limit A ->- 1 with the assumption that k' b remains 
finite (and then the values of kb at the poles approach 

zero). We now have to consider the possibility of 
k' b increasing to infinity, so that it cannot be said 
a priori whether or not kb is infinitesimal. The quotient 
j!+l(k'b)INk'b) in Eq. (4.11) will be finite when 
Ik'bl->- 00 except in points for which Nk'b) = O. 
But we have already studied the solution given by 
this condition. In points such that j!(k'b) =;6 0, Eq. 
(4.11) becomes, as A->-I, 

(4.31) 

This equation has I + 1 solutions, which we shall 
denote kb, all in the finite kb plane. The poles corre­
sponding to these solutions will be called "special 
poles." They are the only poles which do not tend to 
the origin of the kb plane as A ->- 1. For 1= 0 the 
only solution of Eq. (4.31) is at kb = -i; for 1= 1 
we have kb = ± 1 - i. In fact, among these special 
poles, those which are on the negative imaginary axis 
are double poles, and for larger values of A they may 
leave the imaginary axis and appear as two symmetric 
complex poles. Thus we can say more properly that 
we have 1+ 1 special poles for I odd and 1+ 2 
special poles for I even. 

Let us examine the way in which these points kb 
are approached as A varies. For points satisfying Eq. 
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poles of S, for I = 1,..1. > 1. All poles except the two "special poles" corne from the eomplex plane, enter the origin for..1. = I, and move 
to infinity along the imaginary axis as ;. increases. The special poles ellter the origin for..1. = 3; one of them moves to infinity along the 
positive imaginary axi~, and the other moves along the negative axis tending to the point kb = -i as..1. increases to +00. 

(4.31), we have that poles, as determined by Eq. (4.11), 
will exist for values of A. which satisfy 

(I - J..)[k'bjl+l(k'b)IHk'b) -I] = O. (4.32) 

For J.. = I, Eq. (4.32) is obviously satisfied, and Eq. 
(4.31) defines the position of the special poles. For 
J.. =F I, we can think of Eq. (4.32) as an equation 
determining which are the values of J.. for which the 
solutions kb are actual locations of poles. For the 
points feb which are pure imaginary (there exists one 
such solution whenever I is even), k'b = febt[I - J..]l 
will be real for A. > 1. In these cases the square 
brackets in Eq. (4.32) will be zero for an enumerable 
infinity of values of A. This comes from the fact that 
the Bessel function of real arguments are oscillating 
functions. Since the argument k'b varies rapidly as A 
approaches 1, we shall have poles passing very many 

times through the points feb. Thus these points kb, if 
on the imaginary axis, are accumulation points of 
poles as J.. approaches I from values above 1. For A 
less than I, the arguments of the Bessel functions 
will not be real, and the term inside the brackets will 
not have zeros, in general, since Eq. (4.32) will have 
both real and imaginary parts. In the case I = 0, Eq. 
(4.32) becomes lI(k'b) = 0, and since feb = -i in 
this case, a pole will pass this point whenever J.. is 
such that 

(4.33) 

that is, for J.. = 1.0495, 1.0167, 1.0084, 1.0051, 
1.0033, and thus successively, the roots converging 
to 1. Between two successive roots, the pole will make 
a small round. trip around the complex plane, i.e., 
a pair of poles will describe paths symmetrical with 
respect to the imaginary axis. This same behavior 
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FIG. 6. (a) Displacement of the poles of S, for 1= Q along the real axis of the k'b plane for A > I. As A varies from 1 to 00, the 
poles move from points corresponding to the roots of jo(x'b) to the points determined by the roots of jl(x'b). (b) Displacement of 
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the origin of the k'b plane for A = 3. One of them moves towards the first nonzero root of I(x'b) as A increases. The other special pole 
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occurs for all imaginary special poles presented by 
the even I waves. Figure 7 illustrates the behavior of 
the special poles in the case I = O. 

For points kb which are complex, the arguments 
of the Bessel functions will again be complex for 
both A > 1 and A < 1, and Eq. (4.32) will have both 
real and imaginary parts, which will not likely both 
become zero for the same real value of A. 

We have seen that all poles (there is an infinity of 
them), except those few called "special" poles, enter 
the origin of the kb plane for A = 1. We may now 
ask whether there are poles which enter the origin 
for other values of A. In Eq. (4.11), making kb ~ 0 and 
assuming A ~ I (which implies that k'b ~ 0), we 
obtain, by using the well-known behavior of Bessel 
and Hankel functions for small arguments, 

-(21 + 1) + ),1 = O. (4.34) 

For 1= 0 there are no values of A which satisfy this 
equation. For I ~ 1, we see that poles enter the origin 
for A = 2 + 1/1. Substituting this expression for A 
back into Eq. (4.11), we can obtain information on the 
nature of these special poles as they reach the origin. 
By using the expressions for the Bessel and Hankel 
functions with small arguments, we can easily verify 
that they are actually double poles for every I ~ 1. 
That is, two of the special poles enter the origin for 
A = 2 + 1/1. These two poles come along paths which 
are symmetric about the imaginary axis of the kb 
plane. For 1 = 1, the special poles are in number of 
two, and they both enter the origin for)' = 3. This 
can be seen in Fig. 8, where the paths described by the 
special poles in the case I = 1 are shown. For I > 1, 
we shall have that some poles will never enter the 
origin (and thus will never become bound-state poles). 
This is due to the fact that there exist I + 1 special 
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points of curves described by the poles. There are two special poles, 
symmetric with respect to the imaginary axis. For ,i varying from 
-ex:> to 0-, the poles move from kb = ±(3)t/2 - <-Vi to 
infinity approaching asymptotically the lines xb = ±1T/2. From 
,t = 0+ to A = 1, a double pole moves up the negative imaginary 
axis, coming from infinity and approaching the point kb = -i as A 
approaches I. As A increases further the poles leave the imaginary 
axis, describing an infinite number of loops of increasing size, all 
passing the point kb = -i. For A -+ ex:>, the poles return to the 
location they had for A -+ - ex:>. 

poles for odd 1, and 1 + 2 such poles for even I, and 
only two of these can reach the origin. 

E. The Limit ,t -+ ex:> 

Following the same path taken in the study of the 
limit A -->- - 00, let us first look for solutions of Eq. 
(4.11) with A -->- 00 and such that Ikbl -->- 00. We want 
to study the behavior of k'b in these solutions; Eqs. 
(4.21), (4.22), and (4.23) are still valid in the present 
limit, with the difference that now the relations 
between the k' and k variables are given by Eq. (4.30). 
We then have an infinite number of values of x'b 
satisfying Eq. (4.23b), and these correspond by Eq. 
(4.30) to values of yb which increase without limit. 
Thus, in the kb plane the poles move along the 
positive and negative parts of the imaginary axis, 
moving away from the origin as A increases. 
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FIG. 8. Special poles for I = 1. The numbers next to the curves 
indicate the values of A. There are two special poles, symmetric 
with respect to the imaginary axis. For A varying from -ex:> to 0-, 
a double pole moves down the imaginary axis, starting from kb = 
-i. As ,t -+ 0+, the poles go to infinity in the lower complex plane 
approaching asymptotically the lines xb = ±1T/2. The poles are at 
kb = ± I - j for A = I, and reach the origin for A = 3. As A 
increases further, one pole climbs up the positive imaginary axis, 
thus forming a bound state whose binding energy increases with ,t. 
The other pole moves along the negative imaginary axis, approaching 
the point kb = -j as,t -+ +ex:>. 

As A. varies between 1 and 00, the poles move on the 
real axis of the k' b plane, from the points which are 
the roots ofEq. (4.29) to those which are the roots of 
Eq. (4.23). This is shown in Figs. 6(a) and 6(b) for 
the cases 1=0 and 1 = 1, respectively. The corre­
sponding displacement of the poles along the imag­
inary axis of the kb plane is indicated in Figs. 5(a) 
and 5(b). The curves show that the binding energies 
of the bound-state poles increase monotonously as 
A increases. 

We now examine the existence of poles for which 
kb is kept finite as A. -->- 00. Then k'b goes to zero, and 
Eq. (4.25) again determines the existence of such poles. 
Its solutions were already mentioned in Sec. 4B; 
there are I solutions, all in the lower half of the kb 
plane. We thus have that in both limits A. -->- - 00 and 
A. -->- 00 there are, for I ;;::: 1, I poles which remain in 
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the finite kb plane; when A -+ 0 these poles follow 
the general behavior of going down the complex 
plane approaching asymptote lines xb = nTr/2. Since 
these I poles do not enter the origin for A = 1 to 
start moving along the imaginary axis, they belong 
to the group of the so-called "special" poles (which 
are those poles which do not reach the origin for 
A = 1). We have seen that the special poles are in 
number of I + 1 for I odd and of I + 2 for I even. Of 
these, I poles will go to points with finite values of 
kb as A - ± 00. It is interesting to remark that the 
positions of these I poles are the same as those 
occupied by the poles of the S matrix for a hard-core 
potential. 

We thus have that in the case of I even, two of the 
special poles enter the origin [for a value of A given by 
Eq. (4.34)], one of them goes up the positive imaginary 
axis, while the other must move along the negative 
imaginary axis to infinity. This statement can be made 
since we know that of the I + 2 special poles of the 
even-I case, two must enter the origin for A = 2 + 111, 
and as A increases to 00, I poles will remain in the 
finite kb plane; thus, the two which enter the origin 
must tend. to infinity, one along the positive imaginary 
axis (thus constituting a special "late" bound state) 
and the other along the negative imaginary axis. 

On the other hand, in the case of odd I, we have 
I + 1 special poles, two of which enter the origin for 
A = 2 + 1/1 and remain on the imaginary axis as A 
increases further. Since I poles will remain in the 
finite lower part of the kb plane, the special pole 
which enters the origin and starts moving along the 
negative imaginary axis will te~d to a finite value of 
kb in this axis (in fact, one of the solutions of Eq. 
(4.26) is necessarily on the negative imaginary axis 
when I is odd). 

We have thus traced the behavior of the special 
poles for all values of A, in all cases with I ~ 1. 
Figure 8 shows the paths described by the special 
poles in the case I = l. 

In the case 1= 0 we have, in the limits A -+ ± 00, 

two poles which remain in the finite kb plane [in the 
points kb = ±(3)t/2 - (!)i]. When A approaches 1, 
these two poles will be forming a double pole on the 
negative imaginary axis, according to Eq. (4.31). For 
A = 1 this double pole will then be at kb = -i; as 
A -+ 0+ it descends along the negative imaginary axis, 
and for increasing negative A the poles will again be 
separated, coming up the plane guided by the asymp­
tote lines xb = ±7T/2. For A - - 00 they must be 

back to the location they had for A - + 00. The paths 
described by the special poles for 1 = 0 are thus com­
pletely understood. These paths are shown in Fig. 7. 

APPENDIX 

We want to show how Eq. (4.24) has been derived. 
It represents the behavior of yb = 1m (kb) at the 
poles when A -+ - 00. We have that the values of 
x'b and y'b for these poles are given by Eq. (4.23a, b). 
Since y' b tends to zero at the pole locations in this 
limit, we are interested in finding the behavior of 
yb = y'b[l - A]l. Let us call k~b = <b + iy~b the 
location of a particular pole in the limit here con­
sidered. In the neighborhood of k~b we nave, by 
using a Taylor expansion up to first order, 

where 

Rn = [de pj/+l(p)/Hp»/dp]p=kn'b' (A2) 

Rn is real since k~b is real. Substituting Eq. (AI) into 
the equation determining the poles, Eq. (4.11), and 
using asymptotic expressions for the Hankel functions 
of large arguments (since Ixbl- 00 in the neighbor­
hood of the poles), we obtain 

(1 - A)(l + (k'b - k~b)Rn) 

- kb(1 + (l + 1)(1 + 2)/2kb)/i(1 + il(l + 1)/2kb) 

+ Al = O. (A3) 

Taking the dominating terms, this gives 

1 + (1 - A)(k'b - k~b)Rn + ikb + 1(1 + 1)/2 = O. 

(A4) 
Separating real and imaginary parts, we get 

1(1 + 3)/2 + (1 - A)(x'b - x~b)Rn - yb = 0, (A5a) 

(1 - A)y'bR .. + xb = O. (A5b) 

This last equation gives 

yb = -x'b/R .. ~ -x~b/Rn' (A6) 

Using properties of Bessel functions, we obtain that 
for k~b satisfying Eq. (4.23a, b) we have 

Rn = k~b(1 - 1(1 + 1)/(k~W) 
~ x~b(1 - 1(1 + 1)/(x~W). (A7) 

Taking this into (A6), we finally obtain 

yb = -[1 - 1(1 + 1)/(x~b)2r\ (A8) 

which is the required Eq .. (4.24). 
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Explicit ~atrix. eleme~~s are foun~ !~~ the ,generators of the ~roup R(5) in an arbitrary irreducible 
representatIOn usmg the natural basIs m whIch th.e represen.tatIon of R(5) is fully reduced with respect 
to the.subg~oup R(4) = .SU(~) @ SU(2). ,!,he t~chnIque used IS based on the well-known Racah algebra. 
The dlmen.slOn formula ~s derIved and the mvarIants are found. A family of identities is established which 
relates varIOUS polynomIals of degree four in the generators and which holds in any representation of the 
group. 

INTRODUCTION 

Recently, interest has been revived in describing the 
collective states of certain even-even nuclei by means 
of a five-dimensional isotropic harmonic oscillator 
arising out of the quadrupole vibrations of the nuclear 
surface about a spherical equilibrium shape. This 
model predicts! that the second excited state should be 
a degenerate triplet of angular momenta (L" = 0+, 
2+, 4+) occurring at twice the excitation of the first 
excited state which has angular momentum and parity 
L" = 2+. As this prediction is not observed to hold 
in actual nuclei, the five-dimensional oscillator model 
is only an approximate description of the excited 
states of these nuclei. This description has nonetheless 
proved to be a convenient starting point in describing 
the coupling of the collective modes to the giant 
dipole oscillations resulting in the splitting of the 
giant dipole resonance.2.3 

For the five-dimensional oscillator, only the totally 
symmetric irreducible representations of SU(5) occur, 
and these may be considered to be fully reduced with 
respect to the subgroup R(5). For application to 
the above problem, it is then convenient to reduce the 
R(5) irreducible representations with'respect to the 
physical R(3). 

Of course, all the main properties of the classical 
groups are already well known and may be found by 
mining in such classic works as the books by Mur­
naghan, Weyl, and Littlewood.' For practical applica-

• Work was performed in the Ames Laboratory of the U.S. 
Atomic Energy Commission, Contribution No. 2163. 

1 A. Bohr, Kgl. Danske Videnskab. Selskab, Mat.-Fys. Medd. 
26, No. 14. (1952). 

• J. Le Tourneux, Kgl. Danske Videnskab. Selskab, Mat.-Fys. 
Medd. 34, No. 11 (1965). 

3 M. G. Huber, H. J. Weber, and W. Greiner (to be published). 
• F. D. Murnaghan, The Theory of Group Representations (Johns 

Hopkins Press, Baltimore, 1938); H. Weyl, The Classical Groups 
(Princeton Univ. Press, Princeton, N.J., 1946); D. E. Littlewood, 
The Theory of Group Characters (Oxford Univ. Press, London, 1940). 

tions, however, it is necessary to realize the irreducible 
representation of the group in an explicit way. This 
introduces the problem of labeling the states within an 
irreducible representation in a manner whose physical 
meaning is transparent. For application to the physical 
problem in mind, we have already indicated that the 
R(S) representations should be explicitly reduced 
with respect to the physical R(3) subgroup; however, 
it is very hard to obtain suitable explicit representation 
matrices directly using such a fully reduced basis. 
Instead, we adopt the "natural" labeling in which an 
irreducible representation of R(S) is considered to be 
fully reduced with respect to its subgroup R(4) = 
SU(2) @ SU(2), and a state is labeled by the particular 
weight of the particular irreducible representation of 
R( 4) to which it belongs. The problem of relating the 
natural.labeling to that in which R(S) is reduced with 
respect to the physical R(3) subgroup will be the 
subject of our second paper. 

The main original results in the present work are the 
development of the explicit representation matrices 
in the natural basis,5 and the discussion of the well­
known dimension formula and Casimir-type operators 
by means of our algebraic approach. So far as we 
know, the fourth-order identities discussed in Sec. 5 
are completely new. They are analogous to those found 
by Pursey6 for SU(3). Much of this work was developed 
in embryonic form some years ago by two of us (N. K. 
and D. L. P.), but was not published at that time. The 
present treatment closely follows Pursey's treatment 
of SU(3) in its whole-hearted exploitation of Racah 
algebra. 

Because R(S) is compact, we know that all the 

5 Explicit representation matrices have been found for the gener­
ators of the rotation groups in arbitrarily many dimensions by I. M. 
Gel'fand and M. L. ZetIin, Dokl. Akad. Nauk. SSSR 71, 1017 
(1950). We believe our treatment is a simpler approach to the problem 
in the particular case of R(S). 

• D. L. Pursey, Proc. Roy. Soc. (London) A27S, 284 (1963). 
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irreducible representations may be taken to be unitary 
and are finite-dimensional. It will not be necessary to 
make use of this latter property, however, since the 
finite dimensionality of the unitary representations 
will emerge from the algebraic formalism. It is 
perhaps of interest to note that this approach will also 
provide, via the unitary trick, the finite nonunitary 
irreducible representations of the de Sitter group. 

1. CHOICE OF GENERATORS 

It is well known that the generators Mik of R(5) 
satisfy the commutation relations 

[Mik' M lm] 

= i(tJlIMkm + IJkmMi! - IJimMkz - IJkzMim), (1) 

where the indices run from 1 to 5. Mik is the generali­
zation to five dimensions of the angular-momentum 
tensor eikZJZ in three dimensions. In particular, if A I is 
a vector, then 

[Mik' AI] = i(IJizAk - IJkzA;). (2) 

It will be convenient to replace the ten linearly inde­
pendent generators of Eq. (1) by linear combinations 
which explicitly display the 8U(2) @ 8U(2) = R(4) 
subgroup of R(5). This may be done by defining 

jz" = te"ikM;k + tM,,4' (3a) 

1" = ie"ikM;k - tM,,4' (3b) 

where a,j, k = 1,2, 3 only, and we use the summation 
convention for repeated indices. Then we have the 
commutators 

[jza' h] = iea(JYjzy, (4a) 

[1a,1(J] = iea(Jy1y, (4b) 
and 

[jza,1(J] = o. (4c) 

The remaining four generators are then conveniently 
grouped to display their transformation properties 
under the 8U(2) @ 8U(2) subgroup generated by p and 
q. They form a bispinor T~r] with components 

[!h -! . 
TH = -2 (M15 + IM25), 

[H] -! . 
T _!_! = 2 (M15 - IM25), 

[H] -! . 
T!_! = 2 (Ma5 - ZM45), 

[H] -! . 
T -H = 2 (Ma5 + 1M45). 

(5a) 

(5b) 

(5c) 

(5d) 

It is also convenient to replace the Cartesian gener­
ators of the two 8U(2) subgroups by tensors irreduc­
ible with respect to the product group. Thus we use 

- T[10] 2-!( j, + 'j, ) PI = lO = - r1. Ir2' 

P = T[10] _ j, 
0- 00 -ra, 

- T[10] 2-!( j, 'j, ) P-1 = -10 = r1 - Ir2 , 

(6) 

FIG. 1. The root diagram corresponding to the choice of gener­
ators of R(5) given in the text. For simplicity the superscripts on the 
bispinor have been omitted and the ±! components denoted by 
± only. Similarly, the ± 1 components of p and q are denoted ±. 

and similarly, 

T [Ol] 2-!( +. ) q1 == 01 = - 11 112 , 

qo == T~l] = 13' (7) 
- T[Ol] 2-!( .) q-1 = 0-1 = 11 - 112 • 

This choice of generators is conveniently displayed on 
the root diagram of Fig. 1. The commutation prop­
erties of the p's, q's, and the bispinor are then given 
by7 

and 

[PJL, Pv] = 2-!C(111; Yft)PJL+vo 

[qJL' qv] = 2-!C(111; Yft)qJL+v, 

[PJL, qv] = 0, 

d!] _ 3! .1.1. [H] 
[PJL ' TaP] - 2 C(2 12' (tp)Ta+JL .p , 

(8) 

We shall not explicitly require the commutators 
of the elements of the bispinor among themselves. 
Rather we take linear combinations of these commu­
tators with vector coupling coefficients to construct, in 
spherical-tensor form, the vector scalar [T[H], 
T[H]]~~o]. Clearly one has 

[T[U] T [Hl][10] = Ap 
, JLO JL' (9) 

and in order to find A, we need merely consider one 
component, say ft = 1; this yields A = -2. Similarly, 

1 The vector coupling coefficients here are in the notation of 
M. E. Rose, Elementary Theory of Angular Momentum (John Wiley 
& Sons, Inc., New York, 1957). 
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one has 
[TrUl TrUl]rOll = -2q , Ov v· 

We then use 

[TrUl T[Ul][IOl = 2(T[U)T[Ul)[IO) 
, pO pO 

to find 
(T[H)T[Ul)~~O) = _ T~~O) 

and 
(T[U)T[Ul)[Ol) = _ T[Ol) 

0. 0 •• 

(10) 

(lla) 

(l1b) 

2. BASIS STATES AND REDUCED MATRIX 
ELEMENTS 

Each irreducible representation of R(5) is considered 
to be fully reduced with respect to the product 
subgroup SU(2) ® SU(2). Therefore the state vectors 
will bear the labels Ip').qfl), where pCp + 1), ')., q(q + 1), 
and fl are the eigenvalues of p2, Po , q2, and qo, respec­
tively. The basic problem then is to determine the 
ranges of p and q within a given irreducible representa­
tion of R(5). We do this by finding the reduced matrix 
elements of the bispinor for our choice of basis states. 
In the notation of Fano and Racah,8 the matrix 
element of T;:!!ol is given by the Wigner-Eckart 
theorem 

(p' J..' q'fl'1 TIl[!::') Ip').qfl) 

= [(2p' + 1)(2q' + 1)]-tC(pjlP'; ').0(1').') 

X C(Qj2Q'; fl0(2fl') (p' q'lI T[il/s) IIpq). (12) 

We have then from Eqs. (11) and (12), together with 
Fano and Racah's equation (15.15) and the reduced 
matrix elements of T[1O) and T[OI), 

L../3 W(pp'H; Ip")W(qq'U; Oq") 
p"q" 

X (p'q' II p"q")(p"q" " pq) 
= -bp'pbq'q[p(p + 1)(2p + 1)(2q + l)]t (13a) 

and 

L../3 W(pp'H; Op")W(qq'U; Iq") 
'/I"q" 

X (p'q'." p"q")(p"q" " pq) 

= -bp'pbq'q[q(q + 1)(2q + 1)(2p + 1)]t, (13b) 

where, in Eqs. (13), we have used Racah's notation9 

for the recoupling coefficients and have abbreviated 

(p'q'lI T[Hlll pq) by (p'q' II pq). 

In Eq. (13a), the left-hand side vanishes identically 
unlessp" =p ± t,p" =p' ± t,p' =p,p ± 1, and 
q" = q ± t. First of all, take p' = p ± 1, which 
requires that p" = p ± t = p' T t. Then Eq. (13a) 

• U. Fano and G. Racah, Irreducible Tensorial Sets (Academic 
Press Inc., New York, 1959). 

I See, for example, M. E. Rose, Elementary Theory of Angular 
Momenta (John Wiley & Sons, Inc., New York, 1957). 

yields 

(p ± 1, q "p ± t, q + t)(P ± t, q + t "pq) 

= (p ± 1, q "p ± t, q - t)(P ± t, q - lllpq)· 

(14) 
Let us now define 

s = p + q, t = P - q, (15) 

so that Eq. (14) becomes 

(s ± 1, t ± 1 " s ± 1, t)(s ± 1, t "s, t) 

= (s ± 1, t ± 1 " s, t ± 1)(s, t ± 1 " s, t). (16) 

Similarly, in Eq. (13b) we take q' = q ± 1 and thus 
q" = q ± ! = q' ± t to yield 

(s ± 1, tTl" s ± 1, t)(s ± 1, t" s, t) 

= (s ± 1, tTl" s, t T 1)(s, I TIl/ S/). (17) 

In Eq. (I7) with the upper sign, we replace t by 
t + 1 and multiply the resulting equation into Eq. 
(16) also with the upper sign. Then one has, after 
some cancellations, 

(s + 1, t + 1 " s + 1, t)(s + 1, t " s + 1, t + 1) 

= (s, t + 1 " s, t) (s, t II s, t + 1). (18) 

Since we seek unitary representations, we have so 
defined our generators that 

T[U)t = (_I)Il+/lT[U) (19) 
Il/l -Il-/l' 

and thus it follows from Eq. (12) that 

(p'q' "pq)* = (_I)'P+fl-p'-q' (pq II p'q'), (20a) 

or, in terms of sand t, 

(s't'" st)* = (-I)8-0'(st" s't'). (20b) 

Upon using Eqs. (20b) and (18), we find 

I(s + 1, t + 1 " s + I, t)1
2 

= I(s, t + 1 " s, t)1
2 = get), 

(21) 
which is clearly independent of s. 

By a similar procedure, using opposite signs in 
Eqs. (16) and (17), we obtain 

I(s + 1, t + 1 II s, t + 1)12 

= I(s + 1, t II s, 1)1 2 =f(s). (22) 

Finally, we use Eqs. (13) with p' = p, q' = q to 
obtain the induction equations for f(s) and get). 
From Eq. (13a), we have 

(s + t)[f(s) + get)] - (s + t + 2) 

x [f(s - 1) + get - 1)] 

= -(s + t)(s + t + 1)(s + t + 2) 

x (s - t + 1), (23) 
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while Eq. (13b) yields 

(s - t)[f(s) + get - 1)] - (s - t + 2) 

x [f(s - 1) + get)] 

= -(s - t)(s - t + 1)(s - t + 2) 

x (s + t + 1). (24) 

3. SOLUTION OF THE INDUCTION EQUATIONS 

We may note in passing that from Eqs. (23) and 
(24) it is obvious that get) = g( -t - 1), but it will be 
unnecessary to use this symmetry property to solve 
these induction equations. Similarly, while it is very 
straightforward to use the compactness of R(S) and 
therefore the knowledge that all unitary representa­
tions are finite, it is necessary only to use the fact that 
all irreducible representations may be taken as un­
itary. The finite dimensionality of the representations 
arises in a very natural way from the solution to 
the induction equations which themselves have come 
from the group algebra. 

Equation (23) is rewritten as 

f(s) + get) f(s - 1) + get - 1) 

(s + t + 2)(s - t + 1) (s + t)(s - t + 1) 

= -(s + t + 1) 

= -H(s + t + 2)2 - (s + t?]. 

Therefore, noting that on both sides the second term 
is obtained from the first by replacing s by s - I and t 
by t - 1, we must have 

f(s) + get) = -Hs + t + 2)(s - t + 1) 

x [(s + t + 2)2 + !X(s - t)], (2S) 

where !X is a function of s - t as yet ~o be determined. 
Equation (24) is then rewritten as 

f(s) + get - 1) f(s - 1) + get) 

(s - t + 2)(s + t + 1) (s - t)(s + t + 1) 

(26), we find 

f(s) + get) = -Hs + t + 2)(s - t + 1) 

Therefore, 

x [(s + t + 2)2 + (s - t + 1)2 + 2y] 

= -t[(s + 1-)2 - (t + i)2] 

X [(s + 1-)2 + (t + W + y]. 

and 
f(s) = -t{(s + 1-)2[(S + 1-)2 + y] + b} (28a) 

get) = +H(t + W[(t + t)2 + y] + b}. (28b) 

Letusnowintroduce x = (s + 1-)2 andy = (t + i)2. 
Since x > 0, y 2 0, and It I ~ lsi, we have 

o ~ y < x. (29) 

Furthermore, since f(s) and get) are intrinsically 
positive, we have 

-ix2 
- tyx - tb 2 0 (30a) 

and 

ty2 + tyy + tb 2 O. (30b) 

From Eq. (30a) it follows that x must lie between the 
roots of x2 + yx + (j = 0 and, from Eq. (30b), y 
must lie outside the roots. Thus we have 

o ~ y ~ - ty - (iy2 - (j)! 

~ x ~ -ty + (iy2 - b)!. (31) 

It therefore follows that y .~ 0 and 0 ~ (j ~ (yf2)2. 
It is clear that the bispinor has the ladder property 

for sand t, in that it steps either s or t up or down by 
1. Hence y must reach its upper bound, for only then 
will get) vanish and terminate the ladder. Similarly, 
x must attain its upper bound. Thus 

(32a) 
and 

(32b) 

Let us denote the upper bounds of sand t by I and k, 
respectively. Then we have 

(l + !)2 = -ty + (ty2 - b)! (33a) 
= -(s - t + 1) and 

= -HCs - t + 2)2 - (s - t)2], 

from which we find in a similar way that 

(s) + get - 1) = -Hs - t + 2)(s + t + 1 ) 

x [(s - t + 2)2 + P(s + t)]. (26) 

In Eq. (26) we replace t by t + 1 and compare the 
result with Eq. (2S). This gives 

P(s + t) = (s + t + 1)2 + 2y, 

!X(s - t) = (s - t + 1)2 + 2y. (27) 

On substituting these results into Eq. (2S) or Eq. 

from which it follows that 

y = - (l + 1-)2 - (k + t)2 
and 

b = (l + !)2(k + t)2. 

(33b) 

(34) 

(3S) 

Using Eqs. (34) and (3S) with Eqs. (28), we find 

f(s) = HI - s)(l + s + 3)(s - k + 1)(s + k + 2) 

(36) 
and 

get) = HI - t + 1)(1 + t + 2)(k - t)(k + t + 1). 

(37) 
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To recapitulate we have 

f(s) = I(s + 1. til TlUl lis. t)1 2 

= I(p + t. q + til T[11lIlpq)1 2
• 

get) = I(s, t + 111 Tll!l lis, t)1 2 (38) 

= I(p + t, q - til TlUl IIpq)1 2
, 

s = P + q, t = P - q, 

and the solution to the induction equations is com­
pleted once we adopt the phase convention that the 
reduced matrix elements are the positive square roots 
of f(s) and get). 

4. CHARACTERIZATION OF THE IRREDucmLE 
REPRESENTATIONS AND THE DIMENSION 

• FORMULA 

We have solved the induction equations in terms of 
the maximum values I and k of sand t in the repre­
sentation. We must still determine the permissible 
values of I and K. We have made use of the essential 
nonnegative character of f(s) and g(t), which implies 
that the induction equation shall not lead to values of 
x greater than (I + -1)2 nor less than (k + t)2 nor to 
values of y greater than (k + t)2. From the definitions 
of I and k, it is clear that I;;:: k ;;:: O. From the 
necessary symmetry of the irreducible representations 
under interchange of p and q, it is clear that -k ~ 
t S k so that k must be an integer or half-integer; and 
since I - k must be an integer, I is correspondingly an 
integer or half integer. 

Thus we conclude that an irreducible representation 
of R(S) is characterized by two nonnegative numbers 
(/, k) such that both are either integers or half-integers 
and I;;:: k. For given (I, k), s ranges from k to I by steps 
of 1, and t from -k to k by steps of 1. 

We may express these results in terms of p and q as 
follows: In an irreducible representation (I, k) of R(S), 
p and q range from 0 by steps of t to t(k + I). For a 
fixed value of q, p ranges from Ik - ql by steps of 1 
to the minimum of [/ - q, k + q]; For afixed value of 
p, q ranges from I k - pi by steps of 1 to the minimum of 

[/ - p, k + pl. 
The dimension of an' irreducible representation 

(/, k) may be easily computed by summing (2p + 1) 
(2q + 1) over the possible simultaneous values of p 
and q. Alternatively, we may sum (s + t + 1) 
(s - t + 1) over the permissible values of sand t to 
obtain 

del. k) = i(2k + 1)(21 + 3)(1 + k + 2)(1- k + 1). 
(39) 

The irreducible representations of R(S) may also be 
characterized using the well-known isomorphism with 

Sp(4)10 for which the irreducible representations are 
put into one to one correspondence with the two­
rowed Young tableaux labeled by 0'1 and O'a. which are 
the numbers of boxes in the first and second rows, 
respectively. This corresponds to classifying tensors 
under Sp(4) according to the symmetry properties of 
their indices. The vector representation of Sp(4) is the 
spinor representation of R(S) and the connection 
between the characterizations is 

0'1 = 1+ k, O'a = 1- k. (40) 

The substitution of Eqs. (40) into Eq. (39) gives 
Weyl's result. ll 

In yet another characterization, based on weight 
diagrams, Speiserla labels the irreducible representa­
tions by (Ll' L2), which are related to 0'1' 0'2' I, and k 
by 

Ll = O'a = 1- k, L2 = 0'1 - 0'2 = 2k. (41) 
I 

Finally, we make connection with the characteriza­
tion given by Hecht13 and by Parikh,14 in which the 
labels are (Pm' qm) which are the values of A. and p, for 
the state of maximum weight. The relationships are 

Pm = HI + k), qm = HI - k) (42) 
or 

Pm + qm = smax = I, Pm - qm = tmax = k. (43) 

5. INVARIANTS 

The most direct approach to finding the invariants 
is undoubtedly to directly construct operators which 
comm~te with all the group generators. The matrix 
elements of these operators must then be expressible 
as a function of only I and k. Since there are but two 
numbers required to characterize a representation, 
there exist only two independent invariants. For the 
group R(S) there will be a second-order and a fourth­
order invariant since the third-order invariant 
MijMjkMki obviously vanishes. Thus, we could con­
struct MijMji and MijMikMk,Mu directly. However, 
this is not the most convenient way to proceed. 

We shall find it most convenient to define the oper­
ator 

(44) 

Then, since this obviously commutes with p2 and q2, 
we need consider only its diagonal reduced matrix 

10 G. Racah, "Lectures on Lie Groups," Group Theoretic Concepts 
and Methods in Elementary Particle Physics, F. Giirsey, Ed. (Gordon 
and Breach, Science Publishers, Inc., New York, 1964). 

11 H. Weyl, The Classical Groups (Princeton Univ. Press, Princeton, 
N.J., 1946). 

12 D. Speiser, "Theory of Compact Lie Groups and Some 
Applications to Elementary Particle Physics," Group Theoretic 
Concepts and Methods in Elementary Particle Physics, F. Giirsey, 
Ed. (Gordon and Breach Science Publishers, Inc., New York, 1964). 

13 K. T. Hecht, Nucl. Phys. 63. 177 (1965). 
14 J. C. Parikh, Nucl. Phys. 63, 214 (1965). 
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elements, which are given by 

«(lk)pq\\ T2 \\(lk)pq) 

= - z W(ppH; OP')W(qqU; Oq') 
2>'q' 

(45) 

To reduce this it is convenient to note that we may 
write 

get) = Hb(l, k) - 2t(t + I)a(l, k) 

+ (t - l)t(t + 1)(t + 2)} (57a) 
X (pq II p' q')(p' q' II pq). 

and 
From this, together with Eqs. (20a) , (21), and (22), 
we obtain f(s) = -Hb(l, k) - 2(s + I)(s + 2)a(l, k) 

«(lk)pq\1 PII(lk)pq) = H(2p + I)(2q + 1)]-! 

X {f(s) + f(s - 1) + get) 

+ get - I)}. (46) 

Then, using Eqs. (36) and (37), we find after some 
simplification 

«(lk)pqll T211(lk)pq) = [(2p + 1)(2q + I)]! 

X {a(l, k) - pcp + I) - q(q + I)}, (47) 

in which a(l, k) is defined by 

2a(l, k) = /(l + 3) + k(k + 1). (48) 

Therefore, we obtain an invariant A2 defined by 

A2 = P + p2 + q2, (49) 

whose value in the representation (/, k) is 

A2 = a(/,.k). (50) 

This is essentially the second-order Casimir operator. 
To obtain the fourth-order invariant we construct 

+ s(s + 1)(s + 2)(s + 3)}, (57b) 

in which 

b(/, k) = (I + 1)(/ + 2)k(k + I). (58) 

Using Eqs. (57), after some simplification one has 

«kl)pqll B411(kl)pq) 

= -h[(2p + 1)(2q + I)]!{b(i, k) - 2a(l, k)[p(P + 1) 

+ q(q + 1)] + p2(P + 1)2 + q2(q + 1)2 

- 2p(p + 1) - 2q(q + 1) + 6p(p + I)q(q + I)}. 

(59) 

Therefore, the operator 

is invariant and in the representation (I, k) has the 
value 

M4 = b(l, k) = (/ + 1)(1 + 2)k(k + 1). (61) 

two bilinear operators 

7[11] == (T[IO] T[Ol])[11l, 

or 

At first sight, the invariant of Eqs. (60) and (61) 
(5Ia) seems curious in that the usual way of forming the 

second invariant operator would' have it symmetric 
(5Ib) in all the Cartesian generators and of fourth order. 

and 
(52) 

Then we consider the reduced matrix elements of 

(53) 
Since 

«(lk)p' q'll 7"[11] 11(lk)pq) 

= o2>p,Oqq'[P(p + I)(2p + I)q(q + I)(2q + 1)]!, (54) 

we need only consider the diagonal elements of T[ll], 

which are 

«(lk)pqll T[11] 1I(lk)pq) 

= -up(p + 1)(2p + l)q(q + 1)(2q + lW! 

X ~[p(p + 1) - p'(p' + 1) + !] 
2>'q' 

X [q(q + 1) - q'(q' + 1) + !] I(p'q' II pq)12. (55) 

Then we find 

«kl)pqll B4 11(kl)pq) = t[(2p + 1)(2q + I)]! 

X {P(q + I)g(t) + q(p + l)g(t - 1) 

- pqf(s) - (p + 1)(q + 1)f(s - I)}. (56) 

M4 contains second-order terms and does not involve 

(62) 

One would therefore expect that there exists an 
identity relating T4 to p2, q2, and possibly other 
quantities. This indeed is the case as may be readily 
demonstrated by considering 

where the TadJ; of Eq. (63) are indicated without 
superscripts and may be anyone of the irreducible 
tensor generators of the group. From this tensor, 
which is clearly symmetric on its second and third 
pairs of indices, we may form irreducible tensors. 
For example, we may couple the first two pairs to 
fh, AI] and the second two pairs to fh, A2] and then 
couple the result to [JL]. We may also couple the 
first and third pairs to [j~A~], the second and fourth 
pairs to fj~, A;] and then couple to [JL]. Because of 
the explicit symmetry between the second and third 
pairs of indices, the two couplings produce the same 
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sets of irreducible tensors. Recoupling leads to the 
identities 
T[i1;'I.iz;'2;J L] 

= ! [(2j1 + 1)(2A.1 + 1)(2j2 + 1)(2A2 + 1) 
h',;'I', 
i2',A2' 

X (2j{ + 1)(2)'{ + 1)(2j~ + 1)(2).2 + I)]! 

{

P1P2j1} {Q1Q2).1} 
X PaP4j2 QaQ4).2 T[i!';'I'';a';'z';JL], 

j{j~J A.1A~L 

(64) 

where { } is the usual 9j symbol. We are specifically 
interested in the tensor T[ll.ll;OO] formed from four 
bispinor components. From Eq. (64) we find 

T[ll,ll;OO] = ! [(2j + 1)(2), + 1)]!( _1)H;' 
;;' 

X W(BH; Ij)W(BH; lA)Tu;,.;;,;OO]. 
(65) 

When we use explicit forms for the Racah coefficients, 

JOURNAL OF MATHEMATICAL PHYSICS 

Eq. (65) becomes 

T[l1·11;OO] = 9T[oo.oo;OO] _ 3J3(T[10.1O;OO] + T[Ol.01;OO]). 

(66) 

Now, from Eq. (63) with all Ta.p == T~i!], we have 

and 

T[ll.ll;OO] = T4, 

rroo.oo;OO] = (T2)2, 
T[1O.10;OO] = _ p2, 

(67a) 
(67b) 
(67c) 

T[Ol.Ol;OO] = _q2. (67d) 

Equations (67) together with Eq. (66) provide the 
identity we seek, namely, 

T4 = 9(T2)2 + 3J3(P2 + q2). (68) 

Thus, the invariant of Eq. (60) can be written in 
terms of fourth-order quantities as 
M4 = 1204 + (P2 _ q2)2 + 2(P2 + q2)T2 

+ iJ3[T4 - 9(T2)2]. (69) 
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INTRODUCTION 

In P the irreducible representations of R(5) were 
built up directly from the generator algebra in a 
manner closely analogous to that usually done for 
SU(2). For this purpose, the irreducible representa­
tions of R(5) were reduced with respect to the sub­
group R (4)= SU(2) ® SU(2). We shall call the state 

• Work was performed in the Ames Laboratory of the U.S. 
Atomic Energy Commission, Contribution No. 2187. 

1 N. Kemmer, D. L. Pursey, and S. A. Williams, J. Math. Phys. 9, 
1224 (1968) (preceding paper). 

labeling so developed the natural labeling. Unfor­
tunately, neither of these two SU(2) subgroups 
corresponds to the physical angular momentum. For 
physical application it is essential that the irreducible 
representations of R(S) be decomposed into irreduc­
ible representations of the physical R(3). 

The particular physical application we have in mind 
is the five-dimensional harmonic oscillator which has 
been used2 to describe quadrupole vibrations of the 

• A. Bohr, Kg!. Danske Videnskab. Selskab Mat.-Fys. Medd. 26. 
No. 14 (1952). 
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nuclear surface about a spherical equilibrium shape. 
Such a description is, of course, only very approxi­
mate, but it has proved to be a convenient starting 
point for describing the coupling of these nuclear 
surface oscillations to the oscillations of the giant 
dipole resonance.3 .4 The state functions for the five­
dimensional isotropic harmonic oscillator form the 
bases for the totally symmetric irreducible repre­
sentations of SUeS) and these may be considered to be 
fully reduced with respect to the subgroup R(S). In 
this paper, we shall therefore confine ourselves to the 
problem of the decomposition of the symmetric 
irreducible representations of R(S) with respect to 
R(3). 

The irreducible representations of R(3) contained 
in a given irreducible representation of R(S) may of 
course be obtained by the well-known methods of the 
reduction of product representations for both R(S) 
and R(3).5.6 This technique, while useful for some 
purposes, does not allow one to perform detailed 
calculations using the basis functions involved, since 
the method does not yield explicit representations 
matrices for all the generators. A further difficulty 
arises in that, within a given irreducible representation 
of R(S), a particular irreducible representation of 
R(3) may occur more than once. When we have 
specified the generators, it will become clear that no 
proper subgroup of R(S) [apart from the physical 
R(3) itself] contains the particular R(3) (the physical 
angular-momentum group) in which we are interested. 
Therefore, we must seek additional labels, which 
cannot be obtained by the aforementioned technique, 
to completely specify the basis functions. For the 
symmetric irreducible representations of R(S) we 
shall find that only one additional label is neces­
sary. 

This additional label is obtained in a manner 
closely analogous to that of Elliott? for SU(3). 
Specifically, the R(S)-R(3) basis functions will be 
projected from a small subset of the natural basis 
functions by Hill-WheelerS-type integrals. This will 
lead, as it did in Elliott's case, to R(S)-R(3) basis 
functions which are not orthogonal. The fact that the 
solution to the problem is simpler in terms of non­
orthogonal functions is not too surprising in view of 

3 J. Le Tourneux, Kg\. Danske Videnskab. Selskab, Mat.-Fys. 
Medd, 34, No. 11 (1965); Phys. Letters 13, 325 (1964). 

4 T. D. Urbas and W. Greiner, Z. Physik 196,44 (\966). 
• D. E. Littlewood, The Theory of Group Characters (Oxford 

University Press, London, 1940). 
• M. Hamermesh, Group Theory (Addison-Wesley Publishing Co., 

Reading, Mass., 1962). 
, J. P. Elliott, Proc. Roy. Soc. (London) A245, 128 (1958); A245, 

562 (1958). 
8 D. L. Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953). 

Elliott's work and Racah's9 comments about the 
SU(3) problem. This lack of orthogonality presents 
no serious difficulties in general, and for convenience 
for machine coding, the set of linearly independent 
functions given could of course be orthogonalized. 

In Sec. 1, we shall give the connection between the 
natural generators and those which explicitly exhibit 
the R(3) subgroup. This is done in preparation for 
Sec. 2, in which we shall give a formula for the irre­
ducible representations of R(3) which occur in a given 
symmetric irreducible representation of R(S). This 
formula serves to introduce the additional quantum 
number in an empirical way. In Sec. 3, we shall relate 
this additional quantum number to the natural basis 
functions and show that only a small subset of the 
natural basis function are required for projecting out 
the nonorthonormaI R(S)-R(3) basis functions. In 
Sec. 4, we will explicitly determine the normalization 
and overlap integrals for the R(S)-R(3) basis functions. 
These quantities are used in Sec. 5, in which we shall 
give expressions for the matrix elements of the group 
generators expressed in the R(5)-R(3) basis. 

1. GENERATORS 

In I we utilized the natural generators of R(S), 

namely, PI"' q., and T~~!l. The PI" and qv are the 
generators of the two commuting SU(2) subgroups 
and the T~!!] are the remaining generators which are 
expressed as a bispinor under the product group 
SU(2) ® SU(2). These generators satisfy the com­
mutation rules: 

and 

[PI"' Pv] = -.J2 C(lll; ,uv)PI'+v, 

[ql" qvl = -.J2 C(111;,uv)ql'+V> 
[PI" q.] = 0, 

[ T [Hl] 1;-3 C(.lI.l· )T[Hl PI" "p = 2'-/ 2 2, 1X,u "+I'.P' 

[qv, TW1] = t.J3 c(il!; p'v)T~~tlv' 

(1) 

In Eqs. (1), the SU(2) Clebsch-Gordan coefficients 
are in the notation of Rose.1o 

The R(S) generators may also be grouped as the 
generators of R(3) together with a third-rank irreduc­
ible tensor under R(3). These we write as JI' and Q~3]. 
The latter is abbreviated as Qv' When expressed in 
spherical tensor form, these generators satisfy the 
commutation relationships: 

[JI' ,Jv] = -.J2" C(llI; ,uv)JI'+v, 

[JI" Qvl = -2.J3 C(133; ,uV)QI"+V1 (2) 
---

• G. Racah, "Lectures on Lie Groups," Group Theoretical 
Concepts and Methods in Elementary Particle Physics (Gordon and 
Breach, Science Publ., Inc., New York, 1964). 

10 M. E. Rose, Elementary Theory of Angular Momentum (John 
Wiley & Sons, New York, 1957). 
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and 

[QI" Qv] 

= -2/7 C(331; 1t'll)JI'+V +.)6 C(333; Itv)QI'+Y' 

From the commutation algebra among the gener­
ators we may identify the natural basis generators in 
terms of the R(5)-R(3) basis generators. We findll 

and 

also 

and, finally, 

and 

PI = 10-tQ3' (3a) 

Po = 1O-1(3Jo - Qo), (3b) 

(3c) 

ql = 5-1(J1 + i6t Ql), (4a) 

qo = lO-l(Jo + 3Qo), (4b) 

q-1 = 5-1(J_1 + i6tQ_l); (4c) 

(5a) 

(5b) 

(5c) 

(5d) 

In Eqs. (5), the subscripts on the bispinor are, as 
usual, P, q ordered. From the second of Eqs. (3) and 
(4) we have the primary equation which relates the 
natural basis to the R(5)-R(3) basis; namely, 

(6) 

2. BASIS FUNCTIONS 

In I we showed that the irreducible representations 
of R(5) were characterized by two nonnegative 
numbers (/, k) which are either both integers or both 
half integers. For given (/, k), S E P + q ranges from 
k to / by steps of 1 and t E P - q from - k to k by 
steps of 1. The symmetric representations of R(5) are 
(/,0), in which case, since k = 0, P = q. Then, since 
S = 0, 1,2, ... ,I, we have that for the symmetric 
representations (/, 0) 

P = q = 0, i, 1, ..... , il. (7) 

In general, to completely specify a basis function 
for an irreducible representation of R(5) requires six 
labels. In the natural basis these are (I, k), p, q, A, It. 
The p and q label the two commuting SU(2) sub-

11 To obtain Eqs. (3)-(S) it is easiest first to convince oneself of the 
truth of Eq. (6). Apart from factors, this is sufficient to establish 
Eqs. (3a), (3c), (Sa), and (Sd). The form (3b) and the numerical 
factors in Eqs. (3) follow from the SU(2) commutation rules obeyed 
by PI" Equations (3b) and (6) then yield (4b). Equation (5b) is 
derived from Eqs. (Sa), (3c) and similarly Eq. (Sc) comes from Eqs. 
(5d) and (3a). The commutation properties of the bispinor fix the 
constants in Eqs. (5) and also yield Eqs. (4). 

groups, and A and It are the eigenvalues of Po and qo, 
respectively. The (I, k) are related to the eigenvalues 
of the two invariant operators constructed from the 
generators of R(5). These operators and their eigen­
values are 

A2 E _ [TrUJTrHl][OO] + p2 + q2 

= ,H/(/ + 3) + k(k + 1)] 
and 

M4 E 12[[pq][1l][rrHJTrUlilll][OOJ + (P2 _ q2)2 

+ 2(P2 + q2){ - [rrH1rrU]][OO] +,1} 

= (l + 1)(/ + 2)k(k + I). (8) 

For the symmetric representations, only the second­
order R(5) invariant is, in general, nonzero and its 
value from the first of Eq. (8) is t/(l + 3). We also 
require p, A, and It-four labels in all. Thus for the 
symmetric representations we may denote the natural 
basis functions as X (lpAIt)· 

In the R(5)-R(3) basis we shall also require four 
labels fo'r the symmetric-representation basis functions. 
Three of these are I, J, and M, which are the simul­
taneous eigenvalues of 

A2 = !l(l + 3), 

J2 = J(J + 1), 

Jo=M. 

(9) 

From Eqs. (2), it is clear that no proper subgroup of 
R( 5) contains R(3) as a proper subgroup. Further, 
although Q2 commutes with A2, J2, and Jo, J2 + Q2 
is essentially A2, and hence Q2 does not provide a 
new label. We shall label the R(5)-R(3) basis functions 
as 1jJ(I'llJM) where the additional label v is as yet 
unspecified. 

We may determine the possible values of J within 
a representation by a method similar to the well­
known derivation of the Clebsh-Gordan series for 
R(3). The procedure is illustrated in Fig. 1 for the 
representations (1,0) and (6,0). A grid of points 
(A, It), where A and It are the eigenvalues of Po and qo, 
respectively, is set up, and at each point of the grid 
we write the degeneracy of the corresponding pair 
(A, It) of eigenvalues. We next draw the lines 3A + It = 
const = M and label each line by [M, d(M)], where 
d(M) is the total degeneracy of the eigenvalue M of 
Jo• The possible values of J, together with their 
degeneracies, are then found by a simple counting 
procedure:. the angular momentum J occurs d(J) -
d(J + 1) times. 

From Fig. 1 it is clear that the extra quantum 
number v is indeed necessary to distinguish between 
the two occurrences of J = 6 in the irreducible 
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FIG, I. Degeneracy diagrams for the (a) (1,0) and (b) (6,0) 
irreducible representations of R(5), The figure is discussed in the 
main text. 

representation (6,0). Here we shall introduce a 
suitable extra label and state the general rule for the 
range of possible J values associated with the label v 
in the irreducible representation (/,0). The proof of 
the rule will be postponed until the next section. 

We define intrinsic states X(/, v) by 

X(/, v) == x(/, ii, il - v, -iI), (10) 
where 

v = 0, 1, 2, ... , [//3] (11) 

and [//3] is the integral part of 1/3. The points corre­
sponding to intrinsic states are circled in Fig. 1. We 
next introduce the numbers 

K = /- 31', (12) 

which are the values of M for the intrinsic states. K 
takes on the values I, I - 3, 1- 6, ... ,0 or 1 or 2. 
Then, corresponding to any v or, equivalently, any K, 
the possible values of J are 

J = 2K, 2K - 2, 2K - 3, ... , K; (13) 

that is, J can take on all values from K through 2K 
except for 2K - 1. Furthermore, use of the label v 
is sufficient to resolve the degeneracy in J. 

We are now faced not only with the problem of 
proving this general result, but also with that of 
constructing from thp. intrinsic states X(/, v) a complete 

(but not necessarily orthonormal) set of states 
1Jl(/vJM). We shall discuss these problems in the next 
section, and content ourselves here with noting that, 
as proved in Appendix A, our general rule repro­
duces the dimension formula 

d(/,O) = 11(/ + 1)(1 + 2)(21 + 3) (14) 

found in I. 
3. MAIN THEOREM 

In this section, we shall prove the general result 
expressed in Eqs. (11) and (13). To do so, we shall 
define the states 

where 

and 

1Jl(lvJM) = f DkK(O)Xn(l, v) dO, (15) 

v = 0, 1,2,"', [//3], 

K = 1- 31', 

J = 2K, 2K - 2, 2K - 3, ... , K; 

x(/, v) == x(l, iI, il - v, -if) and DiI,K(O) is an 
ordinary rotation matrix; finally, the integral is the 
invariant integral over the group manifold of R(3). 
Thus Eq. (15) defines 1Jl(l1'JM) as the state of angular 
momentum J, z component of angular momentum M, 
projected out of the intrinsic state X(/, v) by the HilI­
Wheeler8 technique. We now state our main theorem: 

Theorem: The functions 1Jl(/1'JM) , defined by Eq. 
(15), span the representation space of the irreducible 
representation (I, 0) of R(S). 

Before we start on the proof, we note that the 
results in the previous section on the possible values 
of J follow as a trivial corollary. 

We first prove the following: 

Lemma: Any angular momentum J which is not 
represented by at least one of the functions 1Jl(l1'JM) 
defined by Eq. (15) is entirely absent from the irreduc­
ible representation (/, 0) of R(S). 

This lemma is of course much weaker than the 
result asserted in the last section and implied by the 
main theorem and is consequently easier to prove. 
To establish the lemma, we must determine which 
values of J are absent according to Eqs. (12) and (13), 
and then verify that these J values are indeed missing 
from the irreducible representation (/, 0) of R(5). 
Two cases arise: 

(a) I = 3n: The missing values of J are J = 1,2, 5, 
21 - I, and J > 2/. 
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(b) 1 ¢ 3n: The missing values of J are J = 0,1,3, 
21 - 1, and J > 2/. 

From the degeneracy diagrams introduced in the 
previous section, it is clear that J > 21 and J = 21 - 1 
are indeed absent from the irreducible representation 
(I, 0). It remains to show that J = 1, 2, S are missing 
if 1 = 3n and J = 0, 1, 3 are missing if 1 ¥= 3n. We 
notice that, to conclude that a particular value of J is 
missing, it is sufficient to show that d(J) = d(J + 1) 
in the notation of the previous section. A detailed 
formal proof of the lemma would be tedious and not 
particularly illuminating; instead we shall sketch the 
bare bones of a proof, making full use of insights 
gained from the degeneracy diagrams. 

By comparing the degeneracies of the pairs of 
eigenvalues (Po, qo) and (Po + 1, qo) it is clear that, for 
sufficiently small M, 

d(M) - d(M + 3) = [MI2] + 1, (16) 

where, as before, [MI2] is the integral part of M12. 
In particular, 

d(O) - d(3) = 1, 

d(1) - d(4) = 1, 

d(2) - deS) = 2, 

d(3) - d(6) = 2. 

From this it follows that one, but only one, of the 
J values 0, 1, 2 occurs and that this J value is non­
degenerate. The same conclusion applies to the 
possible values 1, 2, and 3 of J. Of the set of values 
2, 3, and 4, either only one occurs with degeneracy 2 
or else two distinct values occur; a similar conclusion 
applies to the values 3, 4, and S. 

Now, either J = 0 occurs in the representation 
(I, 0) or it does not. If J = 0 does occur, then J = 1 
or 2 must be absent. Hence, J = 3 must occur 
nondegenerately and therefore 4 must also occur. 
Consequently, J = S must be absent. Thus if J = 0 
occurs in (/, 0), then J = 1, 2, S must be missing. 
On the other hand, if J = 0 does not occur in (/,0), 
then either J = 1 is present or J = 1 is missing. If 
J = 1 is missing, one concludes that J = 3 is also 
missing and J = 2,4, S each occur without degeneracy. 

These results are sufficient to prove the lemma as 
soon as we have seen that J = 0 occurs for 1 = 3n 
and not otherwise, and that J = 1 never occurs. It is 
easy to convince oneself of these special results by 
consideration of degeneracy diagrams. 

We are now in a position to prove the main 
theorem. The method of proof is an adaptation of that 
used by ElliotF in considering the SU(3)-R(3) 
reduction problem and proceeds by reductio ad 
absurdum. 

We suppose that the set of functions "P(/vJM) does 
not span the representation space for the irreducible 
representation (I, 0). It follows that there must exist 
a function rp(J', M') in the representation space of 
(/,0) which is orthogonal to all the 1p(lvJM). Of 
course, this would be automatically true if J' were 
ditTerent from any of the J values represented among 
the functions 1p(/vJM), but this possibility is excluded 
by the lemma. Hence we conclude that there exists a 
function rp(JM) such that the Hilbert space scalar 
product 

(rp(JM), 1p(lvJ'M'» = 0 

for all v, J', M', and the result is nontrivial only when 
J'=J,M'=M. 

Hence our hypothesis shows that 

f dD.D'J:KCD.)(rp(JM), D.X(/v» 

= f dO. D'J:KCo.)(D.-1 rp(JM), x(l, v» 

= L fdD.Di:K(o.) DitM.(D.)(rp(JM'), X(lv» 
M' 

= (2J + lrl(rp(J, K), x(l, v» = 0 (17) 

for a suitable choice of the volume element dO. in the 
R(3) parameter space. Hence, since Jox(l, v) = 
KX(/, v), we must have 

[rp(J, M), X(/, v)] = 0 (18) 

for all intrinsic states x(l, v) and all values of M, not 
necessarily equal to K. 

We now proceed to show that Eq. (18) implies 

[rp(J, M), OX(/, v)] = 0, (19) 

where 0 is an arbitrary element of R(S) acting on the 
intrinsic state x(l, v). We note that 0 can be expressed 
as a power series in the generators of the group, and 
that the generators in any particular term may be 
ordered in any desired manner provided we included 
a compensating term of lower degree derived from the 
commutation rules. We divide the generators appro­
priate to the natural basis into two sets 

A: P±l, Po' q-l, qo, T~f.~! 
and 

When a generator of the set A acts on an intrinsic 
state, the result is either an intrinsic state (if the 
generator is one of P±1, Po, qo) or zero (for q-l, 
T~t~_!, and if v = 0, PH)' Generators of set B do not 
reproduce intrinsic states but are equivalent in their 
effect to the operators J±l acting on intrinsic states. 
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To see this, we note from Eqs. (3)-(5) that 

r [H] 
J1 = 2ql - v 3 Ti._! 

and 
;- [H] 

J_1 = 2q_l + v 3 T_U· (20) 

From these, together with the fact that Tt~~} and 
q-l annihilate intrinsic states, it follows that 

(21) 
and 

T~!~lx(l, y) = r!J_1x(l, v). (22) 

The operator Tn!] is more tricky to deal with, and 
success depends on the fact that for intrinsic states 
P = q = t/, i.e., p attains its maximum value. From 
the explicit matrix elements of T~t! which were 
found in I, specialized to intrinsic states, we find 

TW1X(l, v) = T~l~lx(l, v-I) = r!J -IX(l, v-I), 

(23) 

where the first step utilizes p = il = Pmax and the 
second step follows from Eq. (22). 

We now see that 

(fP(J, M), ()x(l, v»~ = ! (fP(J, M), 7TB r 7TArX(l, y», 

r (24) 

where 7T Ar' 7TB
r 

are products of generators of sets A 
and B, respectively. Each factor 7T Ar merely reproduces 
an intrinsic state [in general, different from X(/, v)], 
while the factor 7TB

r 
is then equivalent to a product of 

R(3) generators operating on an intrinsic state. 
However, the R(3) generators may be taken to act on 
fP(J, M), in which case only the M value can be 
changed. Thus we obtain, finally, 

(fP(J, M), ()x(l, v» 

= ! (fP(J, M), 7TB r 7TArX(l, v»~ 
r 

= ! C(r, M', y')(fP(J, M'), x(l, v'» = 0 (25) 
rM'v' 

by Eq. (19). 
We are now in a position to complete the reductio 

ad absurdum proof of the theorem. By our hypothesis 
that the theorem is false, we have found that there 
exist functions fP(J, M) belonging to the representation 
space for the irreducible representation (/, 0) of R(5) 
which are orthogonal to all the intrinsic states X(/, v). 
Then, by Eq. (25), we see that the fP(J, M) are orthog­
onal to all states of the form ()x(l, v), where () is an 
arbitrary element of the group R(5). However, from 
the irreducibility of the representation (I, 0), which 
implies by definition that the representation space 
possesses no proper subspace invariant under the 

group, it follows that from the set of states ()X(/, v) 
we can find a subset which spans the complete 
representation space. Hence, fPCJ, M) is orthogonal to 
all states in the representation space of (/, 0), which 
contradicts the hypothesis that fP(J, M) belongs to 
this space. This contradiction is sufficient to prove the 
theorem. 

4. NORMALIZATION AND OVERLAP 
INTEGRALS 

The functions 1j1(/vJM) defined by Eq. (15) have 
been shown to be the basis functions for the irreduc­
ible representation (I, 0) of R(5) fully reduced specif­
ically with respect to the physical R(3). However, if 
two of these basis functions differ only in the value of 
y, they are not orthogonal, nor are any normalized. 
We shall define the Hilbert-space integral 

A~(y', y) == (1j1(lv'JM), 1j1(lyJM». (26) 

When y' = y, A~(Y, v) is the square of the normaliza­
tion constant and we adopt the convention of taking 
the positive square root. For y' ¥= v, Eq. (26) is the 
overlap integral for states of common J but different v 
belonging to the irreducible representation (/, 0). 

Before we proceed to compute Aj(y', v), let us 
indicate specifically which J's are involved in the 
overlap integrals. We shall consider y' Z y or, equiv­
alently, K 2 K'. From Eq. (12) it follows that 
1j1(IY'JM) and 1j1(/yJM) have common values of J only 
for 

K' = K - 3n. (27) 

The maximum common J value is 2K' and the mini­
mum is K. Therefore, 

2K'ZK, 

which implies that the A~(y', y) are zero unless 

K' = K - 3n, 

n = 0, 1,2, ... , [K/6]. (28) 

The common values of J are the set 

J = 2K', 2K' - 2, 2K' - 3,··· , K; (29) 

that is, J runs from K to 2K' in steps of 1 excluding 
2K' - 1. 

In passing, we also note that these considerations 
will yield an explicit formula for the number of times 
N(J) that J occurs in the irreducible representation 
(/, 0). Again, with v ~ v', which implies K 2 K', J 
occurs for both values of y provided 

K~J~ 2K' 
or 

I - 3v ~ J ~ 21 - 6y'. 
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This gives 
v;;:: H/- J) 

and 
v' < 1(2/- J) _6 , 

or, since v and v' are integers, 

(HI - J + 2)] ~ v S v' S (H21 - J)]. 

Hence, the number of v values associated with J 
cannot exceed (i(2/- J)] - [i-(l- J + 2)] + 1. This 
will be N(J) provided we interpret the [ ] as being 
zero whenever its argument is negative, and unless 
21 - J - I is 6n, where n is an integer, in which case 
N(J) will be smaller by 1. Hence we conclude that 

N(J) = (30) 

(

[H2/- J)] - [H/- J + 2)] + 1, 

21- J - 1 ¢ 6n, 

[H21 - j)] - [HI - J + 2)], 

2/- J - 1 = 6n, 

where n is an integer. Equation (30) is the solution to 
the induction equations given by Weber et al.12 

From Eq. (26) together with Eq. (15) we have 

A~(v', v) 

= J dO DitK.(O)(X(lv'), 0-11p(lvJM» 

= I JdODit-K.(O)(X(lv'), 1p(lvJM'»DiJM'(O) 
M' 

= (2J + 1)-I(x(lv'), 1p(lvJK'». (31) 

Again, we use Eq. (15) and find 

A~(v', v) = (2J + 1)-lf dOD'f.:~K(O)(X(l'JI'),Ox(lv». 
(32) 

The problem then is finding [X(/v'), OX(lv)]. To obtain 
the required matrix elements, we may conl!truct states 
with the same transformation properties as X(/v) in 
any manner we like. Now x(lv) is a state in the 
R(4) = SU(2) @ SU(2) space corresponding to 

(
1 1 1 1) 

(p, q, Po, qo) = 2' 2' 2 - v, - 2 . 
As is well known, the state constructed from functions 
X:I:' corresponding to (p, q, po, qo) = (t, t, ±t, -t), 
by 

has the same transformation properties as X(/v) and is 
normalized provided 

(X: , X;) = (l .. //(laba !. 
But X:I: may be taken as suitable states of the vector 
representation of R(S), which we know contains only 
the J = 2 representation of R(3). In particular, since 

12 H. J. Weber, M. G. Haker, and W. Greiner, Z. Physik 190, 2S 
1 966). 

M = 3po + qo, we can identify x+ with J = 2, M = 1 
and X- with J = 2, M = - 2. Similarly, the other 
states of the vector representation are identified. 
Clearly OX(lv) is the same function of OX+ and OX_ 
as X(lv) is of X+ and X-. But OX+ and 0X- may be 
written as linear combinations of X+, x-, and the other 
states of the vector representation with appropriate 
matrix elements of the representation D2 of R(3) as 
coefficients. Only the X+ and x- coefficients need 
concern us because of the Hilbert-space integral in 
Eq. (32). Thus, if v' Z v, we obtain 

(X(lv'), OX(lv» 
= ((1- v)! v! (I - v')! v'!]! 

( D2 )1-V-v'+//CD2 )v'-P(D2 )v-P(D2 )// 
X I 11 -2.1 1,-2 -2,-2, 

fJ (l - v - v' + p)! (v' - p)! (v - p)! p! 
v' ;;:: v. (33) 

There are several ways to evaluate the integral in 
Eq. (32) using Eq. (33). Here we merely quote two 
equivalent forms for A~(v', v) and relegate the deriva­
tions to Appendix B. The first form, suitable for 
machine computation when one has already available 
a fast program for Clebsch-Gordan coefficients is 

A~(v', v) = (2J + 1)-2[(1- v)! (1- v')! v! v'!]! 

where 

and 

1 
x pfrJ" (I - v - v' + p)! (v' - {3)! 

C(I - v - v' + p, J')K(v' - {3)K(v - {3) 
X 

(v - p)! p! 

X C(2v - 2P, 2P, 2v'; v - p, -2P) 

X C(2v' - 2P, 2v, J"; -2v' + 2P, v - 3{3) 
X C(2v' - 2{3, 2v, J"; v' - p, -2v) 

X C(J'J"J; 1 - v - v' + {3, v - 2v' - {3) 
X C(J'J"J; I - v - v' + {3, v' - 2v - P), 

v' ;;:: v, (34) 

K(x) = 2:e[(3X)! X!]! (35) 
(4x)! ' 

C(I J) = 4
J

-
l
l! (J + 1)! 

, (21 - J)!(2J)! 

X 2F1(J - 21, J - I + 1; 2J + 2; 4). (36) 

Alternatively, the C(l, J) may be given by the re­
cursion relationship 

C(I, J) = I C(l - 1, J')[C(J'2J; I - 1,1)]2 
J' 

with 
C(o,J) = (lJ,o' (37) 

The J. values belonging to C(l, J) are those values of 
J in the (1,0) representation with K = I [Eq. (13»). 
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Our second form for A ~(v' , v) is 

Al v' V = 2v'-v [(1- v)! (1- v')! v! v'! (J - K)! (J - K,)!]l 
A ,) (2J + 1) (J + K)! (J + K')! 

X L 4a(-l)'%+Y(J + K + y)! 

apy(l - v' - IX)! (IX - (J)! (v' - v + (J)! {J! (v - (J)! 

(21 - 2v' - 2{J)! (3v' - 3v + 2{J + IX + y)! , > 
X ,v v. (38) 

(J - K - y)! (K - K' + y)! (21 + v' - 3v + IX + y + 1)! -

At first sight, this would appear to be no simpler 
than Eq. (34). However, when it is remembered that 
the C(/, J) and each Clebsch-Gordan coefficient in 
Eq. (34) is itself a sum, Eq. (38) then appears to be a 
considerable simplification. If v' is smaller than v, 
Eqs. (34) and (38) still apply, but with v' +-H and 
an additional factor (_1)V-v'. This is equivalent to the 
symmetry rule 

A~(v', v) = (-ly-v'A~(v, v'). (39) 

5. REDUCED MATRIX ELEMENTS OF R(5) 
GENERATORS IN THE PHYSICAL BASIS 

So far, we have managed to define a complete set 
of states 1p(/vJM) , where J is the physical angular 
momentum. It remains to obtain explicit matrix 
elements between such states for all generators of 
R(5). This is trivial for those generators, which are 
also the generators of R(3). We have 

(1p(lv'JM')1 J;.ltp(lvJM» 

= A~(v', v)[J(J + 1)]lC(J1J; MAM'). (40) 

The remaining generators are components Q13] of 
a third rank tensor with respect to R(3), and their 
matrix elements may be written 

(1p( lv' J' M') I Q13] I tp( lvJ M» 

= C(J3J'; MAM') ([Y'J'II Q IllvJ), (41) 

where the sole remaining problem is the evaluation of 
the reduced matrix element (/v'J'11 Q Il/vJ), which we 
obtain by considering the particular component Q~3] 
or, more briefly, Qo. Then 

Qotp(1vJM) = f D"J:K(o.)QoXn(l, v) dO.. (42) 

We make use of the explicit properties of the Q~3] 
under R(3) and rewrite Eq. (42) as 

Qo1p(1vJM) = ~ f D"J:K(o.)D~;(o.)Qp(o.)Xn(1, v) dO. 

= LC(J3J'; MO)C(J3J'; Kp) 
pJ' 

This has reduced the problem to finding the effect of 
Q/o.) upon Xo(/, v) or, what amounts to the same 
thing, the effect of Qp upon X(/, v). The Qp may be 
expressed in terms of the natural basis generators, 
using Eqs. (3)-(5), as 

Q±3 = 101 PH , 
1 [Hl 

Q±2 = ±5 T±l.±l, 
1 1 [Hl (44) 

Q±l = 6 q±l ± 2 T ±l.'fh 
and 

Then, operating upon the intrinsic states and using 
the results of!, we find 

Q3X(/, v) = - [5v(/- v + 1)]lX(/, v-I), 

Q-3X(/, v) = [5(/ - v)(v + 1)]!X(/, v + 1), 

Q-2X(/, v) = 0, 

QoX(/, v) = - (21 - v)X(I, v). 

For the remaining components, we have 

Q2X(/, v) = [!]lJ_1X(/, v-I), 

(45) 

QIX(/, v) = t61J1X(/, v), (46) 

Q-IX(/, v) = -[i]!J_1X(I, v). 

Now, from Eq. (15), 

x(1, v) = L (21 + 1)1p(1vJ K) 
J 

follows as a trivial corollary. We shall use this to 
evaluate 

J± == f D:r;.~K,(o.)J±l(o.)Xn(l, v) dO.. (47) 

Then from Eq. (15) we have 

J±l(o.)Xn(l, v) 

= L (2J + 1)JH (o.)tpn(lvJK) 
J 

= L (21 + 1)[J(J + 1)iC(J1J; K, ±1)tpn(lvJK ± 1) 
J 

= L (21 + 1)[J(J + 1)]1C(J1J; K, ±1)Dt,K±1(o.) 
Jp 

X 1p(1vJ p). (48) 
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Thus, 

J:!: = [J'(J' + 1)]lC(J'lJ'; K' T 1, ±1, K}lp(lvJ'M). 

(49) 
Finally then, we find 

Qo1p(1vJM) . 

= 1 C(J3J'; M, O){ -C(J3J'; K, 3)[5v(1- v + 1)]1 
J' 

x 1p(1, v-I, J', M) + C(J3J'; K,2) 

x [V'(J + 1)]tC(J'IJ'; K + 3, -1) 

x 1p(1, v-I, J', M) + C(J3J'; K, 1) 

x [U'(J' + 1)}1C(J'IJ'; K, 1) 1p(I,v, J', M) 

- (21- v)C(J3J'; K, 0)1p(l, v, J', M) 

- [iJ'(J' + 1)]lC(J3J'; K, -1)C(J'lJ'; K, -1) 

x 1p(l, v, J', M) + [5(1 -v)(v + 1)]1 

x C(J3J'; K, -3)1p(1, v + 1, J', M)}. (50) 

In interpreting Eq. (50), we note that if v = [1/3], 
then X(/, v + 1) is not an intrinsic state as we have 
previously defined it. In this case we continue to 
define 1p(/, v + 1, J, M) by the projection equation 
(15) from X(/, v + 1) and note that the evaluation of 
the overlap integrals in Appendix B remains valid. 
From Eqs. (50) and (41) we now see that 

(Iv'J'11 Q Il/vJ) 

= {- [5v(1 - v + 1)]tC(J3J'; K, 3) 

+ [tJ'(J' + 1)]tC(J'lJ'; K + 3, -1)C(J3J'; K,2)} 

x A~,(v', v-I) 

+ [5(1- v)(v + 1)]tC(J3J'; K, -3)A~,(v', v + 1) 

+ ([!l'(J' + 1)]lC(J'IJ'; K, 1)C(J3J'; K, 1) 

- [iJ'(J' + 1)]lC(J'IJ'; K, -1)C(J3J'; K, -1) 

- (2/- v)C(J3J'; K, O)}A~.(v', v). (51) 

APPENDIX A 

In this appendix we want to show that the rules 
given by Eqs. (11)-(13) produce the dimension 
formula 

d(/) = tel + 1)(/ + 2)(21 + 3). (AI) 

Now, according to Eq. (13) for given K, the total 

number of states is 
2K 

dK = 1'(2J + 1), (A2) 
J=K 

where we have specifically indicated by the prime that 
the value 2K - 1 is excluded from the sum. Therefore, 

2K-2 
dK = (4K + 1) + 1 (2J + 1) 

J=K 

= 4K + 1 + (3K - 1)(K - 1) 

= 3K2 + 2. (A3) 

This is clearly valid so long as K ~ O. For K = 0 we 
have do = 1. Thus for all K we have 

dK = 3K2 + 2 - bK,c' (A4) 

Now let us write 

I = 3n + m, n = 0, 1, 2 ... , 

m=0,1,2. (AS) 

Then with K = I - 3v we have v = 0, 1, 2, ... , n. 
Thus, in terms of v 

d v = 3(1 - 3V)2 + 2 - bm.obv,n. (A6) 

The dimension of (/, 0) is therefore given by 
n 

d(1) = 1dv = (312 + 2)(n + 1) - bm.o 
v=o 

- 91n(n + 1) + fn(n + 1)(2n + 1). (A7) 

We use n = (/ - m)/3 and after some rearrangement 
find 

del) = t{(l + 1)(/ + 2)(21 + 3) 

- (m - 1)(m - 2)(2m - 3) - 6bm,0}' (A8) 

But since m = 0, 1, or 2 only, we find the desired 
result. 

APPENDIX B 

We want to evaluate the quantity given in Eq. (32) 
for v' ~ v: 

A~(v', v) 

= (2J + 1)-1 f dODk~K(O)(X(1, v'), OX(1, v», (Bl) 

where 

1 [D2 (O)]'-V-v'+P[D2 (O)]v·-p[D2 (O)]V-P[D2 (O)]p 
(X(/,v'), OX(1, v» = [(1- v)!v!(l- v')! v'!]"2" 1 11 -2.1, 1.-2 -2,-2. (B2) 

P (1 - v - v' + (3)! (v - (3)! (v - (3)! (3! 

Now, 
[Dfl(O)]" == ! C(ex, J')D;~(O), (B3) 

J' 

where the J' values in the sum are those from ex to 
2ex in steps of 1 with the exception of 2ex - 1, i.e., 

those in (ex, 0) with K = ex. Also 

[D~2,1(n)]p == K«(3)D~p.p(n), 
and then clearly, 

[D~._2(n)y = K(y)D~~_2/0); 

(B4) 
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finally, 

Then we have 

(X(/, v'), QX(/v» 

= [(1- v)! v! (1- v')! v'!]! 

2 C(I - v - v' + f3, J')K(v' - f3)K(v - f3) 

\J'(l- v - v' + f3)! (v' - f3)! (v - f3)! f3! 
J' (n.)D2(v'-P) (n.) 

X DI-V-V'+P,I-v-v'+P U -2(v'-P),v'-I1;!.~ 

(BS) 

X De!.."fJ-:-~~(v_I1)(Q)D~I1,-2P(Q). (B6) 

In Eq. (B6), we couple the last two rotation matrices 
to 2v, couple the result with D2(v'-P)(Q), and, finally, 
couple the result to DJ'(Q). We find 

(X(/v'), QX(lv» 

= [(1- v)! v! (1- v')! v'!]! 

2 C(1 - v - v' + f3, J')K(v' - f3)K(v - f3) 

X PJ'J"J"' (1- V - v' + f3)! (v' - f3)! (v - f3)! f3! 

X C(2(v - f3)2f32v; v - f3, - 2f3) 

X C(2(v' - f3)2v1"; -2v' + 2f3, v - 3f3) 

X C(2(v' - j3)2v1"; v' - f3, -2v) 

X C(J'1"JIII; I - v - v' + f3, v - 2v' - f3) 

X C(J'1"JIII; I - v - v' + f3, v' - 2v - f3) 

X D'f".K(Q). (B7) 

When Eq. (B7) is inserted into Eq. (BI) and the re-

tion of R(3) it follows that 

C(ex, J) = (2J + 1) J dQD:a*cQ)(D;l(Q))". (BI0) 

We use 

where the 0i are Euler angles, and then we rewrite Eq. 
(BIO) as 

C(ex, J) = 2J + 1 ("sin 0 dO d~(O)(d~l(O»"'. (Bll) 
2 Jo 

The d;",(O) are given bylO 

dJ (0) _ 1 [(J - fJ)! (J + ex)!]! 
",P - (ex - f3)! (J - ex)! (J + f3)! 

X (cos Oj2)2J+P-"'( -sin Oj2)"'-fJ 

X 2Fl(ex - J, -fJ - J; ex - fJ + 1; -tan2 (12), 

ex ;;::: fJ. (B12) 

We use Eq. (BI2) in Eq. (BII) after changing the 
variable to z = HI - cos 0) and using the trans­
formation of the 2Fl function 

2Fl(a, b; c; x) = (1 - X)-a 2Fl (a, C - b; c; _X_) 
x-I 

(B13) 
to find 

C(ex, J) = (2J + 1) f(1 -Z)2"'(1 - 4z)'" 

X 2Fl(ex - J,ex + J + 1; l;z)dz. (BI4) 
sulting integration performed, we find the result given Now 

in Eq. (34). 2FtCex - J, ex + J + 1; 1; z) 
Now, the quantity K(f3) is defined by Eq. (B4). 1 dJ-'" 

Thus we see that K(O) = 1. From = (1 - Z)-2'" - [zJ-"'(1 _ z)J+ot] 
(J - ex)! dJ -'" 

(D~2.1(Q»fJ = (D':2.l(Q»P-lD~2,1(Q) 

it follows that 

K(f3) = K(f3 - 1)C(2(fJ - 1),2, 2f3; f3 - 1, 1) 

= K(fJ - 1)[ (3f3 - 2)(3fJ - 1)(3f3) J!. 
(4fJ - 3)(4fJ - 2)(4fJ - 1) 

(B8) 

This induction equation can clearly be iterated to 
yield 

K(f3) = 2"'[ (3f3)! [4(f3 - x)]!f3! J! K(f3 - x) 
[3(fJ - x)] !(4fJ) ! (fJ - x)! 

(B9) 

and, upon setting x = fJ in Eq. (B9), we find the 
result given in Eq. (3S). 

The quantities C(ex, J) are defined by Eq. (B3). 
From the orthogonality of the irreducible representa-

so we may do J - ex partial integrations in Eq. (BI4) 
and the integrated parts vanish. Thus 

C(ex, J) = (2J + 1) 4J-", ex! 
(J - ex)! (2ex - J)! 

X f(1 -4Z)2",-J zJ-"'(1 - z)J+", dz. (B1S) 

The integral in Eq. (B1S) is a standard integral repre­
sentationl3 for a hypergeometric 2Fl function and so 
we have the result quoted in Eq. (36). We note that 
C(ex, J) is specifically zero for J < ex, J> 2oc, or 
J = 2ex - 1. The recursion relationship for e(ex, J) 
follows trivially from the definition Eq. (B3). 

We shall now derive the second form for A~(v', v). 
Again we use Eq. (B2) in Eq. (BI), but now we 

13 M. Abramowitz and I. A. Stegum, Handbook of Mathematical 
Functions (National Bureau of Standards, AMS. 55, 1964). 
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specifically perform the azimuthal angle integrations 
to find 

A~(p' p)= 1 [(l-p)!(l-v')!v!v,!]i 
, 2(2J + 1) 

X! 1 (-1)v-P 

P (1- p - p' + P)! (v' - P)! (v - P)! P! 

X fSin () d()d'f'K«()[dfl«()]'-V-v'+P 

X [d~2.1«()]V'+V-2P[d':'2._2«())JP. (BI6) 

Again, we use Eq. (B12), wherein we must take care 
that the left subscript is the larger; if it is not, we 
must use 

d,/p«() = dfa( - (). 

At the same time we shall also use Eq. (B13) and 
change the variable to z = HI - cos (). Then we 
find 

A~(v', p) 

=------
(2J+ 1)(K - K')! 

X [(1- 'JI)!(I- 'JI')!p! v'!(J - K')!(J + K)!]i 
(J + K')! (J - K)! 

(-4Y-P 
X ! ------'----<------­

P (I-v - 'JI' + P)!(v'-P)! ('JI-P)! {J! 

X L1
dZ(1 _ Z)20-V-V'+P)Z3(v'-P)(1 _ 4zY-v-v'+P 

X 2Fl(K - J, K + J + 1; K - K' + 1; z). 

(BI7) 

We expand (1 - 4z)!-V-v'+P in the integral and find 

A~('JI', p) 

=------
(2J + 1)(K - K')! 

x [(1- v)!(1- v')! p! p'! (J - K')! (J + K)!]i 
(J + K')! (J - K)! 

x! (-4Y-P+" 
ap (l- P - v' + P-IX)! ('1"- P)! ('JI- P)! (3! IX! 

x 2Fl(K - J, K + J +. 1; K - K' + 1; z). 

(B18) 

But, from Eqs. B5.5.2(6) and B5.6(1) of the Bate-
manu papers, it follows that 

L1
1-1(1 - yy-b-l pFq(al" .. , ap; Cl , ••• , cq ; xy) 

r(b)r(c - b) 
= r(c) 1l+1Fq+l(a1 ," ',ap,b; Cl"",Cq,c;x), 

(B19) 

provided q < p + 1, larg xl < 1T, Re c > Re b > O. 
Thus we find 

A~('JI',-'JI) 

=------
(21 + l)(K - K')! 

x [(1- v)! (1- 'JI')! v! p'! (J - X')! (J + K)!]i 
(J + K')! (J - K)! 

x ! (-4Y-P+«(3'J1' - 3(3 + IX)! 

ap (1- p - v' + P - IX)!(P' - P)!('JI- (3)! 

X _--=(,--2/_-_2_p _-_2_p_' -'.+_2--,-(3-"-) _! __ 

(3LIX! (21 + p' - 2'1' - (3 + IX + I)! 

X 3F2(K - J, K + J + 1, 3p' - 3(3 + IX + 1; 

K - K' + 1,21 + p' - 2'1' - P + IX + 2; 1). (B20) 

Unfortunately, the 3F2 is neither well poised nor 
Saalschiitzian, so the final result is a triple sum: 

A' p' p = 2v'-. - [(1- p)! (1- p')! p'!v'!(J - K)! (J - K')!] 
J(,) (2J+l) (J+K)!(J+K')! 

X I 4"(_1)HY(J + K + y)! (21- 2p' - 2{J)! 

a(Jy(/- v' - IX)! (IX - (J)! (v' - v + (J)! P! (v - P)! 

(3'1" - 3'1' + 2(3 + IX + y)! 
X -------~----~---~---------

(J - K - y)! (K - K' + y)! (21 + v' - 3'1' + IX + y + I)! 
(B21) 

U A. Erdelyi et al., Bateman Manuscript Project, Higher Transcendental Functions (McGraw-Hill Book Co., Inc., New York, 1953), 
Vol. I. We shall <lenote equations of this reference by section number, e.g., B5.6 and equation number therein, e.g., (I). 
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Approach to Scattering Problems through Interpolation Formulas and 
Application to Spin-Orbit Potentials* 
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Department of Physics, Indiana University, Bloomington, Indiana 
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In many problems of potential scattering, and particularly in the inverse-scattering problem, two 
equations prove to be of essential interest: the Gel'fand-Levitan equation and the Regge-Newton 
equation. These and their generalizations apply, respectively, to energy-independent and to A-in­
dependent potentials. In this paper, a method is devised for obtaining equations applying to more 
general cases. The requirement is the existence of analytic properties of the wavefunctions corresponding 
to special classes of potentials, enabling one to construct interpolation formulas of the Lagrange form. 
From these formulas, it is possible to derive integral equations which may then be generalizable to much 
larger classes of potentials. This method is fully developed in the case of potentials depending linearly 
on A. Interpolation formulas and analytic properties of the wavefunctions in the A plane are exhibited. 
Integral equations are given and proved to apply to very large classes of potentials. Existence, unique­
ness, and analytic properties of their solutions are thoroughly studied. An example is given for which all 
the wavefunctions are calculated exactly. Application of the method to the inverse scattering problem in 
the presence of a spin-orbit potential will be the object of a forthcoming paper. 

1. INTRODUCTION 

Among the most powerful tools for dealing with 
problems of scattering by a central potential are the 
Gel'fand-Levitan equationl and its analog, the 
Regge-Newton equation.2.3 Quantities of interest, 
like wavefunctions, Jost functions, phase shifts, etc., 
may depend on three parameters-the energy E, the 
angular momentum A (= I + t); and the reduced 
distance r.4 The Gel'fand-Levitan equation is useful 
when A is fixed, while E and r are treated as real or 
complex parameters. The Regge-Newton equation is 
useful when E is fixed, while A and r are real or 
complex parameters. Although the primary interest 
of these equations has been the inverse -scattering 
problem (at fixed I and at fixed energy, respectively), 
they have also proved useful for deriving analytical 
properties of the wavefunctions and of the Jost 

* Work supported in part by U.S. Army Research Office, Durham, 
North Carolina. 

t Present address: Physique Mathematique, Faculte des Sciences, 
34 Montpellier, France. 

1 I. M. Gel'fand and B. M. Levitan, Isv. Akad. Nauk. SSSR 15, 
309 (1959). Translated in Am. Math. Soc. Trans!. 1, 253 (1955). 
See also L. D. Faddeyev, J. Math. Phys. 4, 72 (1963). 

2 This equation has been introduced by T. Regge [N uovo Cimento 
14,951 (1949)] in order to show the uniqueness ofa potential giving 
rise to a partial wave amplitude having a given dynamical inter­
polation in the angular-momentum plane. 

3 R. G. Newton [J. Math. Phys. 3, 75 (1962)] was the first to apply 
this equation to the construction of potentials from the phase shifts 
at fixed energy. Studies of the analytic and asymptotic properties 
of the solutions, generalizations and further applications to the 
inverse scattering problem, generalization to any base and connection 
with interpolation properties of the wavefunctions have been given 
recently by the author [J. Math. Phys. 7, 1515 (1966) and Refs. 
6,11, and 12 below). 

• This reduced distance is measured hereafter in units of kG" 
the reduced wavelength of the relative motion at a standard positive 
energy, which is fixed throughout the following. We use for r the 
notation z when it is meant as a complex parameter. 

functions, respectively, in the E plane5 and in the A 
plane. 6 It is therefore interesting to devise methods 
enabling one to derive generalizations of these 
integral equations applying to scattering problems 
in which the known forms do not fit. 7 Examples of 
such problems are, at fixed I, scattering by energy­
dependent potentials and, at fixed energy, scattering 
by A-dependent potentials. The latter case is certainly 
the more interesting, since it involves physical 
problems such as scattering of a spinning particle by a 
spin-dependent potential. We shall study it in the 
present paper. The principles of our method are 
given in the Introduction, and the method is fully 
developed through treating the scattering by a spin­
orbit potential in the remaining two sections of the 
paper. The starting point in the method is the follow­
ing remark: For central potentials, the special analytic 
properties of the wavefunctions corresponding to 
special subclasses of potentials enable us to write down 
interpolation formulas which are trivially equivalent 
to the Regge-Newton equation and the related integral 
formulas. 

Let us sketch the argument. Let 1jJ;Jz) and X;.(z) be 
two regular wavefunctions corresponding to the 
angular momentum A and to potentials which are 
both even analytic functions of z in a circle centered 

5 See, for example, the recent papers of H. Cornille on N/D 
equations [preprints of Laboratoire de Physique Nucleaire Orsay]; 
J. Math. Phys. (to be published). 

6 P. C. Sabatier, J. Math. Phys. 7, 2079 (1966); see also Refs. 11 
and 12 below. 

, A list of references concerning generalizations of the GeI'fand­
Levitan-Marchenko procedure is given in a book by R. G. 
Newton, Quantum Scattering Theory (McGraw-Hill Book Company, 
New York, 1966), p. 632. 

1241 
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at the origin. Then we knows that the function 

Ag(A) = Axiz) 1J!_iz)tp;(z) - 1J!~iz)1J!iz) (1.1) 
,u+it 

is an entire function of A of order 1, type 7T, bounded 
on the real axis, going to zer09 like CA as A goes to 
zero. As a result, as we see below (Sec. 2E), we can 
write down for g(A) an interpolation formula of the 
Lagrange form, in which the dependence on it is given 
explicitly in terms of the values of g(A.) at integers. 
Now, since the values of wavefunctions for opposite 
integer ;"s are proportional to each other, it is 
possible to write down a formula including only 
positive integers and the proportionality coefficients 
tp-n/1J!n and X-nlxn, which we denote, respectively, by 
Yn(tp) and Yn(X). Some elementary algebra, and 
making ,u equal to A., leads one to the fundamental 
formula 

( ) _ () + '" tpn(z)tp~(z) - vfn(z)tp;.(z) x;, z - tp). z k 2 2 
n ;, - n 

[27T-1n(y nC tp) - Y n(X))]Xn(z) (1.2) 
or 

xiz) = tp;'(z) - Sgtp;,(p)p-2 dp 

X 1 Yn(Wo, Vo)1j!n(P)Xn(z), (1.3) 
n 

where we have used the notation y,,(Wo, Vo) for 
27T-1n[Y,,(1J!) - y,,(X)], Wo and Vo being, respectively, 
the potentials corresponding to X and 1J!. The series 
on the right-hand side of (1.3) can be used to define a 
function of two variables K(z, p), so that (1.3) is 
nothing but the integral formula for the wavefunction. 
Multiplying both sides by Y;.(Wo, VO)tp;.(Z/) and 
summing over all the positive integral values of A 
yield the Regge-Newton equation. 

Considerations of the same kind enable us to derive 
the Regge-Newton equation for potentials which are 
analytic functions of any rational power of r. The only 
change in the method is that, in order to obtain an 
entire function, we have to multiply the function (l.l) 
by sin 2m7TA/2m sin 7TA., where m is a conveniently 
chosen integer. The function then obtained is of type 
2m7T, and the sequence involved therefore includes 
numbers of the form nj2m, where n is an integer. This 
modification is the only one in (1.2) and (1.3). 

The preceding remark, applying to central A.-

8 This property follows readily from the analytical properties of 
1p;.(z) given by the author in a recent paper [Compt. Rend. Acad. 
Sci. A 263,788 (1967)]; see also Ref. 12 below. The proof given in 
Sec. 2E of the present paper applies also to (1.1), by making the 
spin-orbit potential equal to zero. 

• Throughout this paper, we use C as a general constant, and we 
mean by € a positive number which can be made arbitrarily small. 
Both C and E are not meant to have the same value every time they 
are used. 

independent potentials, suggests a way of obtaining 
integral equations which apply to more general 
problems. First, we notice that, in order to ensure the 
analytic properties of (l.l), it is sufficient that 

tp;'( z) = e;'g(z) (A z) 
r( -A.) tp , , (1.4) 

where 1J!(A, z) and (ojoz) [1j!(it, z)] are entire functions 
of ;, of order 1, type 7T, bounded on the real axis, with 
z belonging to some continuous domain, and tp;,(z) is 
itself an entire function. Generalizations to the case 
when tp),(z) has poles on periodic sequences of negative 
A'S can easily be done as above-i.e., by multiplying 
by appropriate functions. Changes of normalization 
of tp;.(z) can also be made, with the use of some care. 

The second way of extending the method rests on 
the following remark: we d.o not need 1J!-n to be 
related precisely to tpn' We can content ourselves 
with cross relations between the "components" tp~iJ 

of a kind of vectorial solution of a sequence of coupled 
or uncoupled Schrodinger equations. In the case 
which we study thoroughly in the present paper, these 
cross relations are encountered between the solutions 
of otherwise uncoupled SchrOdinger equations corre­
sponding to two spin states. This remark paves the 
way for a study of Schrodinger equations coupled 
by a matricial potential. 

The interesting point in this method is that it 
starts with special properties obtained for special 
classes of potentials. It is needless to say that, once 
the generalization of the integral equation has been 
given, we still have to show that it works for much 
larger classes. However, this is much easier than 
having also to look for its form. Furthermore, 
just as the formal analogy between the study of the 
Schrodinger equation at fixed I, variable E, and the 
one at fixed E, variable it, suggested the Regge­
Newton equation from the Gel'fand-Levitan equation, 
so we can hope to obtain, in a reverse way, integral 
equations useful at fixed I from integral equations 
obtained for fixed E. It is probably possible, but 
more intricate, to construct a method for obtaining 
these equations from generalizations of the interpola­
tion formulas1o in the E plane. 

In the present paper, the method is fully developed 
for the example of potentials depending linearly on it. 
This example corresponds in physics to the scattering 
of a spin-t particle by a spin-orbit potential (L • S). It 
is remarkable that the two wave equations thus 
obtained, although uncoupled as regards their 

10 These formulas, given by K. Chad an [Nuovo Cimento 39, 
697 (1965)] have a form much less convenient than their analog in the 
A plane. 
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physical solutions, are coupled as regards the integral 
equations system. From the point of view of our 
method, the significantly original point in this example 
is that the analytic properties of (1.1) are themselves 
derived from a simpler interpolation formula, which 
can be obtained from the Schrodinger equation in 
elementary ways. The obtaining of all the analytic 
properties and interpolation formulas is the concern of 
Sec. 2. In Sec. 3 we give the integral equations, 
prove them for larger classes of potentials, give the 
integral formulas, and reduce the integral equations 
to Fredholm equations which we can solve. Existence, 
uniqueness, and analytical properties of the solutions 
are studied. An example is given for illustrating the 
results. 

In a forthcoming paper, we use our method for 
solving the inverse-scattering problem at fixed energy 
in the case of a central plus a spin-orbit potential. 

2. INTERPOLATION FORMULAS 

A. Survey of Previous Results 

Our aim is the study of regular solutions of the 
Schrodinger equation for potentials which depend 
linearly on A. In previous papersll- 13 on A-inde­
pendent potentiflls, we used a method whose funda­
mental tool is the equation 

K(r, r') = fer, r') - So' K(r, p)f(p, r')p-2 dp, (2.1) 

previously used by Regge2 and Newton. 3 

To a function fr (r, r'), which is a solution of the 
partial differential equation 

[Dv(r) - Dv(r')]f~'(r, r') = 0 

and the boundary conditions 

fr(r, 0) = f~(O, r') = 0, 
where14 

Dv(r) == r
2
(::2 + 1) - r2V(r) + 1-, 

(2.2a) 

(2.2b) 

(2.3) 

(2.1) associates a function K~ (r, r'), which is a 
solution of the partial differential equation 

[Dw(r) - Dv(r')]K~(O, r') = 0 (2.4a) 

11 P. C. Sabatier, J. Math. Phys. 8, 905 (1967). 
12 P. C. Sabatier, "Interpolation Formulas in the Angular Mo­

mentum Plane," Preprint, Orsay TH/180 (1967); J. Math. Phys. 
(to be published). 

13 P. C. Sabatier, Preprint Orsay TH/200 5p.; Compt. Rend. 
(to be published). 

14 The actual potential energy is obtained from V(r) by multiplica­
tion by the standard energy (2m)-'h2kg. Referring ourselves to 
Footnote 4, we see that a further implicit dependence on E comes in 
because r is measured in units of k;:;'. With these notations, the 
Schrodinger equation (2.6) at a kinetic energy h2k 2/2m is obtained 
by setting VCr) = 1 - k2/k~. 

and the boundary conditions 

K~(r, 0) = K~(O, r') = 0, (2.4b) 
where 

W(r) = VCr) - 2r-l(d/dr)r-lK~(r, r). (2.5) 

Let us now denote by 1J!).(z) the "regular" 15 solutions 
of the Schrodinger equation for the potential V(z), 
with the following normalization: 

Dv (z)1J!).(z) = A21J!;'(z), 

(t7Tz)-lr(1 + A) Gr).1J!iZ) -->-1 as z -->- O. 
(2.6) 

The regular solutions xiz) corresponding to W(z) 
can be generated in a simple way from Kr(z, z'): 

xiz) = 1J!iz) - fKr(Z, ~)1J!i~)~-2 d~ (Re A ~ 0). 

(2.7) 

Equations (2.1)-(2.7) enable us therefore to solve 
completely the SchrOdinger equation for a potential 
W defined from fr(r, r') through (2.1) and (2.5). 
For studying special classes of potentials, we used 
special choices of the input functionfr(r, r'). Such a 
choice involves first a definition of the starting 
potential V(z). We call such a potential a "reference" 
or a "base" potential, and the corresponding regular 
solutions the "reference" solutions or "the base." 
The base which corresponds to VCr) = 0, viz., to the 
standard "fixed" kinetic energy, will be called "the 
standard base." The one corresponding to VCr) = 1, 
that is to say, to a Schrodinger equation without 
any energy term, will be called "the zero base." 
Suppose now we know, for V(z), the function 1J! .. (z) 
for any A belonging to a domain E included in the 
half plane Re A ~ E > O. Then a convenient choice 
for fr (r, r') is the following expansion, provided that 
it is convergent in the domain we need: 

fr(r, r') = IE 1J!,ir)1J!,ir') d[oc(,u)], (2.8) 

where oc(,u) is any piecewise-differentiable function of 
,u in E, or, more precisely, 

fr(r, r') = I/,iW, V)1J!/l(r)1J!,ir') d,u 

+ 2 Y/lJw, V)1J!/li(r)1J!/lJr'), (2.9) 
s 

where C is a set of arcs of differentiable curves and S a 
set of isolated points ,ui in E. So as to obtain a real 
potential, assuming VCr) is itself real, C and S should 

'5 In the following, we use the word "regular" for the solutions 
associated with a potential like 'I' ;.(z) is associated with V(z). It is 
needless to say that these solutions are regular at the origin only for 
ReA. > -1. 
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be symmetric with respect to the real axis, whereas 
{3p and YP should take conjugate values at conjugate 
complex points. Further restrictions on Sand C 
enabled us to study more thoroughly special classes of 
potentials. For instance, if C is empty and if S is the 
set Q of positive rational numbers, we obtain the 
class A of potentials which are analytic functions of a 
rational power of z (say p) in a nonvanishing circle 
centered at the origin in the p complex plane-at least 
provided we can find E such that 

lyiW, V)I < jr(1 + ,u)1 2
E-

2p
; V,u E Q. (2.10) 

The restriction of S to the set of positive integers and 
half-integers leads us to analytic potentials. For 
potentials of class A, we showed the linear formula: 

yP(W, Yo) - Yp(V, Yo) = yP(W, V). (2.11) 

This property applies16 in fact to classes much larger 
than A and to coefficients {3p. The formula (2.11) 
can be used to express y P( W, V) as a difference 
between yp(W, 1) and yp(V, 1). These coefficients 
are associated to potentials V and W, respectively, 
with the zero base. It turns out that for integer ,u's 
they are equal to the proportionality coefficients 
Yn(tp) and Yn(X) which we defined in the Introduction. 
It is also possible to associate all the coefficients of 
rational indices with analogous properties. We gave 
several properties and examples of the YP's and 
showed that K~(z, z') and also the resolvent of (2.1) 
can be expanded like f~(z, z')-for instance, for a 
potential of class A, we get12 

K~(z, z') = ! YPi(W, V)Xp,(z)tpp.(z'). (2.12) 
Q 

Insertion of (2.12) in (2.7) yields for X).(z) an expansion 
formula along the Xp(z), whose coefficients are 
Wronskians of tpiz) and tpp(z). This formula is 
nothing but (1.3). 

The method for dealing with the Schrodinger 
equation for A-dependent potentials will run as follows. 
First, we use an elementary method in order to obtain 
the simplest interpolation formula. This formula 
yields the special analytic properties of the regular 
wavefunctions in the A plane, which can be used in 
turn so as to obtain more sophisticated interpolation 
formulas, from which we deduce the integral equa­
tions. The form of these equations allows us to deal 
with more general classes of potentials than those 
used in the first steps. 

SCATTERING BY A POTENTIAL 

FIG. 1. This scheme shows the logic of the machinery recalled 
in Sec. 2. It applies also to the Gel'fand-Levitan method, as well 
as to the method given in the present paper for scattering by a spin­
orbit potential. The circles are used for relations between quantities 
and are denoted by letters. The numbers 1 and 2 refer to specific 
properties of the quantities of interest. The correspondence between 
these symbols and formulas of the paper is given at the end of Secs. 
2A and 3F. The dotted line in the step "cross section ---+ scattering 
amplitude" means that this is in no way a closed problem. 

regards Sec. 2A, the input function is fer, r'). The 
properties (1) are (2.2) and (2.3). The output generator 
is K(r, r'), the property (2) is (2.4), Relation A is (2.1). 
B is the formula obtained through replacing tpiz) 
by xiz) in (2.6). C is (2.5), D is (2.7). E is the 
irreversible step of taking the asymptotic behavior of 
the wavefunctions. F has been studied in Ref. 3. 

B. Expansions in Terms of Wavefunctions 

So as to be able to devise an elementary method 
for getting at interpolation formulas, we have first to 
study the analytic properties of wavefunctions 
corresponding to a potential of class A for all the 
,u/s involved in the set S of indices which characterizes 
the subclass of A we are dealing with. We first limit 
our study to analytic potentials for which all the 
mathematical difficulties involved in the problem are 
exhibited. Simple changes of variables and functions, 
similar to those stated in a previous paper, 17 enable 
us then to relate the problem involving any potential 
of class A to a problem involving an analytic potential. 

Let us denote by diz) , (,u ~ 0), the quotient of 
Xp(z) by (l7TZ)t(zj2)Pjr(1 + ,u). It follows from (2.6) 
that dp(z) obeys the following equation: 

Ldiz) == z - z - + z 2W(z) + 2,uz - diz) = 0, [ 
d d dJ 

dz dz dz 
(2. 13 a) 

Notice: We give a figure (Fig. 1) for illustrating the where 
machineries used in Sec. 2A and in the following. As W(z) = 1 - W(z) (2.13b) 

16 See the remark on the end of Sec. 3D. The same property 17 Reference 11, Appendix A. Notice that the index fI which is 
holds for the spectral function in the Gel'fand-Levitan procedure. used hereafter is not equal to the index A. used in Ref. 11, but to A. + t. 



                                                                                                                                    

SCATTERING PROBLEMS THROUGH INTERPOLATION FORMULAS 1245 

can depend on f-t and zW(z) is analytic in a circle 
Izl < Ro > 0. It is easy to apply Frobenius's methodl8 

to this equation, giving dJ.«z) the form 

d/z) = 2 d~zP (d~ = 1) (2.14) 
P 

and setting 
00 

z-PLzP = .2 g:(p)zn = p(2f-t + p) + z2W(Z). 
n~O 

Equation (2.13a) is equivalent to the system 

d~ = 1, 

d!g~(1) + d~g! = 0, 

d:g~(p) + d~-lg! + ... d~t,; = 0, 

where we used a condensed notation for the g~(P) 
with n ~ 1, since they do not depend on p. For 
potentials that depend linearly on f-t, we can find an 
upper bound of the form (2ft + I)M(R) for I W'(z)1 
on the circle Izl = R < Ro. The Cauchy theorem 
gives then upper bounds for g~(P): 

g~(p) = p(2f-t + p), g:+1 ~ [M(R)/Rn](2f-t + 1). 

Upper bounds D~+1 for Id~+11 are therefore defined 
by the system 

D:P+1 = M(R)(2f-t + 1) 

J.< (p + 1)(2f-t + p + 1) 

x {D~ + D:-IR-I + ... D~R-:P}, 

D! = M(R)D~ = M(R), 

whose solution is 

D~+1 = IT R-I [ n(R)(2f-t + 1) 
n~O (n + 1)(2f-t + n + 1) 

+ n(2/-l + n) ] (2.15) 
(n + 1)(2f-t + n + 1) , 

where nCR) is equal to RM(R). A more convenient 
upper bound can be obtained by replacing n by nCR) 
in the numerator of all terms whose index n is smaller 
than nCR), and replacing nCR) by n in the numerator 
of terms whose index n is larger or equal to nCR), 
whereas (4f-t + n + 1)/(2f-t + n + 1) is replaced every­
where by 2. Use of Stirling's formula then leads us to 
the bound 

D~+l < (2/R)11 exp [nCR)]. (2.16a) 

18 E. L. Ince, Ordinary Differential Equations (Dover Publica­
tions, Inc., New York, 1956), p. 396. 

It is needless to say that it is possible to manage (2.15) 
so as to get bounds for I d:+1 I , which yield for (2.14) a 
radius of convergence equal to R, and not R/2, as one 
might deduce from (2.16); but those bounds are not 
independent of f-t. Let us now denote by d2iz) the 
product of two functions d~I)(Z) and d~2)(Z), which 
correspond to two different potentials, analytic in 
circles Izl < R, and Izl < R 2 , respectively, with 
RI ~ R2. It is a matter of simple algebraic evaluations 
to show that the following bound applies to del: 

(2.16b) 

provided that R = Rl - E and C(R) is conveniently 
chosen. Let us now introduce a functionJ(z), analytic 
in a circle Izl < y, which can be chosen smaller than 
R/2. It is possible to find a positive number P(y) 
such that 

where Jk is the kth coefficient of the Taylor expansion 
ofJ(z). 

Let us now try to expand J(z) in terms of the 
functions zndn(z): 

)
(?)", n-

fez = "'- bnz dn(z). (2.18) 

Formal identification of coefficients leads us to the 
equations 

k-l 

bk = fk - .2 bnd~-n, (2.19) 
n~O 

which enable one to get any coefficient bn by induction. 
Upper bounds for the Ibnl can obviously be obtained 
by replacing any term in (2.19) by the upper bound of 
its absolute value. This yields the following bounds: 

Ibkl < y-k[l + P(y)]k-IJo 
or 

Ibkl < C[Q(y)]-k. 

It should be noticed that Q(y) is smaller than y. Now 
it follows from (2.17) that 

Izndn(z) I < P(y) Izln [1 - Izl y-l]-l. 

As a result, provided z is in the circle Izl < Q(y) - E, 

the series 2;' bnzndn(z) is absolutely bounded, uni­
formly in z, by the convergent series 

00 

P(y)[1 - Izl y-l]-12 IQ(y)l-n Izln. 
o 

Since every term in the series (2.18) is an analytic 
function of z, the sum of the series is analytic in z 
and defines an analytic function equal to J(z). We 
have therefore proved the following theorem, valid 
for potentials WI and W2 which depend linearly on A. 
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Expansion theorem: Given zWW(z) and zW(2)(z) 
analytic in the circles Izl < R1 and Izl < R2 , respec­
tively, and given a functionJ(z) analytic in the circle 
Izl < R, we can find a circle Q, centered at the origin, 
with nonvanishing radius w (smaller than R1 , R2 , R), 
in whichf(z) can be expanded uniformly in z in terms 
of the products of the functions Znf2d~?~(z) and 
znf2 d~%(z), which correspond to WW and W(2): 

OCJ 

fez) = L an/2zn/2d~%(z)zn/2d~%(z) (z E Q). 
o 

(2.20a) 

Use of the methods quoted above enables one to 
prove that if Z(2-m-1)WW(z) and z(2-m-1)W(2)(z) are 
analytic functions of the principaP9 determination ~ 
of z(m-

1
) in circles I" < R1 and I" < R2 , and being 

given a functionf(z) analytic in ~ for I" < R, we can 
find a circle Q in the ~ plane, centered at the origin, 
in which 

(2.20b) 

where S* includes all numbers of the form k/2m, k 
being a positive integer or 0, m being a positive 
integer.20.21 

C. Simplest Interpolation Formula 

Let us introduce the following notation: 

s;.(z) = (t7Tz)i[r(1 + A)]-\z/2)". 

T;'(Z) = 27T-1Z-1X;.(Z)s;.(z), 

O';.(z) = 27T-1Z-1X;.(Z)s_;.(z), 

d2 d 
D - - + Z-1-

z - dz 2 dz 

(2.21 ) 

(2.22) 

(2.23) 

(2.24) 

s;.(z) is the regular wavefunction which corresponds 
to a potential equal to 1 and, therefore, to the zero 
base defined in Sec. 2A. It follows from (2.6) and 
(2.26) that T;'(Z) and O';.(z) are solutions of the equa­
tions 

[ D. + W(z) - 2AZ-1 ~};.(Z) = 0, (2.25) 

[D. + W(z) + 2AZ-1 :z]O';.(Z) = 0, (2.26) 

in which W(z) is defined as in (2.l3b). The equation 
(2.26) is identical with (2.13a), and O';.(z) is equal to 
(7TA)-1 sin 7TA d;.(z). 

Let us now assume that W(z) can take the two 

10 We thus identify the determination which is real and positive 
when z is real and positive. 

20 Some symbols and notations which have been introduced for 
convenience in the unnumbered formulas of this section will be used 
with a different meaning in the following. 

It The set S. contains the set S and the element zero. 

following values: 

W±(z) = U(z) =f 2AQ(Z), (2.27) 

where neither U(z) nor Q(z) depend on A, and let us 
introduce the operator 

T. = D. + U(z). (2.28) 

We define the two set of solutions (+) and (-) of 
(2.15) and (2.16): 

(2.29) 

(2.31) 

T.O'~(z) = 2A[ _Z-l ~ - Q(Z)JO'~(Z). (2.32) 

As we shall see below (Sec. 2F), this separation has a 
direct physical meaning in scattering problems of a 
spinning particle. Assume now for convenience 
that zW±(z) is analytic for Izl < R, and S is the set of 
integers and half-integers. We assert that the following 
expansions hold in a nonvanishing circle: 

Q(ZEQ Ilzl <w): 

7TA +() ~ A + _( ) _._- 0';. Z = £.., -- aJlTJl z , 
sm 7TA JlES· A + ft 

(2.33) 

7T A _() ~ A _ +( ) 
-.-- 0';. Z = £.., -- aJlTJl z , 
sm 7TA JlES· A + ft 

(2.34) 

where a~ and a; are the expansion coefficients in 
terms of T;(Z) and Tt(Z) of the functions F+(z) and 
F-(z), respectively, defined by 

F±(z) = exp [± rZTQ(T) dT] = L a!T!(z), (2.35) Jo JlES 

where the indices ± correspond to each other accord­
ing to their position. This convention will be used 
in the following. 

Proof: The functions T;(Z) have the same form as 
the functions z2Jld2iz) introduced in Sec. 2B. It is 
therefore possible to define a set of coefficients at 
and a;, and to find a circle Q(z E Qllzi < w < R) in 
which the series (2.33)-(2.35) are analytic, whereas 
the functions on the left-hand side of these formulas 
are also analytic. So as to prove the equality (2.33), 
we need only to apply T. - 2A[Q(Z) - z-1(d/dz)] to 
the right-hand side of (2.33) and use (2.31). We 
obtain by this way 2(Z-1(d/dz) - Q(z»F+(z), which 
is equal to zero, according to (2.35). Comparison 
of the boundary conditions at the origin completes the 
proof. The proof of (2.34) is similar. 
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Coming back to the notations used in Sec. 2A, we 
write (2.33) and (2.34) as 

x~(z)s_iz) = sin 7TA L _A - a~x~(z)s/z). (2.36) 
7TA ~ES A + f.l 

Formulas (2.36) can be considered as the simplest 
interpolation formulas for the regular solutions of the 
Schrodinger equation whose potential depends linearly 
on A. The analogous formula for the A-independent 
potential has been derived in a previous paper,12 and 
is easily obtained by putting (+) equal to (-) in 
(2.36), or Q(r) equal to zero in (2.35). In order to 
make the analogy more obvious, let us introduce the 
notation 

y~(W±, 1) = 2fl7T-1a;. 
(2.36) therefore takes the form 

7TA 
-. -~ X=X( z )L;,< z) 
sm 7TA 

(2.37) 

7T A 
= Xo(z)so(z) + L - X!(z)s/z) -- y,,(W±, 1). 

~ES 2fl A + fl 
(2.38) 

(2.38) is obviously an interpolation formula on the 
zero base. Formulas (2.36)-(2.38) are straight­
forwardly generalized, if Z2-m -

1W±(z) is an analytic 
potential of , (= zm-1

) by, allowing S to include all 
numbers of the form kj2m. 

D. Analytical Properties of Wavefunctions in the A Plane 

Even Potentials 

If both U(z) and Q(z) are even functions, integer 
indices only are involved in the right-hand side of 
(2.36). This formula defines therefore xtcz)s-.<Cz) 
as entire functions of A, which are uniformly 
bounded in the strip 11m AI < E, and obviously g022 
to C(z) Isin 7TA/7TAI as IAI goes to infinity outside of 
this strip. The functions Axf(z)L;.(z) are therefore 
entire functions of A of order 1, type 7T, bounded on 
the real axis, and going to zero like CA as A goes to 
zero. The asymptotic behavior of X;(z) as IAI- 00 

outside the negative real axis is 

x=x(z) = (}7TZ)!(r(1 + A)r1(zj2/ 

X [F±(z) - ;t-lz-1G±(z) + O(;t-2), (2.39) 
where 

00 

G±(z) = 27T-1 L na;x!(z)sn(z). (2.40) 
n~1 

The values of xf(z) for integer A are related to each 

22 In this section, C(z) is any finite function of z. It is not meant to 
have the same value every time that it is used. 

other in the following way: 

x::iz) = (-l)Pa;x~(z), 
where 

p = 1,2,3,' ... 

Analytic and More General Potentials 

(2.41) 

(2.42) 

For potentials which are analytic functions of zm-\ 
let us introduce the function 

± (z) = sin 2m7TA ±(z). 
X;.,m 2' ~ X;. m sm 7TA 

(2.43) 

It is easy to see that the functions AXtm(Z)L),(Z) are 
entire functions of A of order 1, type 2m7T, bounded 
on the real axis, and going to zero like CA as A goes to 
zero. The asymptotic behavior (2.39) still holds, with 

G±(z) = L y/W±, l)X:(z)s/z), (2.44) 
pES 

and the values of the functions Xtm(z) at points of S 
and opposite points are related to the values of 
xf(z) by the relations 

X02m,m(Z) = 0, for integer k :jC 2m, (2.45) 

X::kI2m,m(Z) = (-l)ka02mX~/2m(Z), (2.46) 

X~p,m(z) = a; X! (z) = (-l)pa; X!,m(z), (2.47) 

Evaluation of G±(z) 

Application of zTz' defined by 2.28, to F±(z) as 
given by (2.35) leads us to the formula 

izTzF±(z) = [djdz =F zQ(Z)](Z-lG±(Z». (2.48) 

Derivation of G±(z) from (2.48) is straightforward 
and leads us to the formula 

G±(z) = }zF±(z)[ ±Z2Q(Z) 

+ ft 3Q2(t) dt + ftU(t) dtJ (2.49) 

These formulas are generalizations of the formulas 
giving Kr(z, z) in our previous paper.12 Data of 
G+, G-, F+, and F- enable one easily to extract 
Q(z) (as z-3[G+JF+ - G-jF-]) and therefore V(z). 
It is more difficult, but still possible, to extract Q 
and V from the data of G+ and G- only. 

E. Further Interpolation Formulas 

We deal with potentials whose product by z is 
analytic, since they enable one to encounter all 
difficulties involved in potentials of class A. We 
introduce a A-independent potential V(z) whose 
regular wavefunctions are 1p;.(z). We use for xi.t(z) 
and 1ptl(Z) the more convenient notation ifCz) and 
1p;.(z) [therefore equal to cos 7TA1p;.(Z)). 
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So as to obtain interpolation formulas, we apply 
the Lagrange-Valiron theorem23 to a function Ag(A) 
which is entire, of order I, finite type 217', bounded on 
the real axis, and going to zero like CA as A goes to 
zero. As a result, g(A) has the representation 

sin 17'A. 
g(A) = cos 17'.1.--

17'A. 

x {g(O) + ~ [_A._ g(p) + _A._ g(_P)] 
1 A-P A+P 

00 [ A - t A - (p + t) g(p + t) 

+ A+;+tg(-p-t)]}. (2.50) 

Cross-Products Interpolation Formulas 

Let us first recall12 the reflection formula for "PA(Z), 
which is a special case of (2.46) and (2.47), 

Vi-ik(Z) = (-I)"b!k"P!k(z), (2.51) 
where 

(2.52) 

The asymptotic behavior of "Plz) in the A plane, 
outside the negative real axis, is given by the following 
formula, which is a special case of (2.39), 

"Piz) = (t17'z)![r(1 + A.)r1(z/2)" 

x [1 - A-1Z-1Knz, z) + 0(1.-2)]. (2.53) 

xi(z) has poles for negative half-integers, whereas 
"P_;.(z) has poles for positive half-integers. This 
remark and consideration of the asymptotic behavior 
of (2.39) and (2.53) show that cos' 17'AXt(z)"P_;.(z) has 
all the properties required for the function g(A.) as 
defined above, with 

g\tk) = (-I)"xiiz)"Ph(Z)bh, (2.54) 

l( -tk) = (-I)"Xr,cCz)"Ph(z)a!". (2.55) 

Insertion of (2.54) and (2.55) in (2.50) and simplifica­
tion by cos 17'1. lead us to the cross-product "un­
subtracted" formula: 

sin 17'1. { ~ A ± 
x1:(z)"P-iz) = --,- k x!(z)"Piz ) -:;--+ a" 

17'11. "es· II. fl 

+ 2x~(z)"Piz)-A.- b,,}. (2.56) 
"eS A - I' 

Comparison24 of the asymptotic behaviors of both 

•• R. P. Boas, Jr., Entire Functions (Academic Press Inc., New 
York, 1954). 

It For the legitimacy of these comparisons, see the Appendix to 
Ref. 12. 

sides of (2.56) yields the formula 

(t7Tz)F±(z) = 2 a;x!(z)"P,.(z) + 2 b,,~(z)"P,.(z), 
"ES· .. es 

~ (2.57) 
Subtraction of (2.57) from (2.56) yields the subtracted 
cross product formula. Comparison24 of the coeffi­
cients of A-I in (2.56) yields the formula 

2 [YiV, I)X~(z) - y,.{w±, l)x!(z)]"P,,(z) 
"es 

= -tzF±(z{ ±Z2Q(Z) + ft3Q2(t) dt 

+ ft(U - V) dtJ (2.58) 

If we refer ourselves to the argument given in our 
previous paper for obtaining the linear formula (2.11), 
we see that it fails in the present case. 

Formulas (2.56) and (2.57) can be straightforwardly 
generalized, using the appropriate sequence S, for all 
potentials of A. They are valid in a domain of the z 
plane including n. 

Wronskian Interpolation Formulas 

Let us now introduce the function 

() "P-iz)"P~(z) - "P~iz)"P,.(z) (2.59) 
P-). Z = I' + A ' 

where I' is a given number ¢ S. For analytic potentials, 
the function p_).(z) has poles only for positive half­
integers, and its asymptotic behavior is 

p_iz) r:-' (t17'z)!(z/2)-"[r(1 - A)]-lZ-l"P"{Z) 
x [1 + 0(.1.-1)]. (2.60) 

The function cos 17'Axi(z)p_;.(z) has therefore all the 
properties required for the function g(A) as defined 
above, with , , 

±(lk) = (_1)" ± "Ph"P" - "Ph"P" bl (2.61a) 
g "2 Xh I' + tk ~", 

, , 
g\ -tk) = (-l)"xI" "Ph"P" - "Ph"P,. at',.. (2.61b) 

I' - tk 

Insertion of (2.61) in (2.50) leads us to 

I I .l " _ "Po"P" - "Po"P" + "" __ b ± "P,"P" - "P,"P" 
- XO k ,x. 

I' .eS A. - v I' + v 

+ "" A ±'f"P,"P~-"P~"P" 
ok --avXv . 
vesA+V fl-v 

(2.62) 

Let us now equate24 the limits obtained in the two 
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sides of (2.62) by letting IAI-+ 00, with 11m AI > E, 

Subtraction of (2.63) from (2.62) yields 

A " 7T ± "P-;.."Pp - "P-;.."Pp 7T F± 
-'--1 X;.. + 1 --2 "Pp 
sm 7TII. f1 II. 

_! [ vb.X. _ va;x~ ] 
yES (A - v)(f1 + v) (A + v)(f1 - v) 

x ("Pv"P; - "P~"Pp). (2.64) 

The two sides of (2.64) are entire functions of f1. 
We can therefore make f1 = A. Using the Wronskian 
properties for the coefficient of xi' and coming back 
to the notations of (2.37), we get 

X~ = F±"P;.. + ! "Pv"P~ - "P;"P;.. 
yES A - v 

x [Yv(V, 1)X; - Yv(W±, 1)X~]. (2.65) 

In the same way, we can derive easily the unsubtracted 
interpolation formula 

7T ±( ) ( ) "Po(z)"P~(z) - "P~(z)"Piz) '2 x;.. z = Xo z A 

+ A! "Pp~~ - "P;"P). [bpx';(z) + a!x:(z)]. (2.66) 
pES - f1 

Formulas (2.65) and (2.66) can be generalized for all 
potentials of class A by taking the appropriate 
sequence S. They are valid in a domain of the z 
plane which contains at least n. 

F. Physical Meaning of the Splitting 

Let us study the scattering of a spin-t particle by a 
central and a spin-orbit field. Assume the interaction 
is written as 

v = Wj2m)[UcCr) + 21· sU.(r)], (2.67) 

so that the Schr6dinger equation reads 

~"P(r) + [k2 - Ut(r) - 21 . sUs(r)]"P(r) = O. (2.68) 

It is well-known25 that the differential cross section is 
equal to 

(2.69) 
where 

00 

fee) = (2ik)-1! {(l + 1)[exp (2ibi) - 1] 
o 

+ l[exp (2ib!) - 1]}Pz(cos e), (2.70) 

•• N. F. Mott and H. S. W. Massey, The Theory of Atomic 
Collisions (The Clarendon Press, Oxford, 1965), p. 263. 

00 

gee) = (2ik)-1 ! [exp (2ibi) - exp (2ibl)]P~(cos e), 
o 

(2.71) 

and the phase-shifts bi and b! are given, respectively, 
by the asymptotic behavior, for r -+ 00, of the regular 
solutions of the following equations, in which A = 
1+ i: 

(d2jdr2)"P1(r) + [k2 - Uc + Us - AUs 
- (A2 - t)r-2]"P1(r) = 0, (2.72) 

(d2jdr2)"P").(r) + [k2 - U c + Us + AUs 

- (A2 - t)r-2]"P").(r) = O. (2.73) 

It is easy to write these equations as a Schr6dinger 
equation in which the potential W can take the two 
values given in (2.27) by setting 

U(z) = k 2 ,_ Uc + Us, (2.74) 

Q(z) = tus • (2.75) 

Potentials which depend linearly on A occur also in the 
scattering of a spin-i particle by a scattering center 
with ~pin. 

3. INTEGRAL EQUATIONS 

In this section, we successively derive integral 
equations starting from a zero energy and a finite 
energy base. It is shown that solving these equations 
can be reduced to solving a set of Fredholm equations. 
The existence and uniqueness of solutions is proved 
when certain conditions are fulfilled. We then show 
how these equations can be used to generate potentials 
belonging to classes larger than A. 

A. Zero Energy Base 

From (2.35) and (2.36) we obtain straightforwardly 
the subtracted interpolation formula: 

X}(Z)[ .7TA. 1 LiZ)] 
sm 7TII. 

= !!. zF±(z) - ! _f1_ a;x~(z)siz). (3.1) 
2 pES A + f1 

Let us now multiply both sides of (3.1) by s).(z) 
and notice that 

z ISp(p)Sip)p-2 dp = (A + f1)-lsiz)siz). (3.2) 

We obtain the integral formulas, valid for Re A > - 'Y} 

X}(z) = F±(z)siz) - I K±(z, ~)s).m~-2 d~, (3.3) 

where 

(3.4) 
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Let us now give to A successively all the values ')I 

belonging to the set S; multiply, for every ')I, both 
sides of (3.3) by r.(W±, l)s.(z'); and sum all the 
terms. We obtain 

K±(z z') = p'f(z)j±(z, z') - fK'f(Z,~)j±g, Z')~-2 d" 

where 
(3.5) 

j±(z, z') = ~ riw±, l)siz)s,lz'). (3.6) 
pES 

It follows from (3.3) that 

so(z)[p+(z) - p-(z)] 

= f[K+(Z, 0 - K-(z, msow,-2 d, (3.7) 

and from (2.35) that 

F+(z)F-(z) = 1. (3.8) 

The system of equations (3.5), (3.7), and (3.8) 
replaces the Regge-Newton equation for the scattering 
of a spinning particle. It provides a formal way to 
derive from two input functionsj+(z, z') andj-(z, z') 
[defined by (3.6) and the data of the rp's] the poten­
tials U(z) and Q(z), and to construct all the solutions 
of Schrodinger equation. Existence and uniqueness 
of the solutions of this system will be studied below 
(Sec.3C). 

Another Integral Formula: Generating Functions 

From the un subtracted interpolation formula (2.36), 
in the same way as above, we can obtain 

x1(z) = A fL±(Z, ,)S;.W,-2 d' (Re A> 0), (3.9) 

where 

Notice that, according to (2.35), 

L±(z, z) = zF±(z). 

(3.10) 

(3.11) 

It is easy to derive (3.1) from (3.9) by one integration 
by parts, after noticing that s;.(z) obeys the following 
differential equation: 

(3.12) 
where 

To(z) = z(d/dz) - t = z!(d/dz)z-l. (3.13) 

If we refer to (2.21), which shows that sp(z) is 
essentially zp+1, we see that L ± (z, z') is a generating 
function for the xi (z), which are obtained from it by a 
simple Mellin transform. We made the same remark 
in our previous paper12 for A-independent potentials. 

B. Integral Equations on a General Base 

The interpolation formulas (2.65) use as a base the 
regular wavefunctions corresponding to a certain 
A-independent potential V. If we recall the Wronskian 
formula 

. i" () () -2 d _ 1pp(z)1p~(z) - 1p;.(z)1p~(z) 
1pp p 1p;. p p p - ,2 2 ' 

o I\-P 
(3.14) 

we see that (2.65) is equivalent to the following 
integral formula, valid for Re A > - €: 

x1(z) = F±(z)1p;'(z) - fK±(Z, ')1p,\W,-2 d~, (3.15) 

where 

K±(z, z') = J±(z, z') - J±(z, z'), (3.16) 

J±(z, z') = ~ rp(W±, I)X!(z)1pp(z'), (3.17) 
pES 

J±(z, z') = ~ rp(V, l)x!(z)1piz'). (3.18) 
liES 

Elementary algebraic manipulations enable us to 
derive from (3.15)-(3.18) the following system of 
integral equations: 

J±(z, z') = F±(z)e(z, z') - fK±(Z, ,)eg, Z,),-2 d', 

(3.19) 

J'f(z, z') = F±(z)g'f(z, z') - fK±(Z, ')g'fg, Z,),-2 d, 
(3.20) 

where 

e(z, z') = ~ rll(V, 1)1p,..{z)1pp(z'), (3.21) 
liES 

g±(z, z') = ~ r,.(W±, l)1piz)1pp(z'). (3.22) 
liES 

Now the following formula is derived straight­
forwardly from (3.15): 

1po(z)[f+(z) - F-(z)] 

= f[K+(z, 0 - K-(z, m1poW,-2 d', (3.23) 

whereas (3.8) still holds. 
The system of equations (3.16), (3.19), (3.20), 

(3.23), and (3.8) enables us, at least formally, to 
derive the potential and the regular wavefunctions 
from the input function g±(z, z') [since e(z, z') is a 
known function]. The solutions will be studied below 
(Sec. 3D). 

Another Integral Formula 

From the unsubtracted interpolation formula (2.66) 
we easily derive the integral formula 

x1(z) = A f£±(Z, ')1p,\W,-2 d" (3.24) 
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valid only for Re A. > 0, and where 

L±(z, z') = 21T-1{XO(z)"Po(z) 

+ ~ [bJlX!(z) + a!x!(z)]"Piz')}. (3.25) 
JlES 

C. Existence and Uniqueness of Solutions for 
Zero Base 

Up to now, we have only proved that, being given 
potentials in class A, we are able to construct the 
integral equations systems given in Sees. 3A and 3B. 
In order to construct potentials and wavefunctions 
from two input functionsJ±(z,z') and g±(z,z'), we 
have to show that it is possible to do so using those 
integral equations. Furthermore, we would like to 
be able to generate in this way potentials more 
general than those of class A. 

Let us first discuss the existence of solutions of the 
zero base integral system, under the following 
assumptions: 

Assumption A: f± (z, z') can be given the form 

J±(z, z') = (zz')!+~~±(z, z'), (3.26a) 

where 'YJ is a positive number, and it is possible to 
find a positive nondecreasing function B(R), bounded 
for R :::;; Ro - E, and such that 

I~±(z, z')1 < B(R) for Iz'l:::;; Izl :::;; R. (3.26b) 

Assumption A appears as a byproduct if we make 
the following assumption B, which is not necessary 
for discussing the solutions of the integral equations, 
but will be useful in the fOllowing. 

Assumption B: J±(z, z') is given by the formula 

J±(z, z') = IE SJl(Z)SJl(Z') d[a±(u)], (3.27) 

where Re ft ~ 'YJ, "1ft E E, and which converges uni­
formly for Iz'l :::;; Izl :::;; Ro - E. It is sufficient for this 
that 

(3.28) 

If d[a±(ft)] reduces to a set of 0 functions at isolated 
points ft E S, (3.27) can be written as 

J±(z, z') = ! r/W±, l)sJl(z)s/z') (3.29) 
JlES 

and the input data are the Y Jl's as well as J± . 
Let us now set 

K±(z, z') = [F+(z) + F-(z)]k±(z, z'), (3.30) 

~(z) = [F+(z) + F-(Z)]-1[F+(z) - F-(z)]. (3.31) 

Substituting (3.30) and (3.31) in (3.5) and (3.7) leads 
us to the system of equations 

k+(z, z') = HI - ~(z)]r(z, z') 

-f k-(z, ~)f+a, Z')~-2 d~, (3.32) 

k-(z, z') = HI + ~(z)]r(z, z') 

-f k+(z, ~)f-(~, Z')~-2 d" (3.33) 

~(z) = z-! 1" [k+(z,~) - k-(z, ~m-i d~. (3.34) 

Equation (3.8) remains uncoupled with the system; 
(3.31) enables one to derive F+(z) and F-(z) from ~(z) 
up to an arbitrary multiplicative function of z. The 
use of (3.8) is to ascertain this function. 

Reduction of the System C3.32)-(3.34) 

Let us multiply both sides of (3.32) by J-(z', Z1), 
both sides of (3.33) by [+(z', Z1), and integrate over z', 
with weight function Z'-2, on the interval (0, z). Let 
us then replace the integrals in the right-hand sides 
by their values, given by (3.33) and (3.32), respec­
tively. We obtain 

k-(z, ZI) = HI + ~(z)]rCz, ZI) 

- HI - ~(z)]lPtCz, ZI) 

+ f k-(z, ~)lPta, ZI),-2 d~, (3.35) 

k+(z, ZI) = HI - ~(z)]r(z, ZI) 

- HI + ~(z)1IP";(z, ZI) 

+ fk+(Z, OIP;a, ZI)~-2 d" (3.36) 

where 

IP;(', ZI) = 1" j±C', z')r'(z', ZI)Z,-2 dz' = 1P;(ZI, ,). 

(3.37) 

Let us now introduce the resolvents <P;(x, y) associ­
ated to the kernels 1P;(x, y) and the path of integration 
(0, z), that is to say, the solutions of the Fredholm 
equations26 

: 

<P;(x, y) = 1P;(x, y) + f<p;(X, t)IP;(t, y)t-2 dt 

= 1P;(x, y) + f 1P;(x, t)<P;(t, y)t-2 dt 

= <P;(y, x). (3.38) 

26 See, for example, F. G. Tricomi, Integral Equations (Interscience 
Publishers, Inc., New York, 1957). 
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Use of these resolvents enable us to write (3.35) and 
(3.36) as 

k-(z, Zl) = !([1 + Ll(z)]V'-(z, Zl) 

- [1 - Ll(z)]<I>~(z, Zl)}, (3.39) 

where 

1p±(z, Zl) = J±(z, Zl) + ii±(z, t)<I>~(t, Zl)t-2 dt. 

(3.41) 

k+(z, Zl) = H[1 - Ll(z)]V'+(z, Zl) 

- [1 + Ll(z)]<I>;(z, Zl)}, 

From (3.34), (3.39), and (3.40), we obtain the value 
(3.40) of b,(z): 

z-ll"{-t dn V'+(Z, {) - 1p-(z, {) + <I>~(z, ') - <I>;(z, ')} 
Ll(z) = _~~o _______________ _ (3.42) 

2 + z-llZ,-t d,{V'+(z, ') + V'-(z, ') + <I>~(z, ') + <I>;(z, ')} 

Existence and Uniqueness of Solutions 

The obtention of the resolvents <1>; (x, y) is the key 
for the solution of the system (3.32)-(3.34). Besides, 
obtention of the potential from this solution seems to 
make necessary, according to (3.31) and (2.35), 
that 1 b,(z) 1 be smalle.r than 1. However, we shall 
reassess this point in Sec. 3E below. 

Let us -now study the existence and uniqueness of 
the resolvents <1>;, that of all operators k±, and give a 
domain in which 1b,(z)1 is smaller than 1. All the 
proofs dealing with Fredholm equations are only 
sketched, since they are either trivial or very similar 
to those studied thoroughly in previous papers. 27 

Whether f±(r, r') obeys assumption A or assump­
tion B, formulas (3.26) hold. As a result, provided 
r < R, rp±(r, r') belongs to L2(0, R) and its norm 
goes to zero like r, 

N(rp±, r) = [1r 

J:[rp±(p, pl)]2p-2p'-~ dp dplr 

< i1]-2 A2(r)r4q. (3.43) 

As a result, it is possible to find ro > ° such that, for 
r < ro, the Neuman series define a solution of (3.38). 
If fez, Z') is an analytic function of , = zm-

1 and 
" = (zl)m-1, this solution can be continued in the 
domain "'I ::::; "I < r:;,-l as an analytic function of 
, and ". Furthermore, <I>;(x,y) can be given the 
form 

(3.44) 

where IA;(x,y)1 can be bounded by a nondecreasing 
function oc(r), going to zero like r2q as r goes to zero, 
for any couple of complex points x and y lying in the 
circle centered at the origin and with radius r. It 
follows that b,(z) goes to zero like C1]-lZ2Q as z goes to 
zero. It follows also that there is a domain 1"1 ::;; I" < co in which the following conditions are simul-

27 See Sec. 1 of Refs. 6, 11, and 12. 

taneously fulfilled: 

(1) b,(z) and k±(z, z') are analytic functions on and "; 

(2) I Ll(z) I is smaller than 1. 

For r > ro, it is possible to construct the resolvent, 
provided that f±(r, r'), (r' ::;; r), belongs to L2(0, r). 
If'fj is ~t, the kernel in (3.38) is regular at the origin; 
and if it remains bounded in the domain with which we 
deal, the resolvent can be written down using the 
well-known Fredholm method.26 If 'fj is smaller than 
t (but still positive); trivial changes of functions and 
variables enable one to reduce (3.38) to the Fredholm 
form with regular kernel, so as to be able to construct 
the resolvent. Outside of the real axis, the resolvent 
can be continued in the complex plane when, for 
instance,f±(z, z') is an analytic function of , and ". 
The resolvent <I>±(z, z') is then an analytic function of 
, and a mel'omorphic function of ,. The solution of 
the Fredholm equation defined in this way is unique, 
except at the poles. Since these are isolated points, 
which, furthermore, do not exist in the circle where 
the Neuman series converges, and since we are looking 
for a solution which should be a continuous function 
of r, we can assert that the solution is unique in that 
sense. 

D. Existence and Uniqueness of Solutions for any Base 

In the general system G[(3.16), (3.19), (3.20), 
(3.23), and (3.8)], three functions are involved, 
e(z, z') and g±(z, z'). The first one is a known 
function, defined by (3.21), and therefore given with 
the data of the base VCr). Assume, for example, that 
VCr) belongs to the class A. The coefficients YIl(V, 1) 
are then easily obtained through the relation between 
V'1l(z) and V'-Il(z) (ft E S), or between V'''{z) and the 
residue of V'-Il(z) when this function happens to be 
infinite. Besides, in order to have a correct base, we 
should make sure that V'''{z) is correctly defined and 
bounded throughout the domain we need. We 
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therefore make the following assumptions, which 
appear as a byproduct when VCr) has been constructed, 
either from the Bessel functions or from the functions 
s,,(z), through the method recalled in Sec. 2A. 

Assumption C: The base potential is chosen in such 
a way that the base functions 1 lp,,(z) 1 are bounded, for 
Re I' ~ 0 and for a domain which includes at least the 
circle Izi < Ro, by C W(I + ,u)1-1 Izl"+1. In this 
domain, the function e(z, z'), defined by the expansion 
(3.21), can be given the form 

e(z, z') = (zz,)hq E(z, z'), (3.45) 

where IE(z, z')1 is bounded by a nondecreasing 
function E(R) , finite for R < Ro, provided that 
Iz'l::;; Izl::;; R. 

The functions g±(z, z') are the input functions. 
So as to be able to manage the integral equations, we 
only need that g± (z, z') fulfill the following assumption. 

Assumption D: The functions g±(z, z') can be given 
the same form as e(z, z') in (3.45), with the same 
bounds. It is needless to say that if the bounds or the 
domains are different from each other, we use the 
upper bound and the smaller domain.28 

However, so as to be able to construct potentials, 
Assumption D is not sufficient, whereas the following 
Assumption E is. 

Assumption E: The function g±(z, z') can be ex­
panded on the base wavefunctions: 

g±(z, z') = L lpiz)lpiz') d[g±(,u)], (3.46) 

where Re I' ~ 'Y} > 0, VI' E E. When d[g±Cft)] reduces 
to a set of b functions, we have the more convenient 
form 

g±(z, z') = Ilpiz)lpiz')y,,(W±, 1). (3.47) 
S 

Furthermore, we assume that the expansion of g±(z, z') 
converges uniformly for Iz'l::;; Izi ::;; Ro - E. It is 
sufficient for this that (3.28) holds for the expansion 
coefficients. 

There are two interesting ways of dealing with the 
system S. In the first one, for which we have to use 
Assumption E, we reduce S to an equivalent 
system with zero base. In the second one, we give a 
prominent importance to the difference between 
g+ and g-, and solve the system when e(z, z') is 
chosen as the average of g+(z, z') and g-(z, z'). 

28 Although we guess that the adjunction of differential conditions 
to Assumption D would give a set of assumptions sufficient for 
constructing potentials, the methv:' we give here does not enable us 
to ensure this point. 

Reduction to a Zero-Base System 

We suppose that the base is either a constant 
potential base or a base obtained by the method 
recalled in Sec. 2. We suppose that g±(z, z') fulfills 
Assumption E. For the sake of convenience, we use 
the expansion (3.47). Extension of our results and 
proofs to the expansion (3.46) is straightforward. 
We have first to search solutions J and J of (3.19) and 
(3.20), where K±(z, z') is given by (3.16), whereas 
(3.23) and (3.8) hold. 

Inserting (3.21) and (3.47) in (3.19) and (3.20) 
yields 

J±(z, z') = 1 yiW±, 1)£:(z)lp,,(z'), (3.48) 
"ES 

J(z, z') = 1 YIl(V, 1)l!(z)lpll(z'), (3.49) 
IlES 

where /t (z) is defined by 

/1(z) = F±(z)lp;.(z) - Sa" K±(z, 01p;.(~g-2 d~. (3.50) 

Since the base has been constructed through our 
general method, we know12 that it exists Kf(z, z') 
such that 

lp;.(z) = s;.(z) - L·d~ ~-2Kf(z, Os;.W, (3.51) 

Kf(z, 0 = 1 Y,,(V, l)lpiz )s"W = -K}(~, z), (3.52) 

s;.(z) = lp;.(z) - Sa"d~ ~-2K~(z, ~)1p;,(0· (3.53) 

Insertion of (3.51) in (3.50) yields after some algebra 

/1(z) = F±(z)s;.(z) - fd~ ~-2S;'(0[F±(Z)Kf(z, 0 

- fK±(Z, t)Kf{t, Ot-2 dt] 

- fd~~-2S;.(0[ f(±(z, 0 

+ LZf(±(Z, t)Kf{t, ~)t-2 dt]. (3.54) 

Insertion of (3.52) and use of (3.50) show that the 
first bracket in (3.54) is equal to 

1 y,,(V, l)s,,(~)/!(z). 

Insertion of (3.16), (3.48), (3.49), and use of (3.53) 
and (3.52) show that the second bracket in (3.54) 
is equal to 

1 [Yi W±, 1)/!(z) - YIl(V, 1)/!(z)]s"W. 

We have therefore 

/1(z) = F±(z)s;.(z) - f K±(z, OS;.W~-2 d~, (3.55) 
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where 

K±(z ') = ! YI'(W±, 1).t;;'(z)sI'W, (3.56) 
I' 

and this equation yields readily 

K±(z, z') = P'(z)j±(z, z') - I K"'(z, ,)j±(" z'g-2 dt 

(3.57) 
where 

j±(z, z') = ! y/W±, l)sl'(z)s,,(z'). (3.58) 

We have now to transform (3.23), which can be 
written, using (3.51) and elementary transformations, 

lpo(z)[F+(z) - F-(z)] 

= lzSOW,-2 d'[ K+(z, ') + l~K+(z, p)KiCp, ')p-2 dPJ 

-lzsoW,-2 d'[ K-(z, ') + l'K-(z, p)KiCp, ')p-2 dPJ 

- ISOW,-2 d'I[K+(Z, t) - K-(z, t)]KiCt, ')t-2 dt. 

(3.59) 

The same manipulations as used above for the right­
hand side yield 

ISOW,-2 d'-LYI'(V, l)s"W[It(z) - I;(z)] 

-f: [F+(z) - F-(z)]KiCz, OSOW,-2 d,. 

According to (3.51), the last integral is equal to 
[F+(z) - F-(z)](lpo(z) - so(z». Insertion of these 
results in (3.59) yields (3.7), with K±(z, z') defined by 
(3.56). Since Eq. (3.8) has the same form for any 
base, we have therefore proved that, being given 
e(z, z') and g±(z, z'), a system of equations identical 
to the zero base system associatesJ±(z, z') and K±(z, 
z'); J±(z, z') is given from the input coefficients by 
(3.58). K±(z, z') is related to the "solution" K±(z, z'), 
which we are looking for, by (3.55) and the definitions 
(3.16), (3.48), and (3.49); the obtention of K±(z, z') 
enables one to obtain 1hz) through (3.55), and all the, 
functions can be calculated. 

The existence and uniqueness of the solutions 
for any base are therefore related to the existence and 
uniqueness for the zero base. When Assumption E is 
fulfilled, they can be guaranteed, in the conditions 
and in the sense stated in Sec. 3C. 

Direct Resolution oj the System G 

Let us set 
K±(z, z') = [F+(z) + F-(z)]I(±(z, z'). (3.60) 

Using the notation ~(z) defined by (3.31), rearranging 
(3.16), (3.19), and (3.20), and inserting (3.60) yields 

the equations 

I(±(z, z') = HI =f ~(z»g±(z, z') - HI ± ~(z»e(z, z') 

+ II(±(Z, ')ea, z'g-2 d, 

- Ip(Z, Og±(', Z,),-2 d" (3.61) 

lpo(z)~(z) = IU(+(Z, ') - I(-(z, mlpoW,-2 d,. 
(3.62) 

Equation (3.8) remains uncoupled with the previous 
equations. The solution of the system (3.61), (3.62) 
yields the functions £+(z) and £-(z) only up to a 
common multiplicative function C(z), which should 
be ascertained by (3.8). 

For the sake of simplicity let us assume that we 
have, in a first step, solved the A-independent problem 
for an input function which is. the average of g+ andg-. 
In other words, we choose the base so that e(z, z') is 
equal to ![g+(z, z') + g-(z, z')]. If g+ and g- are 
given through their expansion coefficient, those of e 
are their arithmetic mean: 

y,,(V, 1) = t[y,,(W+, 1) + YI'(W-, 1)]. (3.63) 

Let us set 
g±(z, z') = e(z, z') ± b(z, z'), 

I(±(z, z') = k(z, z') ± s(z, z'). 
(3.64) 

Substitution of (3.64) in (3.61) yields the equations 

k(z, z') = -i~(z)b(z, z') + IS(Z, Oba, z'g-2 d" 

(3.65) 
s(z, z') = -A(z)e(z, z') + tb(z, z') 

-f k(z, Dba, z'g-2 d, 
+ 2 IS(Z, Oe(', z'g-2 d,. (3.66) 

Equation (3.65) yields readily k(z, z') once s(z, z') is 
known. Substitution of (3.65) in (3.66) yields 

s(z, z') = t~(z)h.(z, z') + ·~b(z, z') 

- IS(Z, ,)h.(" Z'>,-2 d', (3.67) 

where 

h.(x, y) = -2e(x, y) + Ib(X, p)b(p, y)p-2 dp. (3.68) 

(2.67) is a Fredholm equation. Let H.(x, y), the 
resolvent associated to h.(x, y), be as follows: 

H.(x, y) = hz(x, y) - L"Hz(X, t)hz(t, y)t-2 dt 

= hz(x, y) - I hz(x, t)H.(t, y)t-2 dt. (3.69) 
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Use of (3.69) in (3.67) yields Since it follows from (3.23) that 

s(z, z') = t6.(z)H.(z, z') 

+ ~ [b(Z, z') - f b(z, ~)H.(~, Z')~-2 d~ J. (3.71) 

(3.70) we get 

fV'om~-2 d~[ b(z, 0 - f b(z, p)H.(p, ~)p-2 dPJ 

6.(z) = . (3.72) 

2V'o(z) - fH.(Z, oV'om~-2 d~ 

The formulas (3.72), (3.70), and (3.65) give the 
solution of the system (3.65), (3.66), and (3.71). 
This solution yields the solution of the system G 
only up to a multiplicative function, which should be 
defined by Eq. (3.8). The conditions of existence and 
uniqueness of the solutions are similar to those 
studied in Sec. 3C. Here again we can ensure the 
existence of a domain in which: 

(a) the solution can be constructed; 
(b) 16.(z)1 is smaller than 1 and goes to zero as z 

goes to zero; 
(c) (3.8) ascertains the solution, which should be 

so that F± (z) goes to 1 as z ---+ O. 

Remark: It follows from the direct resolution of G 
that if b(z, z') is equal to zero, K+(z, Zl) and K-(z, z') 
reduce to each other, whereas F+(z) and F-(z) reduce 
to 1. As a result, the system G reduces to 

K(z, z') = fez, z') - L' K(z, Of(s, Z')~-2 d~, (3.73) 

where 
fez, Zl) = g(z, Z') - e(z, z'). (3.74) 

Equation (3.73) is nothing but the Regge-Newton 
equation-and fez, z') is defined, on the base 11'1" by 
its coefficients, say YI'(W, V). By making the reduction 
to a zero-base system, using the coefficients y/V, 1) 
and the corresponding resolvents, we obtain the zero­
base integral equation, where g(z, z') is defined by the 
coefficients YI'(W, V) + YI'(V, 1). Now since in the 
zero-base system, by definition, the coefficients of 
g(z, Zl) are the YI'(W, 1), we have there a proof of the 
linear formula (2.11) which is valid for all the classes 
of potentials that can be constructed through the 
method recalled in Sec. 2A. 

E. Schrodinger Equation from the Integral Equations 

Assumptions Band E are more general than those 
which define class A, since they include continuous 
distributions in the fl plane of real or complex expan­
sions coefficients, whereas in class A we only set real 

coefficients defined for rational pOSItIve fl'S. The 
assumptions A and D are still more general, bufthey 
are not sufficient for our purpose. However, if we 
compute20 the assumption A with the following 
requirements, we obtain conditions sufficient for 
constructing potentials from the input functions 
f± (z, z') and the zero-base integral equations. 

Assumption F: f± (z, z') obeys Assumption A and the 
foHowing partial differential equation: 

[To(x) - To(y)]f±(x, y) 

= [Do(x) - Do(y)]J±(x, y) = 0, (3.75) 

where To(x) is given by (3.13), and 

Do(x) = T~(x) = x2(d2/dx 2
) + t. (3.76) 

Obviously, Assumption F is a byproduct if B is 
fulfilled. 

Construction of the Potentials 

We first give two remarks which will prove useful 
in the construction procedure. 

Remark (1): According to the discussion of Sec. 
3C, it is possible to find a nonvanishing domain 0 
(lz'l ~ Izl ~ R - E), where a solution of the system 
(3.32), (3.33), and (3.34) exists and is unique, whereas 
16.(z)1 < 1. As a result, the system (3.5), (3.7) has a 
solution defined up to a multiplicative constant C(z), 
which is ascertained by (3.8). This means that if 
(F±(z), K±(z, z'» is the unique solution of the system 
(3.5), (3.7), and (3.8) in 0, any solution (K;(z, z'), 
Fc±(z» of the system (3.5), (3.7) is of the form 

K~(z, z') = C(z)K±(z, z'), (3.77a) 

(3.77b) 

Remark (2): It follows from Assumption A (or B) 
and the results of Sec. 2C that 

f±(z, z') ""C(zz')l+~,} 
1 as z or z' ---+ O. (3.78) 

K±(z, z') "" C(zZ')H~, 
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Construction Procedure 

Let us introduce two functions flex) and Q(x), and 
let us set 

/±(z, z') = [Do(z) + z2U(z) - Do(z') 

± 2z2Q(z)To(z')]K±(z, z'), (3.79) 

where K±(z, z') is the solution of the system (3.5), 
(3.7), and (3.8). 

It is a matter of straightforward and tedious 
differentiations, integration by parts, and use of (3.75) 
and (3.78) to show from (3.5a) and (3.5b) that 

/±(z, z') = E±(z, z') - I/+(Z, nra, z'g-2 d" 

(3.80) 

ztE(z) = I[/+(z, n - /-(z, ,m-! d" (3.81) 

where 

E±(z, z') 

= 2[ z ~ P+(z) ± Z2Q(Z)P+(Z)} :zr(z, z') 

+ f±(z, Z')[ z2U(z)p+(z) - 2z d~ z-lK+(z, z) 

+ Z2 ~ P+(~) T 2zQ(z)K+(z, z) T Z2Q(Z)P+(Z)], 
dz2 

(3.82) 

E(z) = ( Z2.if + z..!!.. + Z~U(Z») [P+(z) - P-(z)] 
dz2 dz 

- 2Z[ (:z - zQ(z»)z-lK+(Z, z) 

- (~ + zQ(z») Z-l K-(z, Z)]. (3.83) 

Let us now set Q(z) to be equal to Q(z) defined in such 
a way that the coefficient of «(jf(jz)f±(z, Z:) in (3.82) is 
equal to zero. Since the equation (3.8) is fulfille~, the 
two following definitions of Q(z) are consIstent 
with each other: 

d zQ(z) = ±[F±(Z)]-l-F±(z). (3.84) 
dz 

Insertion of this result in (3.82) and insertion of 
(3.82) and (3.83) in (3.80) and (3.81) yield the system 

/±(z, z') = H+(z)r(z, z') 

- I/+(Z, nrc"~ z'g-2 d" 

zl[H+(z) - H-(z)] = LZ[f+(z, ') - /-(z, ,m-t d" 

(3.85) 

where 

H±(z) = Z2 - + z - + z2U(z) p±(z) [ 
d2 d ] 

dz2 dz 

- 2Z[~ T zQ(Z)}-lK±(Z, z). (3.86) 

According to (3.77), in any domain where (3.5), 
(3.7), and (3.8) have a unique solution, it follows 
from (3.86) that /±(z, z') and H±(z) are, respectively, 
equal to k±(z, z') and F±(z) times a function of z, say 
qU(z), z), when this function has been computed 
for the function U(z). Let us then define a function 
U(z) by 

Z2[U(Z) - U(z)] = qU(z), z). (3.87) 

With this choice of U(z), H±(z) is equal to zero; 
therefore the multiplicative function qU(z), z) is 
equal to zero, and therefore /±(z, z') is equal to zero. 
We have therefore proved that when the system (3.5), 
(3.7), and (3.8) has an unique solution, it is possible 
to construct a function Q(z), defined consistently by 
either of the equations (3.84), and a function U(z) , 
defined consistently by either of the equations (3.88): 

[ Z2.if + z..!!... + Z2U(Z)] p±(z) 
dz2 dz 

- 2z[:z T zQ(Z)}-lK±(Z, z) = O. (3.88) 

Therefore 
[Do(z) + Z2U(Z) - Do(z') 

± 2z2Q(z)To(z')]K±(z, z') = O. (3.89) 

SchriJdinger Equation 

Let us now introduce the functions xt(z), defined by 
the relation 

rl(z) = P(z)s;.(z) - IK±(Z, ,)S;.W,-2 d,. (3.90) 

Here again, it is a matter of straightforward but 
tedious algebra to show that 

[Do(z) + z2U(z)]x1(z) = l2X1(z) ± 2lz2Q(z)rl(z). 

(3.91) 

If Assumption B is fulfilled, substitution of (3.27) 
in (3.5) and use of (3.90) show that K±(z, z') is given 
by the expansion 

K±(z, z') = fEX=;;CZ)S,,(Z') d[IX±(,u)]. (3.92) 

Insertion of (3.92) in (3.90) provides the Wronskian 
interpolation formula on the zero base: 

x1(z) = P(z)s;.(z) 

- [ d[IX;(z)]X!(z) [Zs,.(p)S;.(p)p-2 dp. (3.93) 
J"eE Jo 



                                                                                                                                    

SCATTERING PROBLEMS THROUGH INTERPOLATION FORMULAS 1257 

General-Base System 

For constructing potentials and solutions of the 
Schrodinger equation from the general-base system, 
we limit ourselves to the case in which Assumption E is 
fulfilled by the input functions g±(z, z'). We can then 
use the method devised in Sec. 3D so as to reduce the 
initial system to a zero-base system, in which the 
input functions J±(z, z') fulfill Assumption B. This 
enables us to construct the potentials and the regular 
solutions of the Schrodinger equation, as done above. 

Existence and Reality oj the Potentials 

In the course of our studies, we encountered three 
kinds of systems of integral equations: 

(1) the initial systems, e.g., for the zero base, the 
system (3.5), (3.7), and (3.8); 

(2) The reduced systems, in which we introduced 
the function ~(z) defined by (3.31), and divided the 
unknown functions by convenient quantities, so as to 
obtain a system of equations in which F±(z) no longer 
appear-e.g., (3.32), (3.33), and (3.36); 

(3) The truncated systems, which are the initial 
systems minus Eq. (3.8). 

In Secs. 3C and 3D, we proved that if the input 
functions are analytic in a domain, any of the reduced 
systems has a unique solution, except perhaps at 
isolated values of z, for which the resolvents have poles. 

With more general conditions, provided very weak 
assumptions are satisfied by the input functions 
(Assumptions A and D), there is a domain D in which 
the solution of a reduced system exists and is unique. 
Besides, D contains a domain O(lz'l ~ Izl < w), in 
which 1~(z)1 is smaller than 1, and goes to zero as z 
goes to zero. Let us denote by Do the connected 
part of D which contains O. As z and z' lie in Do, we 
can use the input functions and the integral equations 
to continue the unknown functions of the reduced 
system in Do. Let us now look at the relations 
between the reduced-systems and the general-systems 
solutions. As we know, any solution of the truncated 
system is of the form 

TK±(z, z') = C(z)k±(z, z'), 

TF±(z) = C(z)t[1 ± ~(z)], (3.94) 

for the zero base, and similarly for the general base. 
The function C(z) is ascertained by (3.8), which reads 

tC2(z)[1 - ~2(Z)] = 1, (3.95) 

and should be completed with the condition C( 0) = 

+ 2, suppressing the ambiguity inside O. If z goes 
outside 0, ~2(Z) can be equal to 1. If this happens for 
an isolated value of z, it induces a pole for ~2(Z). 
A cut may then be induced in the continuation (for 
instance, the analytic continuation) of C(z)-and 
therefore of the wavefunction. It is important to 
notice that since (3.84) and (3.88) are invariant when 
F±(z) and K±(z, z) are multiplied by a common 
constant factor, ~2(Z) being equal to 1 does not 
induce a cut in the potentials. Actually both Q(z) 
and U(z) can be given a rational expression in terms 
of k±(z, z), ~(z), and their derivatives: 

zQ(z) = [1 - ~2(Z)]-1~'(Z), 

( 4 d -lk±( ) zU z) = -- - z z, z 
1 ± ~dz 

=f 4~1 =f ~ z-lk±(z,z) 
1 - ~21 ± ~ 

(3.96) 

=f-- 1±--+z-+2z--. ~' [ z~' ~" ~' ~ ] 
1 - ~ 2 1 - ~ 2 ~' 1 _ ~ 2 

(3.97) 

Singularities are easy to study on these formulas. 
Suppose, for instance, that J±(z, z') are analytic 
functions in the domain we consider, so that the 
resolvent <I>.(z, z') is a meromorphic function of z 
and an analytic function of z'. Then k±(z, z) can 
have but two kinds of singularities, viz., the poles of 
the resolvent and the poles of ~(z), which is, in general, 
regular when the resolvent has a pole. Taking into 
account the linearity of k±(z, z) with respect to ~(z), 
it is easy to see that the poles of ~(z) do not give 
singularities in zQ(z) and U(z). The poles of the 
resolvent give poles of order ~2 to zU(z). Besides, 
when (1 - ~2) is equal to zero, zQ(z) and zU(z) 
have poles, which are simple and double, respectively, 
if the zero is simple. 

We shall not increase this study, which is, in our 
opinion, sufficient to give an idea of the care to be 
taken when constructing potentials with the present 
method. 

F. Exactly Solvable Examples 

Exactly solvable examples can be managed starting 
from the zero-energy base, using a few coefficients Y Il • 
We give here, for convenience of the reader, the 
simplest one: 

J+(z, z') = 161T-ICXSl(~)Sl(Z? = 2CX(ZZ')i,} (3.98) 
f (z, z) = 0, 
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which yields 

Q(z) = 2cx(1 + 2cxz2)-l, 

U(z) = 4cx(1 - cxz2)(1 + 2cxz2r 2
, 

X-:;:(z) = (1 + 2cxz2r!s;.(z), 

x1(z) = [(1 + 2cxz2)! _A_ 
A+l 

+ (1 + 2cxz2)-! _l_-Js.b). 
A+l 

(3.99) 

It is pleasant to see in this example most of the 
singularities studied above. It is straightforward and 
tedious to verify the SchrOdinger equation (3.91). 

Correspondence with the Figure 

The correspondence of the zero-base machinery 
with Fig. 1 is as follows. The input functions are 
J±(z, z'). The properties (1) are either (3.26) and (3.75) 
or (3.27). The output generator is K±(z, z'). The 

JOURNAL OF MATHEMATICAL PHYSICS 

properties (2) are (3.89) and (3.78). Relations A are 
(3.5), (3.7), and (3.8). Relation B is (3.91). C is the 
set (3.88), (3.89). D is (3.3). 

The correspondence of the general base machinery 
with the figure is as follows. The input functions are 
g±(z, z'). The property (1) is (3.47). The output 
generator is K±(z, z'). The properties (2) are (3.16), 
(3.17), and (3.18). Relations A are (3.19), (3.20), 
(3.23), and (3.8), with reference to (3.17) and (3.18). 
Relation B is (3.91). C follows from (2.35), (2.57), 
and (2.58). D is (3.15). 
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We show that it is possible to extend the formalism ofthe factorization method for any displacement in the 
spectrum space of any second-order differential equation. Following this, we show that we can extend, 
at least formally, the formalism for some nth-order ordinary differential equations. 

I. INTRODUCTION 

It is well known that both electromagnetic and 
quantum theory lead to equations of the type 

d2 

~ + rex, m)y + AY = 0 (1) 
dx 

The well-known factorization methodl sets 

d 
R = k(x, m + 1) - -, 

1.- = k(x, m) + ~ , 
dx 

dx 

(3) 

(or can be transformed to this form). An outstanding 
problem related to the solution of these equations is 
the problem of raising and lowering operators; i.e., 
assuming that we deal with the discrete spectrum of 
(1) so that we can label the solutions by yeA, m), 
then we want to find first-order differential operators 
which connect the solution yeA, m) with yeA, m + 1): 

and discusses under what conditions the following 
equations hold: 

[k(X, m + 1) - :x}(A, m) 

= [A - L(m + 1)]!Y(A, m + 1), 

[ k(x, m) + :x}(A, m) 

RY(A, m) = CX(A, m + 1) yeA, m + 1), = [A - L(m)]!Y(A, m - 1). (4) 

LY(A, m) = CX(A, m) yeA, m - 1). (2) 1 L. Infeld and T. E. Hull, Rev. Mod. Phys. 23, 21 (1950). 
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The explicit form for the functionsk(x, m) andL(m) is, 
of course, related to the particular equation (1) with 
which we are dealing. 

Thus the factorization method equips us with a 
procedure for performing integer displacements on the 
m-spectrum line (assuming m real). This is sufficient 
as long as the interest is focused on the discrete 
spectrum of the above equations. However, in recent 
years use has been made of solutions of Eq. (1) in 
which m and A. assume continuous (real or complex) 
values. This is the case, e.g., in Regge-pole theory 
where one uses Legendre polynomials with contin­
uous indices. In what follows we shall therefore 
discuss a generalization of the factorization method 
for arbitrary displacement Am. One may look on this 
generalization as an analytic continuation of the 
operators Rand L in (3) above. 

II. METHOD 

In order to gain generality we assume that we deal 
with the complex differential equation 

d2y(z) -;w:- + r(z, m)y(z) + A.y(z) = O. (5) 

As a first step of our extension, we find operators 
which displace y(A., m) to y(A., m + Am), where Am is 
assumed to 'be real, while m may be complex. We 
denote the operators that displace m from y(A., m) to 
y(A., m + Am) by Hm.t1m 2 (Am is a positive or 
negative real number, jAmj > 0) and try to find a 
solution for Hm.t1m of the form3 

Hm,tJ.m = [k(Z, m + t + ~m) - sgn(Am) :z} (6) 

so that 

[k(Z' m + t + A;) - sgn(Am) :z}(A., m) 

= [A. - L(m + t + A;)]\(A., m + Am). (7) 

One notes immediately that when Am = ± 1, the 
operators (7) coincide in their form with those of (4). 

We want to fix k(z, m) so that 

[HmHm,-tJ.mHm,tJ.m]y(A., m) 

= [A. - L( m + t + A;)}(A., m) (8) 

2 We note that we may restrict ourselves to I Llml < I, since for 
Llm > 1 we may perform the displacement in steps. 

3 The form of the operators Hm.tJ.m and L is not arbitrary. In fact, 
if we try to write 

d Hm.tJ.m = k[z, m + f(Llm)] - g(Llm) dz' 
L(m, Llm) = L[m + h(Llm)], 

then it is easy to show that the only form that might work is the form 
chosen by us. 

coincides with the original equation (5) for y(A., m),4 
i.e., 

[k(Z, m + t + A;) - sgn(-Am) :J 
x [k(z,m+t+A;) -Sgn(Am):z}(A.,m) 

(9) 

Expanding, we get 

[k(Z, m + t + A;r - sgn (-Am) 

:x ~ k(Z m + 1. + Am) - ~]Y·(A. m) 
dz ' 2 2 dz 2 ' 

= [). - L( m + t + A;)]y(A., m). (10) 

Equating (10) with (5), we get 

k(Z' m + t + A
2
mr - sgn (-Am) 

X :z k(z, m + t + A2m) + L(m + t + A2m) 

= -r(z, m). (11) 

If Am> 0, we then get 

k( z, m + t + A
2
mr + :z k (z, m + t + A2m) 

+ L( m + t + A2m) = -r(z, m); (12) 

while if Am < 0, let us substitute Am' = -Am and 
drop the prime after the substitution (so that in both 
cases now Am = jAm!): 

k (z m + 12 - Am) - ~ k (z m + 1. _ Am) 
, 2 dz ' 2 2 

+ L( m + t - A;) = -r(z, m). (13) 

Subtracting (13) from (12), we get 

k(Z' m + t + A;r - k(Z' m + t - A;r 
+ ~ k(Z' m + t + Am) + ~ k(Z' m + t _ Am) 

dz 2 dz 2 

=L(m+t-A;) -L(m+t+A;). (14) 

• This requirement is needed since one might look on Eq. (7) as 
a definition of y(A, m + Llm). Equation (9) assures us that 
y(A, m + Llm) satisfies Eq. (5) for (A, m + Llm). 
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Let us assume now that5 

k(z, m, Llm) 

= ko(z, Llm) + (m + t + Ll2m) kb, Llm). (15) 

[This form of k(z, m, Llm) is compatible with the 
above explicit form of k(z, m + t + Llm/2) since Llm 
is always positive in our notation.] Substituting (15) 
into (14), we get 

[(m + t + Ll;)kl + koT 

- [ko + (m + t - ~m) kl] 2 + k~ 

+ (m + t + ~;) k{ + k~ + (m + t - Ll;) k{ 

=L(m+t-~m) -L(m+t+Ll2m). (16) 

Note now that the coefficient of k~ is 

( m + t + Ll;) + (m + t _ Ll;) 

G( Llm)2 ( Llm)2] 1 = ~ in + t + 2 - m + t - 2 Llm' 

while the coefficient of k~ is 

Thus we may rewrite (16) as 

{(m + t + Ll;)Tk~ + Ll~ k~J 

+ 2(m + i + Ll;)[kokl + LlL k~]} 

- {(m + i - Ll2m)Tk~ + Ll~ k{] 

+ 2(m + i - Ll;) [kokl + Ll~ k~J} 

=L(m+t-Ll;) -L(m+i+Ll2m). (17) 

Replacing z by x = zLlm and denoting the derivative 
of k with respect to x by k, we get for the general 

• Here, and in other places, we shall not give the full formal 
justification of our steps. This has been done already in Ref. I and 
might be generalized easily in our case. 

solution of Eq. (17) 

L(m+i+~m) 

= -{(m + t + Ll;r[K~ + kd 

+ 2 (m +t + Ll;) [kok1 + ko]}. (18) 

This must hold for all values of m and therefore 

k~ + kl = a, (19) 

a =F 0, 

a = 0, 
(20) 

where a, b, and c are independent of z, m, and Llm. 
The form of Eqs. (19) and (20) is identical with that 
of Eqs. (3.15) in Ref. 1. 

Let us now turn to the case of imaginary displace­
ment of the spectrum iLlm (where Llm is real). 

We denote once again the operators that displace 
fromY(A, m) to yeA, m + iLlm) by Hm.i~m(ILlml > 0), 
and try to find a solution of the form 

./\ [( i iLlm) d ] Hm
,. m = k z, m + 2 + 2 - sgn (Llm) dz ' 

so that 

[ ( i iLlm) d] k z, n:t + 2 + 2 - sgn (Llm) dz yeA, m) 

[ ( 
i iLlm)]t . = A - L m + 2 + 2 yeA, m + ILlm). 

By similar reasoning, we are led to the equation 

k z m+-+- -k z m+----( 
i iLlm)2 ( i iLlm)2 

, 2 2 '2 2 

+-k z m+-+-d ( i iLlm) 
dz ' 2 2 

+-k z m+----d ( i iLlm) 
dz ' 2 2 

Let us assume now that (Llm > 0) 

k(z, m, iLlm) 

(21) 

(22) 

= ko(z, iLlm) + (m + ~ + i~m) k1(z, iLlm). (24) 
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This leads to the equation 

{(m + £ + iLlm)2[k2 + _1 k'J 
2 2 1 iLlm 1 

( 
i iLlm) [ l'J} + 2 m + '2 + -2- kokl + iLlm ko 

_ {(m + £ - iLlm)2[k2 + _1 k'J 
2 2 1 iLlm 1 

+ 2(m + £ - iLlm)[k k + _1 k'J} 2 2 0 1 iLlm 0 

= L(m + ~ - iLl2m) - L(m + ~ + iLl2m). (25) 

Substituting x = izLlm and denoting the derivative 
of k with respect to x by k, we get for the general 
solution of (25) 

L(m + ~ + i~m) 

= -{(m + ~ + ib2m)2[k~ + kd 

+ 2 (m + ~ + i~m) [kok1 + ko]}, (26) 

which leads to Egs. (19) and (20), and hence to the 
same solutions. 

The same method described above is applicable to 
perform displacements on the A. plane. This can be 
done by solving the second-class problem (in the 
nomenclature of Ref. 1) of Eq. (5). We denote the 
operators that displace from (A., m) to (A., m') or 
(A.', m) by Hu.m).U.m') and H(A.m).p:.m), respectively. 

Until now we have dealt with operators in which the 
displacement Llm was different from zero. When Llm 
equals zero, it is natural to define sgn(O) = 0 and 
k(z, m, 0) = 1 so that 

HU,m),(A,m) = 1. (27) 

The above definitions are natural since zero is the 
mean of the jump in the values of the sign function 
at this point. On the other hand, since k(z, m, Llm) 
depends on z through the form zLlm, it follows 
that k is independent of z when Llm = O. Therefore, 
if we deal with normalized operators, we must fix 
k(z, m, 0) = 1. 

Once we have found operators which displace the 
real and imaginary axis of the m plane, we may use 
these operators in order to perform displacements in 
an arbitrary direction. This can be done by multiplying 
two operators of the above kinds. Thus if we want to 
perform a displacement Llm such that 

Llm = Re Llm + i 1m Llm, (28) 

then the desired operator, which will be denoted by 
D(A.m),(A.m+llm), is 

D().,m),().,m+dm) 

= H(A,m),(A,m + Re dm) H().,m),(A,m+i 1m dm). (29) 

However, once we find these displacement operators, 
we can perform other operations in the spectrum space. 
We illustrate the method for rotation operators in the 
real A.m plane (other operators can be easily inferred). 

To find these operators we use the polar-coordinate 
system (re) in the spectrum space: 

A. = r cos e, m = r sin e. (30) 

A rotation (r, e) ~ Cr, e + Lle) means that we are 
looking for operators that displace from CA., m) to 
(A.', m'), where 

A' = r cos (e + Lle), m' =J sin (e + Lle). (31) 

Therefore the desired operator, which is denoted by 
R(r.O).(r.6+M), is 

R(r,O),(r,O+M) = D[r cos8,rsin (8+d8)].[r COs (O+d8),rsin (8-!-dO)] 

X D(rcosO,rsinO),[rcos8,rsin(6+M)]. (32) 

We notice, however, that a rotation by Lle may be 
accomplished in two ways: either by Lle or Lle - 21T; 
the two operators do not coincide. This is due to the 
discontinuity in the passage from positive-displace­
ment operators to negative ones. This discontinuity 
can be understood if we view our procedure as a 
method for calculating the square root of a differential 
operator, which leads, as usual, to a two-sheeted 
solution of the problem. In the following we may 
choose to work in either sheet as convenient. 

In the above discussion we confine ourselves to 
ordinary second-order differential equations. Never­
theless, the whole discussion is valid for partial­
differential equations which are separable. This is the 
case for the n-dimensional Laplacian. We observe, 
however, that in this case only two of the eigenvalues 
can be treated exactly as above. In order to displace 
other eigenvalues we must use combined first- and 
second-class operators. This follows from the fact 
that these eigenvalues appear in two ordinary equa­
tions which result from the separation of the partial­
differential equation (see Sec. IV). 

m. GLOBAL TRANSFORMATIONS IN THE 
SPECTRUM SPACE 

Until now we have been dealing with operators in 
the z space which transform a specified function 
y(A., m) to another one y(A.', m') [thus inducing a 
transformation in the spectrum space from (A., m) to 
(A.', m')]. In this sense the operators found until now 
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are point operators since they usually depend on the 
starting spectrum point (A, m). We are looking now 
for operators which are global. This means that these 
operators will act on any function yeA, m) or a com­
bination of these functions to produce a desired change 
in the dependence of these functions on the spectrum 
points. To this end we must define at first the space of 
functions upon which our global operators will 
operate. 

At first let us observe that the integral 

I y(z, A, m)*y(z, A', m') dz (33) 

for arbitrary (A, m) might be divergent. Therefore we 
must use the technique of regularization6 in order 
that (33) will converge and be zero for (A'm') :;t. (A, m). 
It was shown in Ref. 6 that this is possible if the 
functions yeA, m) are not too steep. Since our interest 
will be focused on spherical harmonics, this will be 
always possible. A detailed study of the regularization 
technique for the spherical harmonics is given in 
Refs. 7 and 8. So let us define 

[yeA, m), yeA', m')] 

= reg I y(A, m)*Y(A', m')p(z) dz; (34) 

where p(z) is a weighting function such that 

[yeA, m), Y(A'm'») = ex(A, m)I5(A, X)b(m, m'), (35) 

where ex is not necessarily positive. However, we may 
assume that the y's are normalized so that ex(A, m) = 
± 1. Denote those functions yeA, m) for which the 
bilinear form (35) defined above is positive [negative) 
by yeA, m, + ) [y(A, m, - )]. In the following we deal 
with {yeA, m, + )}, but {yeA, m, -)} can be treated 
exactly in the same way. 

Let us now define the space of functions 

S+ = {f;f = ~l aiY(A;, m;, +), n finite}. (36) 

S+ is a normal space in which one may define a 
scalar product in a natural way. According to a weH­
known theorem in the theory of Hilbert spaces, it is 
possible to embed such a space into a Hilbert space 
Je+ so that S+ is dense everywhere in Je+. Therefore, 
for any I E Je+, it is possible to write 

f = L L a(A, m)Y(A, m, +). (37) 
). m 

In a similar way, we can construct Je-. 

6 I. M. Gel'fand and G. E. Shiloy, Generalized Functions (Aca­
demic Press Inc., New York, 1964), Vol. I. 

7 J. Fischer and R. Raczka, International Centre for Theoretical 
Physics (Trieste) preprint IC/66/101. 

8 S. Sannikoy, Yad. Fiz. 2, 570 (1965) [SOY. J. Nuc. Phys. 2, 407 
(1966)]. 

In the space Je+ EB Je-, one may write, for any 
function, 

fez) = IIdA dm a(A, m) y(z, A, m), (38) 

where the above equality is strong (in the norm) and 

ex(A, m) = reg If*(Z)Y(Z, A, m)p(z) dz. (39) 

Having defined the space of functions and its topology, 
we will now write the global-transformation opera­
tors. 

A. Translation Operators 

Translations in the m plane: 

I DAm = II dA dmD()',m),<A.,mHm) A~, 

where 

A~f = a(A, m)Y(A, m); 

in the A plane we can write similarly 

IDA), = II dA dmD().,m),().H)',m) A~, 

(40) 

(41) 

(42) 

and in a similar way we can write translation opera­
tors in any direction by combining A- and m-transla­
tion operators. 

B. Rotation Operators 

We write down, as an example, the openitors that 
rotate the real (A, m) plane: 

IRAiJ = II dr dOR(r,6)(r,6H6)A;, (43) 

where 

A~f = a(r, O)y(r, 0). (44) 

In a similar way we may write other rotation opera­
tors. 

The operators discussed above operate on the space 
Je+ EB Je-; however, each of these operators induces an 
appropriate transformation in the spectrum space. 
This is a result of the one-to-one correspondence 
between the points of the spectrum space and the 
functions {y(z, A, m)}. Thus, if we denote by I the 
map 

I: (A, m) ---+ y(z, A, m), (45) 

then the appropriate operator that displaces each 
point (A, m) to (A, m + ~m) is l-lID!!."'f In the 
following, we shall not write I explicitly and view the 
operators ID, IR, etc., as operators which operate on 
the spectrum space directly. In this way we are able 
to operate on the spectrum space by using operators 
which depend on the z-space coordinates. By means of 
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the above procedures we can generate any regular 
transformation on the spectrum space. Thus we can 
express any transformation that belongs to GL(2, c) 
on the spectrum space by means of z-space operators. 
It is easily seen that we can generalize our results to the 
n-dimensional case for which we get the group 
GL(n, c). 

IV. EXAMPLES 

In the following, we give some examples in order 
to illustrate the method discussed above. We shall 
also deal with some algebraic aspects of our operators. 

A. Associated Spherical Harmonics 

Class I Problem 

The differential equation is 

[ _1_ ~(sin e~) -~ + ).Jp = O. (46) 
sin e de de sin2 e 

We bring this equation to the standard form by means 
of the substitution 

Y = sin! ep, (47) 

and the differential equation which results is 

d
2

y _ (m
2 

- t) y + (). + t)y = o. 
de2 sin2 e 

(48) 

The solution we are looking for is given by 

k(e, m, ~m) = (m + ~2m) cot (e~m), 

( ~m) ( ~m)2 L m+t+T = m+T' (49) 

Class II Problem 

We introduce /(l + 1) for)' and replace -m2 by).. 
Equation (48) then becomes 

[ _.1_ ~ (sin e.!!:...) + 1(1 + 1) + +Jp = O. (50) 
sm e de de sm e 

By changing variables z = log tan (eI2), we obtain for 
pee) 

d
2
P + 1(1 + 1) P + ).P = O. 

dz2 cosh2 
Z 

(51) 

The solution is then 

k(z, I, ~l) = (I + t + ~l) tanh (z~l), 

( ~I) ( ~1)2 L 1+t+2 =- l+t+ 2 · (52) 

One can easily see now that for any ~m > 0 the 

operators 

and 

(53) 

with 
(54) 

form an algebra which is isomorphic to 0(3). This can 
be easily seen by using the fact that 

(55) 

so that by (8) we get 

L = [H+ H-] = _1_Jdm d)' 
o , (~m)2 

x [Hm-Am,+AmHm.-Am _ Hm+Am.-AmHm,Am]A~ 

=(~~)2J[L(m+t+~;) -L(m+t-~2m)J 
x A~ dm d)' = 2 JmA~ d)' dm (56) 

~m 
and 

[H+ L] =Jdm d)' Hm,Am AlI 2m' A l ', dm' d)" 
, 0 ~m m ~m m 

- J dm' d)" ~: A!;, J dm d)', 

--A = dmd)' - - __ Al H
m

.
Am 

l J [2m 2(m + ~m)JHm'Am 
~m m ~m ~m ~m m 

= -2H+, (57) 
while 

[H-, Lo] = 2H-. (58) 

It is to be remarked that we could deal with the alge­
bra {H~m}Am=_oo . This algebra is an infinite-param­
eter Lie algebra. It plays no role in the following 
sections, although it may have some physical implica­
tions which will be dealt with elsewhere. 

B. 0(3, 1) Spherical Harmonics 

We deal with the following differential equation: 

{ _ 1 ~ (COSh2 ()l~) + 1 _1_ 
cosh2 

()l ael a()l cosh2 el sin e2 

X ~(sin () ~) - _1_ ~}p =),P (59) 
O()2 2 O()2 sin2 ()2 o()~ . 

In order to separate the equation, let us substitute 

(60) 
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The differential equations which result are 

-- - cosh2 ()1 - + 12(12 + 1) tp {
I O( 0) 1 } 

cosh2 
()1 O()1 O()1 cosh2 

()1 

= 11(11 + 2)tp, (61) 

(62) 

(63) 

We see that Eqs. (62) and (63) are the same as for the 
associated spherical harmonics. Nevertheless, it is to 
be noticed that in order to perform a displacement in 12 
we must combine first-class operators [for (61)] with 
second-class operators [for (62)]. Class I operators 
for (61) are 

k«()I' 11' ~12) = (12 + t + ~;2) tanh «()1~()' (64) 

from which 

L(12 + ! + ~;2) = - (12 + t + ~;2r (65) 

Class II operators are 

k«()I' 11' ~Il) = (11 + ! + ~;1) tan «()1~11)' (66) 

from which 

L(11 + ! + ~;1) = (II + ! + ~;lr (67) 

It has been shown by Raczka et af.9 that the solu­
tions of (59) for fixed A provide a set of basis functions 
for the most degenerate representations of Ot3, 1). 
Thus we see that one can build in the spectrum space 
of 0(3, I) the groups GL(3, C) by space-time oper­
ators. We shall return to this point later. 

v. INFINITESIMAL OPERATORS 

Let us remark at first that a suitable set of matrices 
which build the algebra GL(n, C) is given by 

Enl = (E;)kl = (j:(jk, k, I = 1 , ... , n, (68) 

and iEkl' which we denote by E~. The commutation 
relation between these operators is then 

[Eij , Ek1 ] = - (jkjEi! + (jilEki' 

[Eij, E:a = 0, (69) 

[E~, E:1] = -( -(jkjEi! + (jilEki)· 

It is to be noted that the n2 operators {Eil } generate 
the algebra U(n). 

In order to build the desired operators, let us see the 
geometrical meaning of the operators Ek1 • When we 

8 R. Raczka, N. Limic, and J. Niederle, J. Math. Phys. 7, 1861 
(1966). 

apply Ekl to a vector x = (Xl' ... , xn), this operator 
destroys all components of x except the kth one, which 
is transformed into the Ith component. The operators 
that we write down in order to build GL(n, C) will 
have essentially the same meaning. In the following, 
we write down the infinitesimal operators for the 
algebras GL(2, C) and GL(3, C); the general case 
can be inferred easily from these two cases. 

1. GL(2, C). Let us define 

E12 = dm (A?n - (j~(j;;'), (70) I 
H(O,O)(m,Ol H(O,m)(O,Ol 

()( P 

E2l = dl (AJ - (jJ(j;;'), I 
H(O,O)(O,!l HU,O)(O,Ol 

y (j 
(71) 

HI = I dl(A~ - (j~(j;;'), (72) 

H2 = I dm(A?n - (jJ(j;;'), (73) 

where ()(, p, y, (j are normalization constants. It is 
easy to verify that these operators satisfy the desired 
commutation relations. 

2. GL(3, C). In the same way as above we are able 
to define operators that satisfy the commutation 
relation of GL(3, C). Thus E13 is given by 

VI. METHOD OF EXTENSION FOR nth­
ORDER EQUATIONS 

The factorization method for second-order differ­
ential equations looks for first-order differential­
operator solutions. However, it is clear that there 
exist other trivial solutions. These are second- and 
zero-order differential operators. Thus, we have for 
second-order differential equations three independent 
solutions. In the general nth-order eigenvalue problem, 

dn 

- y + rex, m)y + AY = o. (74) 
dxn 

We expect therefore to find n + 1 independent solu­
tions to our problem in the nth order, of which n - 1 
will be nontrivial. 

The form which we impose on our operators is 

Rm = K(x, m + 1) - D, 

Lm = K(x,m) + D, (75) 
where 

i = 1··· [~} (76) 
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so that 

RmY(A, m) = [A - L(m + 1)]tY(A, m + 1), 

LmY(A, m) = [A - L(m)]tY(A, m - 1). (77) 

We say that Eq. (74) is factorized by Rm , Lm , if it can 
be replaced by each of the following two equations: 

Lm+1RmY(A, m) = [A - L(m + 1)]Y(A, m), (78) 

Rm_1LmY(A, m) = [A ...:.. L(m)]Y(A, m). (79) 

These equations lead to 

{ 
dn 1 d2i 

k2(x m + 1) + Dk(x m + 1) - - - --, 
, , dx" 2 dx2• 

1 d2(n-i)} 
- 2: dx2(,.-i) yeA, m) 

= [A - L(m + 1)]Y(A, m), (80) 

{ 
dn 1 d2i 

k2(x m) - Dk(x m) - - - --. 
, 'dxn 2 dx2' 

1 d2(n-i)} 
- 2: dx2(n-;) yeA, m) 

= [A - L(m)]Y(A, m). (81) 

Using Eq. (74), we are then led to 

2 1 d2i 1 d2( n-i) 

k (x, m + 1) + Dk(x, m + 1) - --2' - --2(-') 
2 dx' 2 dx n-. 

+ L(m + 1) = -rex, m), (82) 

2 1 d2i 1 d2( n-;) 

k (X, m) - Dk(x, m) - --2' - - 2( I) + L(m) 
2 dx ' 2 dx 11-

= -rex, m). (83) 

Subtracting (83) from (82), we then get 

k2(X, m + 1) - k2(X, m) + Dk(x, m - 1) 

+ Dk(x, m) = -L(m + 1) + L(m). (84) 

Let us now substitute 

and denote 

We then have 

[em + 1)2(k~ + k{) + 2(m + 1)(kok1 + km 

- [m2(k~ + kD + 2m(kokl + k~)] 

(85) 

= L(m) - L(m + 1). (86) 

The solution to this equation is 

L(m) = -{m2(k~ + kD + 2m(kokl + k~)}, (87) 

since L(m) is a function ofm alone. We must then have 

1 [ d
i 

d
n

-
i 

] 2 2 2 dxi + dxn-i kl + kl = a , (88) 

![.!f.- d
n

-
i 
Jk + k k = {-ca i.f a =;t. 0, (89) 

2 dXi + dxn- i 0 0 1 b If a = O. 

We shall deal with the solution of Eqs. (88) and (89) 
in the next section. 

Until now we found only [n/2] solutions to our 
factorization method; however, it is easy to infer the 
other solutions. These have the same form as in Eqs. 
(76), but in this case 

i [d i d1l

-

i J 
D = .J2 dXi - dx1l- i • 

The same procedure as in the preceding case follows. 
In the above discussion we dealt with integer dis­
placements of the eigenfunctions of Eq. (74); how­
ever, it has been shown in Sec. I that the factorization 
method can be generalized to noninteger displacement 
(for second-order ordinary differential equations). 
The same methods apply in this more general case. 
We shall not dwell on the details. 

vn. ON THE SOLUTION OF EQ. (88) 

Equations (88) and (89) are the basic equations 
which we must solve in order that the procedure 
developed above will have a practical use.to However, 
this is not an easy task. The main difficulty lies in the 
fact that Eq. (88) is not linear. Thus it is possible to 
solve this equation in special cases only. 

As an illustration, we deal with a fourth-order 
equation and take i = n, i.e., i = 2, so that 

d2 

D = - (90) 
dx2 

(dropping unimportant numerical factors). Equation 
(88) then turns out to be 

d
2 

k k 2 2 
-2 1 + 1 = -a, 
dx 

which lead to the solution 

x = C2 ± f (2c1 - a2k1 - l-k3r i dk. 

(91) 

This integral can be solved explicitly only for special 
values of a. For higher-order differential operators 
we face, of course, greater difficulties. 
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10 It is to be noticed that Eqs. (82) and (83) are operator equations. 
Therefore, even if we can solve Eq, (88), we can find the desired 
raising and lowering operators only if we impose on the solutions of 
(74) th.e subsidiary conditions 

( 
cf2i cf2(n-i») 
dX2i + d 2(n-i) y = O. 
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An extended energy-integral technique for boundary-value problems is presented for a class of differen­
tial equations which are prevalent in mat~ematical ph~s!cs. T~e extended technique provides a met~?d 
for answering questions in wave propagatIon and stabilIty which could not be treated by the famJlJar 
method of energy integrals. 

I. INTRODUCTION 

In this paper, an extended energy-integral technique 
is derived for problems in linear differential equations. 
The Dirichlet-Neumann boundary-value problems 
are treated for equations in divergence form when the 
coefficients of the equation depend analytically on a 
parameter. These equations arise repeatedly in 
mathematical physics. They are especially prevalent 
in time-reduced problems. 

Uniqueness theorems obtained from the familiar 
method of energy integrals rely heavily on the definite­
ness of the real or imaginary part of an integrand. 
However, when the coefficients of the differential 
equation depend on a parameter in a way which is not 
simple, the application of this technique in its usual 
form is often not possible. 

In the extension of this technique all that is required 
here is a simple geometric constraint on coefficients 
of the differential equation. This constraint is only on 
the boundary of the domain of the parameter. It is 
independent of the dimension or extent of the domain 
of the independent variables of the equation. 

The uniqueness theorems, which are proven in the 
next section, correspond to theorems which guarantee 
the absence of resonant frequencies in a complex 
domain of the parameter. The existence theorem, 
which is proven, corresponds to a theorem w~ich 
guarantees the existence of a Laplace transform 10 a 
right half-plane of the transform variable. 

While the treatment here is only given for second­
order equations, obvious modifications will extend 
the technique to equations of higher order. Similarly, 
the technique employed here in the proof of the 
existence theorem on the whole space is readily ex­
tended to domains such as half-spaces, quadrants, etc. 
Existence on finite domains follows immediately from 
uniqueness.1 

• Present address: Courant Institute of Mathematical Sciences, 
251 Mercer Street, New York, N.Y. 10012. .. 

1 R. Courant and D. Hilbert, Methods of Mathematical PhYSICS 
(Interscience Publishing Co., Inc. N.Y. 1962), Vol. II. 

II. UNIQUENESS 

Consider the differential equation 

V"" {alex, z)V",u} + a2(X, z)u = -F(x, z). (1) 

Here V", is the N-dimensional gradient in the variable 
x = {Xl' X2 , ••• ,XN}' The domain of X is denoted 
by X and the boundary of X by ax. The functions 
alex, z) and a,ix, z) are taken to be continuous and 
single-valued in X and analytic in z for zED. It shall 
also be assumed that the alex, z) and a2(x, z) are 
continuous in z onto the boundary aD of D. 

In the following, A and ft shall always be taken to be 
real, nonzero numbers. For any continuous complex­
valued function fez) defined on aD, the number W, 
is defined to be the winding number, with respect to 
the origin of the complex plane, of the mapping of aD 
by fez). The class of functions q(X) are those 
functions which have continuous first derivatives 
which are, together with those derivatives, square­
integrable on X. H is the interior of a half-plane in the 
complex plane whose boundary aH contains the 
origin. The outward-drawn unit normal to aH is 
denoted by v. 

Three uniqueness theorems will be proved. 

Theorem 1: Suppose that for each fixed z E aD, 
there exists an H(z), which is independent of x, A, ft, 
and is such that 

Alj.L(x, z) = {-A2al(X, z) + p,2alx, z)} E H(z). 

Suppose it is possible to choose H(z) so that v(z) is 
Holder-continuous on oD, and that for such v(z), 
W = O. Then any solution in q(X) of the Dirichlet­
N;umann problems for Eq. (1) is unique for zED. 

Theorem 2: Suppose that for each fixed z E aD 
there exists an H(z), which is independent of x, A, p" 

and is such that A .. ,..(x, z) E H(z). Suppose that with 
arg (-al) = bl and arg (a2) = b2, defined as con­
tinuous functions of z on oD, 

1p(z) = Umax {bi } + min {bi}] 
i,X i,X 

1266 
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is Holder-continuous and single-valued on aD. Then 
any solution in q(X) of the Dirichlet-Neumann 
problems for Eq. (1) is unique for zED. 

Theorem 3: Suppose that for z E aD, there exists a 
real, single-valued Holder-continuous function y(z), 
and an H, independent of x, A, fl, z, such that 
eiy(Z) AAIl(x, z) E H. Then any solution in q(X) of the 
Dirichlet-Neumann problem for Eq. (1) is unique. 

Theorem 3 will be proved. It will then be shown 
that the hypotheses of all three theorems are eq uivalent. 

Proof: Suppose that for some Zo E D there exists 
two solutions in q(X) to the Dirichlet-Neumann 
problem for Eq. (1). Then their difference w(x, zo) 
belongs to C~(X) and 

V"" {alex, zo)V",w(X, zo)} + a2(X, zo) w(x, zo) = 0, (2) 

together with appropriate data vanishing on aX. Multi­
plication by the complex conjugate of w, w(x, zo), and 
integration by parts lead to 

° =f dx Alvxwl.lwl(x, zo)· (3) 
x 

Thus, 

E(z, zo) =f dx{ -alex, z) \V",w(x, ZO)\2 
X 

+ a2(x, z) \w(x, ZO)\2} (4) 

is analytic in z on D, with continuous extension to 
aD, and, by Eq. (3), has a zero at z = Zo. 

Since y(z) is continuous on aD, there exists a 
regular real harmonic function ~(z) on D which takes 
the value y(z) on aD. There also exists a regular real 
harmonic function 'YJ(z) such that qJ(z) = ~(z) + i'YJ(z) 
is analytic in D. If D is the half-plane 1m z > 0, and if 
lim y(z) = 0, then on aD2 

qJ(z) = y(z) + ~:rJ yeT) dT. 
7Tl aD T - Z 

Since yeT) is Holder-continuous, the principal-value 
integral is a Holder-continuous function of z on aD. 
Therefore, exp [iqJ(z)] is an analytic function in D 
without zeros. Thus, the statement E(zo, zo) = ° is 
equivalent to ° = exp [iqJ(zo)]R(zo, zo). 

Let (j be the argument of the outward-drawn normal 
to H. Then for z on aD 

Re [ei(O+rp(z»E(z, zo)] < 0. 

However; the argument principle of analytic function 
theory states that iff(z) is analytic in D and continuous 
up to aD, then the number of zeros of fez) in D is 

2 N. I. Muskhelishvili, Singular Integral Equations (P. Noordhoff, 
Ltd., Groningen, The Netherlands. 1953). 

precisely Nt .3 In particular, if f(aD) c H, then 
Nt = ° andf(z) "F ° for ZED. Therefore, E(zo, zo) "F 
0. Thus w(w, zo) == 0. 

Corollary: If al and a2 are not zero for any x E X 
and zED, then uniqueness under the same conditions 
is obtained for the equation 

V"" {VU} + ~ = -F. 
a l a2 

Proof: The proof follows by using 

f {a2(X, z) 1 w(x, zo) 12- aleX, z) 1 w(x, Zo) 12} dx 
x a~,~ a~,~ 

in place of E(z, zo). 

It will now be shown that the validity of the hypoth­
esis of Theorem 1 implies the validity of the hypoth­
esis of Theorem 2. 

Proof: Suppose that the hypothesis of Theorem 1 is 
satisfied. Then the H with normals v such that 
arg v(z) = tp(z) + 7T are admissible. However, if 
Wv = 0, then tp(z) is a single-valued function of z 
on aD. 

Proof: Similarly, the validity of the hypothesis of 
Theorem 2 implies that of Theorem 3. 

This follows by taking y(z) = -(tp(z». From the 
hypothesis of Theorem 2 we have 

tp(z) - ~ < arg {-A2al(X, z) + fl2a2(X, z)} 
2 

7T 
< tp(z) +"2' 

It follows that exp [-itp(z)]A'<Il(x, z) E H. 

To complete the proof of equivalence of all three 
theorems, all that remains to be shown is that the 
hypothesis of Theorem 1 is a consequence of that of 
Theorem 3. 

Proof: The existence of y(z) and H as given in 
Theorem 3 implies that there is at least one family 
H(z) with normals v(z) such that Wv = 0. What 
must be shown, therefore, is that Wv is independent 
of the choice of H(z) with Holder-continuous v(z), 
provided A"Il(x, z) E H(z). 

Assume that there exists such a function v*(z) such 
that Wv* :;6 0. Define on aD 

Pr(z) = +e+inz ){ -A2al(x, z) + fl2a2(X, z)} 
= e+inz)A (x z) 

All ' , 

3 K. Nopp. Theory of Functions (Dover Publications, Inc., New 
York,1945), Part I. 
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with W PI' = O. Here, r(z) is the analytic function 

with real part given by y(z) on aD. Therefore, 
WA = O. Thus, with 

All 

1 i arg v*(r) r/i...z) = arg v*(z) + -: ~ dT 
17'1 ~D T - Z 

on aD, we have 

0= W.i4>A = W.i4>. 
All 

Hence, arg v*(z) is single-valued on aD. This implies 
that Wv' = O. 

1lI. EXISTENCE OF SOLUTIONS 

In this section, the following existence theorem will 
be proven when X == R, the whole x space. 

Theorem 4: Assume that the conditions of Theo­
rem 1 are met by the a;(x, z) of Eq. (1). Assume also 
that 

lim a;(x, z) = A;(z), i = 1, 2, 
1"1-+ 00 

are analytic in D, and that a2(x, z) and F(x, z) have 
two and that aleX, z) has three square-integrable 
derivatives. If the functions ai(x, z) - A;(z) and 
F(x, z) are square-integrable, then there exists a 
square-integrable solution to Eq. (1) on R. 

If, in addition, 

a a a ..?..F - (ai - Ai), a- (V.,a l ), a- a2, and 
~ z z ~ 

are square-integrable on R for zED, then the solution 
to Eq. (1) is analytic in z for ZED. 

Proof: Equation (1) is equivalent to 

AIV~U + A2u = -[F + V.,. {Cal .,.... Al)V"U} 

+ (a2 - A2)U] 

= -G. (5) 

Treating the right-hand side of Eq. (5) as a known 
function and taking Fourier transforms of (5) yields 

u(k z) = G(k, z) (6) 
, Ikl 2 Al - A2 

Here, k is the N-dimensional transform vector and A 

denotes the Fourier transform. Since the hypothesis 
of Theorem 1 is satisfied by the a;(k, z), Ikl2AI - A2 ~ 
o for ZED. Taking the inverse transform of Eq. (6) 
and integrating by parts to eliminate derivatives of 
u(x, z) yields 

u(x, z) = F;(x, z) + L KN(x, y, z)u(y, z) dy, (7) 

with 

alex, z)F;(x, z) 

= _1_ r dk r exp [ik(x - y)] F(y, z) dy. 
(21T)N JR JR Ikl 2 

- A2/AI 

Thus, F~(x, z) E VCR). Also, suppressing the z 
dependence for simplicity, 

al(x)KN(x, y) 

= A [V (al(y») • V E + {alY) - al(y)} A2 E ] 
II/AI 1/ N A2 Al Al N , 

E = _1_ r dk exp [ik(x - y)] . 
N (21T)N JR Ikl 2 - A 2/AI 

For N = 1, 2, 3, taking 1m (A 2/A I )! > 0, 

E _ ~ exp {i[(A2/AI)!] Ix - yl} 

I - 2 (Ao/AI)! ' 

E _l.. foo T dTJo(T) 
2 - 217' Jo T2 - (A2/Al)! Ix _ Yl2 

(where JO(T) is the zeroth-order Bessel function which 
decays at infinity along the real axis), and 

E3 = ..!.. exp [i(A 2/Ai Ix - yIJ . 
417' Ix - yl 

In all of the above, Ix - yl is the usual Euclidean 
distance between the vectors x and y. Since the 
ai(x, z) satisfy the hypothesis of Theorem 4, the 
kernel KN of Eq. (7) generates Fredholm integral 
equations. While for N ~ 2, the KN are not square­
integrable on R X R, iterates of them are. This suffices 
for the application of the Fredholm alternative 
theorem.4 

It will now be shown that any square-integrable 
solution of Eq. (7) is also a solution of Eq. (5). For 
simplicity, ~q. (7) may be rewritten in the form 

al(x)u(x) = JR dy F(y)Ho(lx - yl) 

+ i~JRB;(y)HlIX - yl)u(y) dy 

= fR d~ F(~ + x)Ho(I~I) 

+ i~J/~ BM + x)Hil~l)u(~ + x), (8) 

with the obvious identification of the Ho, Oi' and Hi 
with elements in Eq. (7). 

Since the Bi and Fhave two derivatives as prescribed 
in the hypothesis of Theorem 4, it follows that, if 
u(x, z) is a solution of Eq. (7) which is in L2(R), then 
its first and second derivatives exist and are in VCR). 
For proof, one simply differentiates Eq. (8) with 
respect to x;. The integral equation obtained for 
au/ax; has the same kernel as that of Eq. (7). Only the 
inhomogeneity is different. It contains an integral of 

• F. Tricomi, Integral Equations (Interscience Publishing Co., Inc., 
N.Y., 1957). 
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u(x, z) and is also square-integrable. Similarly, 
employing again the smoothness of the ai(x, z), it is 
seen that a2u/axiJxk also exists and is in VCR). In 
exactly the same way, if u(x, z) is a solution ofEq. (7) 
and is in VCR), au/az exists and is in VCR) for 
ZED. Consequently, u(x, z) is analytic in z for ZED. 

Since u(x, z) has two derivatives, we may integrate 
by parts in Eq. (7) in order to eliminate singular 
behavior in KN(x, y). Thus, after integration by parts, 
we may differentiate with respect to x under the 
integral sign. Forming the combination of derivatives 
which appears on the left of Eq. (5), one readily finds 
that the derivatives of the integrals yield the combina­
tion which appears on the right of Eq. (5). Thus, any 
solution in VCR) ofEq. (1) is also a solution ofEq. (7) 
and conversely. 

However, the problem of finding a solution to 
Eq. (1) which is in VCR) is equivalent to a boundary­
value problem with a Dirichlet condition at infinity. 
By assumption, the hypothesis of Theorem 1 is 
satisfied. Therefore, any such solution is unique. The 
Fredholm alternative theorem, applied to Eq. (7), 
now implies that the solution exists. 

IV. AN EXAMPLE 

In this section, we illustrate the above technique of 
proving existence of solutions with an example. The 
equation we treat is of a type which appears in stability 
of ionized gases. 5 We include a treatment of it here 
for purposes of completeness. The equation has the 
advantage of having coefficients of a sufficiently 
complicated nature so as to discourage an analysis of 
it as a coupled system in its real and imaginary parts. 
We will assume that the coefficients which appear 
have the smoothness properties in x which are required 
in the hypothesis of Theorem 4. For our equation, 
we take 

with 
x u = -F(x, z), (9) 

1±(x, z) = -- nl(x) exp - ---J+OO T dT { [1 T2 ] 
-00 T - z 2 T~(x) 

± n2(x) exp [- ! ~J} 
2 T~(x) 

J+OO T dT 
= -- S±(T, x). 

-00 T - Z 

5 A. Kadish, Phys. Fluids 10,1614 (1967). 

We shall assume that the functions nix), Tj2(X), and 
cix) are real, bounded, positive functions for j = 1,2, 
and k = 1, 2, 3. We also assume that 

( ) > ntCx)TtCx)n2(x)T2(X) _ () 
C3 X - P x . 

nl(x)TtCx) + n2(x)T2(x) 

For D(z) , we take the half-plane Imz > O. The 
coefficients of the differential equation are analytic 
in this half-plane, and the functions 1±(x, z) have a 
continuation onto the line 1m z = 0 which is given by 

J+OO T dT 
1±(x, z) = ~ -- S±(T, x) + 7TizS±(z, x) 

-00 T - Z 

= R±(z, x) + 7TizS±(z, x). 

On the line 1m z = 0, the coefficient aleX, z) = 
cl (X)(Z2 - ca(x)) is real. The imaginary part of 
a2(x, z) on this line is given by 

-1m (1+ - ~~) = R! +7T;2Z2S! [S+(IR+1
2 
-IR-I)2 

+ 7T2Z2S+(S! - S~.) + 2{S+(IR+IIR-I) - S_(R+R_)}] 

and therefore has the sign of -z on the axis 1m z = O. 
At z = 0, aleX, z) = -Cl (X)C2(x) < 0 and aleX, z) = 
47T!{C3(X) - p(x)} > O. On any curve in the upper 
half z plane, whose distance from the origin is very 
much greater than unity, we have aleX, z) = Cl (X)Z2 -

Cl (X)C2(X) and a2(x, z),...., 47T!Ca(X). 
Therefore, on the boundary aDq of all such sub­

domains D q of the upper half z plane, the range of all 
combinations - A,2al + ft2a2' with A, and ft as in 
Theorem 1, lies in the lower half of the complex plane 
if Re z > 0 and z E aDq' If, on the other hand, 
Re z < 0 and z E aDq, -A,2al + ft2a2 belongs to the 
upper half of the complex plane. At z = 0, these 
combinations are all positive. They also have positive 
real part for large z when arg z is near 7T/2. Thus, for 
all such D q' we can choose complex half-planes H(z) 
as in Theorem 1, with unit normals v(z) such that the 
winding number of v(z) on aDq with respect to the 
origin is zero. Since D q(z) is arbitrarily large, we 
conclude from Theorem 4 that Eq. (9) has a unique 
solution which is in VCR). 
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The mathematical properties of the original expansion derived by Sudarshan for the diagonal coherent­
state weight functional are discussed. It is shown that, for stationary fields, the expansion is a generalized 
function in the space Z'(R2)' The validity of this method of defining the weight functional in the case of 
arbitrary density operators and its relationship to other approaches to the problem of the diagonal 
representation is briefly considered. 

I. INTRODUCTION 

In recent years there has been considerable discus­
sion of a "diagonal" representation of the density 
operator p which specifies the statistical state of a 
one-dimensional harmonic oscillator in terms of the 
right eigenstates of the boson annihilation operator, 
the so-called quasiclassical or coherent states Iz).1 This 
representation has the form of a superposition of the 
projection operators Iz)(zl with weight functional cp(z): 

p = J cp(z) Iz)(zl d2z. (I) 

Here z = (x + iy), d2z = dx dy is the real element of 
area in the complex z plane, and the expansion 
of Iz) in terms of the complete orthonormal set of 
harmonic-oscillator number eigenstates In) (n = 0, 
1,2,' .. ) is given by 

Iz) = e-q•12
/
2

) i ~ In). (2) 
n=O (n !)~ 

Using the representation (2), it is easy to verify that 
the coherent states are normalized to unity, non­
orthogonal, and satisfy a completeness relation of the 
form2 

.;. JIZ)(ZI d2z = 1. (3) 

By virtue of (3) every density operator has the double­
integral decomposition 

p = ~2 JJIZ)(ZI P Iz')(zi d2
z d2z', (4) 

where the integration is performed over the two com­
plex variables z, z'. We note that the representations 
(1) and (4) are distinct; the diagonal form is not a 
degenerate case of the double-integral expansion 
which arises when the matrix element (zl P Iz') is 
proportional to a delta function. 3 

1 R. J. Glauber, Phys. Rev. Letters 10, 84 (1963). 
2 J. R. Klauder, Ann. Phys. (N.Y.) 11, 123 (1960). 
• M. M. Miller and E. A. Mishkin,Phys. Rev. 164, 1610 (1967). 

The existence of a diagonal representation for the 
density operator characterizing a chaotic radiation 
field was noted by Glauber,1 who has emphasized the 
central role of coherent-state expansions in the 
quantum theory of optical coherence.4.5 The gen­
erality of the diagonal representation and the fact 
that its use leads to a symbolic equivalence between 
the classical and quantum formulations of coherence 
theory has been stressed by Sudarshan,6 who derived 
an explicit expression for the weight functional cp(z) 
which has the form of an infinite series of the Dirac 
delta function and its derivatives 

(5) 

where the expansion coefficients Cn are proportional 
to the matrix elements of p in the number repre­
sentation (nl P 1m). In the subsequent discussion of 
this result, it was shown7 that when an infinite number 
of the Cn coefficients are nonzero, the series (5) does 
not converge in the generalized function space D', 
that is, it is not a distribution. The conclusion drawn 
by several authors8•9 was that Eq. (5) is mathemat­
ically meaningless in this case, even in the context of 
distribution theory, and hence the symbolic equiv­
alence which it defines is not valid. This conclusion 
is misleading, however, since not every generalized 
function is a distribution. In Sec. II of this paper 
we shall prove that for all density operators which 
are diagonal in the number representation and thus 
correspond to stationary fields, the explicit expression 
for the weight functional derived by Sudarshan, 
while not a distribution, does converge in the general­
ized function space Z'.10 Since a unique diagonal 

• R. J. Glauber, Phys. Rev. 130,2529 (1963). 
• R. J. Glauber, Phys. Rev. 131,2766 (1963). 
6 E. C. G. Sudarshan, Phys. Rev. Letters 10, 277 (1963). 
7 K. E. Cahill, Phys. Rev. 138, B1566 (1965). 
8 D. Holliday and M. L. Sage, Phys. Rev. 138, B485 (1965). 
e R. Bonifacio, L. M. Narducci, and E. Montaldi, Nuovo Cimento 

47, 890 (1967). 
101. M. Gel'fand and G. E. Shilov, Generalized Functions (Aca­

demic Press Inc., New York, 1965), Vol. I, Chap. II. 
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representation in Z' exists for all density operators,3 
this result proves that the Sudarshan expansion 
for g;(z) is mathematically meaningful for stationary 
fields, although other representations may be more 
useful in certain applications. ll As a particular 
example of our result, we consider the diagonal rep­
resentation of a thermal-radiation field. In Sec. III 
we consider the validity of the delta-function ex­
pansion for g;(z) in the case of arbitrary density 
operators, and the relationship of this method of 
defining the weight functional to other approaches 
to the problem of the diagonal representation. 

II. CONVERGENCE OF THE SUDARSHAN 
EXPANSION 

For a single mode, Sudarshan's expansion for the 
weight functional has the form6 

00 (n I p" 1m) (n! m !)t e{r2+i(m-n)(9+uJ) 
g;(z) = L !5(n+mJ(r) ----

n,m~O (n + m)! 27Tr 

z = re i8
• (6) 

If the field is stationary, the density matrix is diagonal 
in the number representation 

(nl P 1m) = (nl pin) !5n,m, (7) 

and Eq. (6) reduces to 

00 n' er2 
g;(z) --+ g;(r) = L (n I pin) -' !5(2nJ(r) -. (8) 

n~O (2n)! 27Tr 

Considered as a function of two real variables, we 
wish to prove that this expressioJ? lies in the space 
Z'(R2), i.e., that Eq. (8) defines a continuous linear 
functional on the test-function space Z(R2), the dual 
space of Z'(R2). The spaces Z, Z' can be characterized 
in the following fashion: If/is an element in the space 
Z(Z'), then the Fourier transform of /, ], lies in 
D(D'), where the elements of D are infinitely 
differentiable functions of compact support. The 
Fourier transformation is a continuous, linear, one­
to-one mapping between the spaces Z and D, Z' and 
D'. Although the spaces Z' and D' intersect, e.g., the 
space of tempered distributions S' is a common 
subspace, neither D' nor Z' is contained in the other. 
For this reason, functionals in Z' are sometimes 
called ultra-distributions.12 We will first prove that 
Eq. (8) defines a functional on Z(R2) and then show 
that the functional is linear and continuous. Since the 
factor 27Tr in the denominator of (8) is introduced to 
cancel the element of measure in the complex z plane, 

11 C. L. Mehta, Phys. Rev. Letters 18, 752 (1967). 
12 J. Sebastiav e Silva, Ann. Math. 136, 58 (1958). 

it suffices to consider the mapping 

(g;(r), ?per, 0) 

/ 00 n' 2 \ = L (n I pin) -' !5(2nJ(r)er , ?per, 0) . (9) 
\n~o (2n)! / 

Here (g;,?p) denotes the complex number associated 
with each ?per, 0) E Z(R2)' Using Leibnitz's rule for 
the derivative of a product, i.e., 

( 
d )n n (n) { d i 

}{ d
n-i 

} dx {f(x)g(x)j = i~ j dxJ(x) dx n- i hex) , 

(10) 

h (
n) n! . . I .. 

were . =., ( _')' IS the bmomia coefficient, 
] J. n J. 

we can express the generalized function !5(2nJ(r)er2 as 
a finite sum of the delta function and its derivatives: 

!5(2nJ(r)er2?p(r, 0) 

= { d
2

2

n

n (e
r2

?p(r, O))} 
dr r~O 

= I (2~) {dd
i

i e
r2

} {dd(;2nn~:J ?per, O)} . (11) 
,~O J r r~O r r~O 

Since 

{~. er2} = ((~)! ! 
dr' r~O 2 

0, j odd, 

, j even, 

(12) 

then 

!5(2nJ(r)er2?p(r, 0) 

2n (2n)! j! {d(2n-iJ } 
=~ "(2 _.),(.) d(2n_jJ?p(r,O) 

,-0 J . n J. 1., r r~O 

2' 

_ ~ (2n)! (2kJ(O 0) (1 ) 
-k-=o(2k)!(n _ k)!?P " 3 

where we have set (2n - j) = 2k. Substituting this 
result in Eq. (9), we obtain 

00 n n! 
(g;(r), ?per, 0) = L (n I pin) L ?p(2kJ(O,O). 

n~O k~o(n-k)!(2k)! 

(14) 

In order to determine whether the double series (14) 
converges, it is necessary to obtain an explicit repre­
sentation for ?p(2kJ(O, 0). Since ?per, 0) and ip(p, y) E 

D(R2) are a Fourier transform pair 

?per, 0) = II ip(p, y)eirpCOS (8-yJ pdp dy, (15) 

then 

?p(2kJ(O, 0) = II ip(p, y)( _l)k{p cos (0 - yWkp dp dy. 

(16) 
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Hence, from (14), 
<Xl 

(!p{r), 'P(r, 0» =! (nl pin) 
n=O xiI [~(-I)kn!{pcos(O - YW

k
] -( ) d d . 

k-:O (n-k)!(2k)! 'PP,YP P Y 
(17) 

Using the gamma-function duplication formulal3 

22z- t 
r(2z) = (27T)t r(z)r(z + t), (18) 

we can reexpress the factor (2k)! 
22k 

(2k)! = r(2k + 1) = -t k! r(k + t) (19) 
(7T) 

and thereby reduce the finite sum in Eq. (17) to the 
standard form 

:i (-I)kn! {p cos (0 - yWk 

k=O (2k)! (n - k)! 

n (-1)kn! {P cos; - y)}2k 

= (7T)t! ----'-----:.­
k=O r(k + t)(n - k)! k! 

= M( -n, t, {PCOS; - Y)f) , (20) 

where the confluent hypergeometric function M(a, b, z) 
is defined by the infinite seriesl4 

M(a, b, z) = I rea + k)r(b) Zk. (21) 
k=O r(a)r(b + k) k! 

Note that when a = -n, b = -m, where n, mare 
integers, the infinite series reduces to a polynomial 
of degree n in z. 

Now we can show that the series 
<Xl 

«((J(r), 'P(r, 0» = ! (n I pi n)bn, (22) 
n=O 

where 

If ( {P cos (0 - y)}2) bn == M -n, t, 2 if(p, y)p dp dy, 

(23) 
is absolutely convergent. Let 

an == (nl pin) bn. (24) 
Then 

lanl = (nl pin) Ibnl 

S II IM( -n, t, {P cos; - Y)})I 

x lif(p, y)1 pdp dy. (25) 

13 M. Abramowitz and I. A. Stegun, Ed., Handbook of Mathe­
matical Functions (Dover Publications, Inc., New York, 1965), 
p. 256, formula (6.1.18). 

u Reference 13, p. 504, formula (13.1.2). 

Using the following asymptotic expansion for 
M(a, b, Z)15: 

M(a, b, z) = r(b)ez/2(tbz - az)!-h 

x cos {(2bZ - 4az)t - tb7T + ~} 

X [1 + O{ltb ~ alt}} (26) 

as a --+ - 00, b bounded, z real, we obtain 

IM( -n, t, {PCOS; - Y)})I 

= (7T)t exp (p2 cos
2 

(0 - y») [1 + O{ 1 }] 
8 (n + l)t 

< C exp C2 

cos
2

:O - y»), n > N, (27) 

where C is a constant. 
Therefore 

lanl < C (nl pin> 

x II exp (p2 cos2io - y») lif(p, y)1 pdp dy 

= (nl pin) C{O), (28) 

where C{O) is a constant which is a function of the 
support of if(p, y) but is independent of n. 

Since (nl P In) is summable, i.e., 

<Xl 

!(nlpln)=I, (29) 
n=O 

it follows from Eqs. (28) that the series (22) is abso­
lutely convergent; hence Eq. (8) defines a functional 
on Z(R2)' The linearity of the functional follows 
directly from Eq. (14). For any two test functions 
'PI(r, 0), 'P2(r, 0) EZ(R2) and complex constants CI , C2 
we have 

<Xl n , 
+c2!(nlpln)~ n. 'P~2k)(O,O) 

n=O k=O (n - k)! (2k)! 

= c1«({J(r), 'PI(r, fJ» + c2«({J(r), 'P2(r, 0». (30) 

To establish the continuity of the functional, we must 
show that if {'P,,(r, O)}':I is a sequence of test functions 
that converges to zero in Z(R2) , then the number 
sequence {«({J(r), ifv(r, Om':l also converges to zero. 
We first note that the convergence to zero of the 
sequence {'Pv(r, O)};'l implies that the sequence of 

.. Reference 13, p. 508, formula (13.5.14). 
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Fourier transforms {Vi,,(p, Y)}:l converges to zero in 
D(Rs).16 Since the latter functions have compact 
support, it follows that the numbers 

ff 'Vi1J(p, y)1 p dp dy 

also converge to zero. 
From Eq. (22), 

I(ql(r), v>vCr, 0»1 

~ n~o(nl pin) fflM( -n, t, {P cos ~ - Y)f) I 

(31) 

x I VivCp, y)1 p dp dy. (32) 

Using the relationship between M( -n, t, x2) and the 
Hermite polynomial of order 2n, H2nCX)17 

M( -n, t, x2
) = (-It ~ H 2nCx), (33) 

(2n)! 

and the following inequality satisfied by H2n(X)18 

IH2n(x) I ~ k2n{(2n)!}le",2/2, (34) 

where k ~ 1.086435, we have 

I M( -n, t, {PCOS ~ - Y)f)1 
~ k2n n! ex (P2 

cos
2 

(0 - Y»). (35) 
{(2n)!}1 p 8 

Substituting this bound for 

M ( -n, t, {p cos ;0 - Y)f) 
for the first N terms of the sum in Eq. (32) and the 
asymptotic expansion Eq. (27) for the remaining 
terms, it follows that 

I(tp(r), V>v(r, 0»1 

<{f(n IPl n)k2
n
n!+c ~ (nlpln)} 

n=O {(2n)!}! n=N+l 

X eR2/sffIViv(P,Y)lpdpdY, (36) 

where R is the maximum value of p. Since the first sum 
in Eq. (36) is finite and the infinite sum is known to 
be convergent, it follows from (31) that the right-hand 
side of (36) converges to zero as v ~ 00. This estab­
lishes the continuity of the functional and completes 
the proof of the convergence of the Sudarshan 
expansion for tp(r) in Z'(R2). 

16 A. H. Zemanian, Distribution Theory and Transform Calculus 
(McGraw-Hill Book Co., Inc., New York, 1965), p. 195. 

11 Reference 13, p. 780, formula (22.5.56). 
18 Reference 13, p. 787, formula (22.14.17). 

As a particular example of this general result, we 
cite the diagonal representation of a radiation field 
in thermal equilibrium at temperature T. The density 
operator describing this statistical state is given by19 

e-fJd+d 
P = = e-fJd+d(1 - e-fJ ), (37) 

Tr e-fJd+d 

where ii, ii+ are the boson annihilation and creation 
operators and {J = ;'w/KT. Substituting the number­
representation matrix element of (37) 

(n I P 1m) = e-fJn(1 - e-fJ)~n.m (38) 

into Eq. (6), we obtain the Sudarshan expansion for 
the weight functional associated with a thermal­
radiation field: 

tt:! , ,.2 

tp(r) = (1 - e-fJ ) 2 e-fJn ~ ~(2n)(r) _e_. (39) 
n=O (2n)! 27Tr 

Since the diagonal representation is known to be 
unique,3 the functional defined by Eq. (39) is equiv­
alent, in the sense of generalized functions and in 
the space Z', to the well-known Gaussian representa­
tion for the thermal-field weight functionS 

e-f'2/(n) e-fJ 
tp(r) = 7T(n) ; (n) = (1 _ e-fJ)' (40) 

thus confirming a conjecture by Kano.20 

m. DISCUSSION 

For stationary fields, we have shown that the in­
finite series Eq. (22) is absolutely convergent, and 
hence the expansion Eq. (8) defines a functional on 
the space Z(R2). Using the general expansion Eq. (6), 
we obtain the following result for an arbitrary density 
operator analogous to Eq. (22): 

(tp(r, 0), v>(r, 0» 
tt:! 

= ! (nl P 1m) ei(n-m)(8+ .. ) 
n,m=O 

(n+m/2) (' ')! 
X ! n. m. v>(2k)(0, 0) (41) 

k=O [(n: m) _ k}(2k)! 

00 (' ,)1 = 2 (nl P 1m) ei (n-m)(8+ .. ) n. m. 

n.m=O e: m)! 

xII M( - (n : m) ,~, {P cos; - Y)f) 
X Vi(p, y)p dp dy. (42) 

,. A. Messiah, Quantum Mechanics (John Wiley & Sons, Inc., 
New York, 1961), Vol. I, p. 337. 

20 Y. Kano, Proc. Phys. Soc. (Japan) 19, 1555 (1964). 
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Using Stirling's approximation for n! 

n!--(27Tn)t(~r n-+oo, (43) 

it follows that, for m = 0, n -+ 00, the factor 

and therefore the series (42), is not absolutely con­
vergent for arbitrary density operators. In order to 
obtain a result analogous to (22), we must exploit 
the conditional convergence of this series. This result, 
however, has not yet been established. 

One final remark is in order. Although the original 
proof of the existence of a diagonal representation 
for arbitrary density operators was based on expansion 
(6), an alternate technique for defining the weight 
functional has subsequently been introduced.21- 24 In 
this approach,23.24 the weight q;(z), which is, in general, 

JOURNAL OF MATHEMATICAL PHYSICS 

afunctional in the space Z'(R2), is defined as the limit 
of an infinite sequence of infinitely differentiable 
functions of rapid decrease. From a conceptual point 
of view, it is no doubt true that such well-behaved 
functions are easier to assimilate than functionals in 
Z', and hence the latter approach to the problem 
of the diagonal representation is preferable in this 
sense to the original formulation. However, we stress 
that the results of Sec. II demonstrate that the 
definition of q;(z) based on the infinite series of the 
delta function and its derivatives is just as rigorous 
from a mathematical point of view as the sequential 
approach, at least for stationary fields. 

ACKNOWLEDGMENT 

The author is grateful to Professor J. R. Klauder 
for stimulating discussions and suggestions. 

2' J. R. Klauder, J. McKenna, and D. G. Currie, J. Math. Phys. 
6, 733 (1965). 
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An explicit derivation is given for the matrix elements of the translation generators P" of the Poincare 
algebra with respect to the "Lorentz basis," namely, in terms of states which diagonalize the two Casimir 
operators of the homogeneous Lorentz group (HLG). The results are given for the cases mass fI. > 0 
and fI. = 0 and, for the latter, for discrete and continuous spin. T:le transforms connecting the mo­
mentum and Lorentz bases are discussed, a detailed derivation being given for the zero-mass discrete­
spin case. The matrix'elements of G" = i[(N2 - M2), PIll are considered and several interesting aspects 
ofthe algebras generated by N, M', 'imd P~ = (€,PI' + €2G,,) are discussed for the cases of positive as well 
as zero rest mass. 

1. INTRODUCTION 

In the following section we give an explicit con­
struction of the matrix elements of the translation 
operators of the Poincare algebra with respect to the 
"Lorentz basis." By Lorentz basis we mean that which 
diagonalizes the two Casimir operators of the homo­
geneous Lorentz group.1.2 This derivation is quite 
formal in the sense that the "pure states" of the 
unitary representation we start with do not give a 
"basis" in the conventional sense. This is most clearly 

, H. Joos, Fortschr. Phys. 10,65 (1962) (particularly pp. 88-109). 
• 1. M. Gel'fand, R. A. Milnos, and Z. Ya. Shapiro, Representa­

tions of the Rotation and Lorentz Groups and Their Applications 
(Pergamon Press, Inc., New York, 1963). 

displayed by the fact that the action of the generators 
P" on a pure state belonging to the eigenvalue A (real 
for unitary representation) of the operator (N2 - M2) 
gives us formally the states corresponding to (A ± i). 
These matrix elements are not Hermitic. A coherent 
formalism may, for example, be achieved in terms of 
suitably "smeared" basis vectors. The above feature is 
a consequence of the noncompactness of the diagon­
ali zed operators of the homogeneous part in semi­
direct product with the translation subgroup.s It does 
not arise when only M2 (corresponding to the compact 

3 E. C. G. Sudarshan, "Noncompact Groups in Particle Physics" 
Coral Gables Conference 1966 (W. H. Freeman and Co., San 
Francisco, 1966), p. 254. 
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rotation subgroup) is diagonalized, as in the "helicity" 4 

or the "L-S" 5 basis of the Poincare algebra. There we 
obtain, at least formally, Hermitic matrix elements. 

Even in the momentum basis (with its continuous 
and unbounded spectrum), a consistent mathematical 
interpretation necessitates a generalization of the usual 
Hilbert space formalism (as, for example, that 
proposed in Ref. 6). As noted above, additional 
features arise in our case. 

Nevertheless, as a starting point, it is quite useful to 
have the explicit forms of the matrix elements and we 
give the results for the cases of positive and zero mass,? 
and for both discrete and continuous spin for the 
latter case. 

In Sec. 3, we study the transformations between the 
momentum and Lorentz basis and demonstrate one 
possible utility of the matrix elements by taking the 
zero-mass case as an example. These formulas, of 
course, incidentally furnish one way of obtaining 
formally Hermitic matrix elements of the P", through 
a linear superposition of the pure "Lorentz states"­
namely, by constructing in their terms the mo-

mentum eigenstates, themselves. Also it is seen that 
the definition of the action of P" on the Lorentz states, 
through an integral over the momentum states, 
formally involves the matrix elements of Sec. 2. 

Another application of the matrix elements is 
illustrated in Sec. 4. In fact, in the study of deforma­
tions of the Poincare algebra8- 10 which leave intact 
the homogeneous part, the Lorentz basis has a 
"natural" place. Apart from such studies, several 
attempts have recently been made,11.12 from different 
points of view, to use the unitary representations of the 
HLG in the theory of particles. It is our impression 
that the formal aspects studied in this paper should be 
of interest for such attempts. 

A discussion of the results obtained is given in 
Sec. 5. 

2. MATRIX ELEMENTS 

In this section we propose to determine explicitly 
the matrix elements of the translation operators P" 
with respect to the canonical basis1.2 of the homo­
geneous Lorentz group (HLG). The matrix elements 
of the generators of the HLG are given by 

M3 Um);o). = m Um);o).' (M1 ± iM2) Um),ol. = [(j =F m)(j ± m + l)]! Urn ± 1)'01.' 

N ,·m). = _1_ {[(j + 1)2 - jm(j + 1)2 + A2][(j + 1)2 - m2]}!-, . + 1m). 
3 1 JO). j + 1 C2j + 3)(2j + 1) ] 301. 

joA . 1 [Cl- j~)(l + 1.
2
)(/ - m

2)J* . 
+ j(j + 1) m '1m

)jol. + j (2j + 1)(2j _ 1) '1 - 1m),01.' (2.1) 

(N ± iN) Urn). = T _1_{[(j + 1)2 - jmU + 1)2 + A2](j ± m + 2)(j ± m + 1)}*,. + 1 m ± 1). 
1 2 30). j+l (2j+3)(2j+1) 1, 30-< 

+ jOA{(j ± m + 1)(j T m)}!,., m ± 1). 
(j(j + 1)]2 1 301. 

± ! [(} - j~)(/ + A2)(j =F m - 1)(j T m)J!u _ 1, m ± 1). . (2.2) 
j (2j + 1)(2j - 1) 30-< 

The two Casimir operators for the homogeneous part as 
are given by (1) jo = 0, A ~ 0, 

(N2 
- M2) Urn) io" = (1 + ;'2 - j~) Urn) jo'" (2) jo=1,2,3,···; -00<1.<+00, 

N • M Um)jo;' = joA Um)jOA.' (2.3) (3) jo = t, t ... ; - 00 < 1.< + 00 (2.5) 

Noting that the substitution 

(jo, 1.)-.. (-jo, -A) (2.4) 

leaves the above matrix elements unaffected, we can 
classify the nontrivial unitary representations of HLG 

• J. S. Lomont and H. E. Moses, J. Math. Phys. 5, 294 and 1438 
(1964). 

5 A. Chakrabarti, J. Math. Phys. 7, 426 (1966). 
• I. M. Gel'fand and N. Ya. Vilenkin, Generalized Functions 

(Academic Press, Inc., New York, 1964), Vol. 4, Chap. \, Sec. 4. 
7 H. Joos, Revista Univ. Mat. Arg. 18, 119 (1956). While Ref. I 

treats only the case of positive rest mass, in Ref. 7 both cases, 
namely, positive and zero rest mass,have been treated, but only for 
spin zero and using a different basis. 

(double-valued), 

(4) jo = 0, 0 < -iA < 1. 

8 A. Bohm, "The Dynamical Group of a Simple Particle Model" 
Syracuse Univ. Preprint (NYO-3399-77-1206-SU-77). ' 

• R. Hermann, Commun. Math. Phys. 3, S3 (1966). 
10 M. Levy-Nahas, J. Math. Phys. 8, 1211 (1967). 
11 For the use of wave equations corresponding to the unitary 

representations of HLG way refer, for example, to Y. Nambu, 
Suppl. Progr. Theoret. Phys. (Kyoto) Nos. 37 and 38 (1966), p. 368; 
A. Barut and H. Kleinert, Preprint Univ. Col. 66-13, Boulder, Col­
orado, and the sources quoted therein. 

12 For the use of analyticity properties associated with reduction 
of the scattering amplitudes w.r.t. the HLG see, M. Toller, Nuovo 
Cimento 54A, 295 (1968); R. Delbourgo, A. Salam, and J. Strathdee, 
Phys. Rev. 164, 1981 (1967) and the references quoted in these 
papers. 
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The above matrix elements correspond to the nor­
malization 

io;,,(j'm' I im)io,! = lJjj,lJmm,lJioio,lJ(A - A'). (2.5') 

With the notations thus fixed, let us start by 
considering the operator Po. Noting that Po commutes 
with M2 and Ma, let us write 

Po Iim)T = Z cj'T Iim)T' [T: (jo, A)]. (2.6) 
T' 

Utilizing 
(2.7) 

we find that the only nonzero matrix elements corre­
spond to 

T' = Uo ± 1, A) [jo, (A ± i)J, (2.8) 

and for these cases 

cj't = CT'T[U =f jo)(j ± io + 1)]1 for i~ = jo ± 1, 

A' = A, (2.9) 
and 

cT/ = cT't[(j ± iA)(j =f iA + 1)]1 for j~ = jo, 

A' = A ± i. (2.10) 

(In fact this part of the calculation is formally the 
same as that presented in pp. 275-6 of Ref. 2. In our 
case however we cannot leave Ct'T arbitrary.) 

In order to determine the remaining factors, it is 
convenient to use the relations 

[po, [Po, (N2 
- M 2)Jl = -2(P~ - fl2), 

[po, [Po, N· M]] = 0, (2.11) 

where fl denotes the mass corresponding to the 
irreducible representation of the Poincare group and 
may be positive or zero for the cases to be considered. 

From Eq. (2.11) we obtain the equations 

Z cj""ct/'(Ft + F,,, - 2FT , + 2) = 2fl2lJrr", 
t' 

Z c?'CT/(GT + GT" - 2G,,) = 0, (2.12) 
T' 

where 

F, == (1 + A2 - i~), Gt == joA. (2.13) 

Case: '" > 0 

In this case, putting T" = Tin Eq. (2.12) and putting 

ociio, A) == C(io,).),(Jo,;'+i)C(jo,A+i),(Jo,).l, 

{J ioUo, A) == cCio,!),(Jo+I·,!)C Cio+l,'!),Cio,'!), (2.14) 

we obtain the fonowing set of t'elations: 

[io(oc;, - OC,!_i) - iA(fJio - {Jio-t)] = 0, 

[-iA(OC;, - oc;'-i) + iO({Jio - {Jio-l) 

+ (oc;. + OC;'_i) + ({Jio + {Jio-l)] = 0, (2.15) 

{iA[oci -iA + 1)2 - OC).-i(iA + i)2] 

- iO[{JioUO + 1)2 - fJio-lio - 1)2]} = !fl2. 

The solutions are 

IX,! = 16(jo + O,)(jo - iA + 1)(jo - iA)(jo + iA - 1) , 

(2.16) 

{Jio = 16(jo + iA)(jo - iA + I)Uo - iA)UO + iA + 1) 

(2.17) 

The parameter " as yet undetermined, is to be 
evaluated in terms of the spin corresponding to the 
irreducible representations [see Eqs. (2.24)-(2.26)J. 

The reduced elements corresponding to the tran­
sitions A ~ A - i and jo ~ jo - 1 are given by OC),_i 
and {Jio-I' 

Writing (with a slightly altered and obvious notation 
for the reduced elements) 

(where the phases qy, qy' may be chosen according to 
some suitable convention), all the relations in Eq. 
(2.12), for different possible values of T", may be seen 
to be satisfied automatically. In terms of Eq. (2.16)­
(2.18), we have 

Po lim)io,! = C~o+l,jo[(j - jo)(j + io + 1)J1 Iim)io+1,;' 

+ C~o-I.iO[(j + io)(j - io + 1)]1 Ijm)io-l,;. 

+ c::i',![(j + iA)(j - iA + 1)]ljjm)io,A+i 

+ C:;i';'[(j - iA)(j + iA + 1)]1 lim)io,;'-i' 

(2.19) 

The matrix elements of P now may be written down 
directly by using the relation 

P = i[N, PO]. (2.20) 
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For example, we obtain 

. {i [(j + 1)2 - m
2 

J! 
P3 !Jm)ioA = t - j + 1 (2j + 3)(2j + 1) 

x {[«j + 1)2 + ),2)(j ± jo + 1)(j ± jo + 2)]!cio+1 ,iO! j + Im)io±iA 

+ [«j + 1)2 - j~)(j =f i), + 1)(j =f iA + 2)]!c;:;';'!j + Im)io,w} 

± m {iA[(J' =f J' )(j ± J' + 1)]!Cio±l,io !J·m). j(j + 1) 0 0 A 1o±l,A 

- jO[(j ± iA)(j =f i), + 1)]!C;:i'A! jm) io,Hi} 

+![ l- m
2 

J!{[(J.2 + ),2)(J' =fJ' )(J' =fJ' - 1)]!cio±l,iO!J' - 1m). 
j (2j + 1)(2j _ 1) 0 0 A 1o±l,A 

+ [(l - j~)(j ± iA)(j ± iA - 1)]!c;:i'" Ii - 1, m)iO,Hi})' (2.21) 

In order to introduce the spin parameter explicitly in 
the matrix elements, we have to evaluate 

WJL = -i[PJL' N· M]. (2.22) 

Thus, for example, 

Wo lim)io" 
= iA{cio+l'iO[(j - jo)(j + jo + I)]! lim)jo+l,,, 

- cio-1,iO[(j + jo)(j - jo + I)]! lim)io-l,;,} 

- j{C;t'A[(j + iA)(j - iA + I)]! Iim)ioMi 

- C;;i,"[U - i),)(j + iA + 1)]! lim)io,,-J. (2.23) 

Finally we obtain 

W2lim)ioA = _H~2 - f-l2) lim);o),' (2.24) 

Hence, for, 
W2 = -f-l2s(s + 1)/, 

~2 = f-l2(4s(s + 1) + 1), (2.25) 

and consequently 

f-l2 (s + iA)(S - iA + 1) 

r:t.),= "4 (jo + iA)(jo - i), + 1)(jo - iA)(jo + iA - 1)' 

{J. = f-l2 (s - jo)(s + jo + 1) 

10 4 (jo + iA)(jo - iA + 1)(jo - iA)(jo + i), + 1) 

(2.26) 

Thus we see that if we start, corresponding to 
integral or half-integral value of s, with an integral or 
half-integral value, respectively, of jo, such that 

-s~jo~s, (2.27) 

then we have nonzero matrix elements only for 

jo = -s, -s + 1, ... ,s. (2.28) 

In particular, for 
s = 0, 

we can take 
jo = 0 

and be left with only the matrix elements 

A --), ± i, 
with 

f-l2 1 = f-l2 1 . (2.29) 
r:t." = '4 (-i),)(iA - 1) 4 ),(A + i) 

However, as formal solutions of the recurrence 
relations, we also obtain the following possible 
domains of variation 

s~jo<oo and -oo<jo~-s. (2.30) 

Only the case (2.28) will be utilized for the integral 
transforms considered in Sec. 3, where some relevant 
comments are added. 

Case: f! = 0 

(i) Discrete Spin 

As may be verified directly and easily, we have 
four possible solutions in this case: 

Po Iim)ioA = a1[(j - iA)(j + iA + I)]! Ii m)io,'<-; , 

(2.3Ia) 

Po lim)io), = a2[(j + iA)(j - j), + 1)]! !jm)io,Mi' 

(2.31b) 

Po lim)io), = b1[(j + jo)(j - jo + I)]! lim)jo-l,)" 

(2.31c) 

Po lim)jo), = b2[(j - jo)(j + jo + I)]! \jm)jo+l,),. 

(2.31d) 

The parameters au and b1•2 are as yet arbitrary 
(independent, of course, of j and m). 

If we choose the al •2 to be functions of jo only and 
the bl •2 to be functions of A only, they become con­
stants. In fact, in the above cases, with only one state 
on the right-hand side, it is easy to give the matrix 
elements of Po its simplest form. For example, 
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putting a1 = 1 in Eq. (2.31) and defining by !p);o and let us assume 

I .)' ((j + iA)!)!I' ) 
]m jo). = (j _ iA)! ]m jo).' (2.32) Ip)jo = ~ L: dA[ '])~jo( rp, 0, - rp) Cj 4: 1)!J 

with a corresponding change in Eq. (2.32), we obtain 

Po Ijm)~o). = !jm)jo).-i' (2.33) 

For the solutions (2.31a)-(2.31d) we have, from Eq. 
(2.22), 

respectively. 
Thus we see that, corresponding to unitary rep­

resentations of HLG, Eq. (2.5), only the first two give 
physical values (±jo) for the invariant helicity. 
Moreover, for the same value of jo, the passage from 
one to the other corresponds to a change in sign of the 
helicity. 

(ii) Continuous Spin 

If in Eqs. (2.16) and (2.17) we put 

ft = 0 and ,> 0, 

we obtain the solutions for the case 

namely, that of zero mass and continuous spin. 

(2.35) 

(2.36) 

3. THE TRANSFORMS CONNECTING THE 
MOMENTUM AND THE LORENTZ BASIS 

The required formulas have been given by JOOS1 

for the case ft > 0 for the canonical Lorentz basis we 
are considering. (For the corresponding transform 
using a different basis, see Ref. 13 and the references 
quoted therein.) 

(i) ft = 0 (Discrete Spin) 

However, if one has at hand the explicit matrix 
elements of pI" to start with (Sec. 2), they can be 
usefully employed to extract all the factors which 
do not depend only upon the p;s (in fact, only upon 
po, since the rotation dependence is easily made 
explicit). In order to illustrate this point, let us 
consider the relatively simple case ft = 0, choosing in 
particular the subcase a1 = 1 for the sake of sim­
plicity 

Po Jjm)jo). = [(j - iA)(j + iA + I)]! !jrn)jo).-i, (3.1) 

where 
(3.2) 

gives the helicity. 
Let an eigenket in the momentum basis be denoted 

13 Chou Kuang-Chao and L. G. Zastavenko, SOy. Phys.-JETP 
8, 990 (1956); 35, 1417 (1958); V. S. Popov, SOy. Phys.-JETP 
10,794 (1960); 37,1116 (1959). 

Fj).(p) !jrn)jo). (p = Ipi = Po). (3.3) 

This ansatz evidently ensures the correct matrix 
elements of M, and we have introduced the factor 
[(2j + 0/417]! for the sake of convenience. It remains 
for us to determine the form of Fj).(P). 

Now applying Po to both sides (which just multiplies 
the left-hand side by p) and using Eq. (3.1), we obtain 
at once 

F - -;;.((j + iA)!)!F ( ) (3.4) j;.(p)-p (j-iA)! jp. 

Now applying p3 = i[N3, Po] to both sides of Eq. (3.3) 
and using the relation 

cos O[(2j + 1)!'])~io] 
= _1_ {[(j + 1)2 - m

2
][(j + 1)2 - j~]}! 

j + 1 (2j + 3)(2j + 1) 

X [(2]' + 3)!'])1+,1] + mjo [(2j + 1)!'])1 , ] 
mlo j(j + 1) mlo 

+ _ ] - m ] - ]0 [(2j _ 1)!'])~--:1], (3.5) 1 [( ·2 2)( '2 .2)J! 
j (2j + 1)(2j - 1) 10 

we obtain 

(3.6) 

The simple recurrence relations implied by the 
matrix elements of pI" can lead us only this far. In 
order to evaluate F(P), we have to consider the action 
of some operator not commuting with po, namely, N. 
In this particular case, however, our task is fairly 
simple. 

Using the canonical generators in the momentum 
basis14 for ft = 0 [with a change in sign ofN in order to 
conform to the convention of JOOS1 where N consists 
of the components (rnOi' i = 1, 2, 3) instead of (MOi) 
as in Ref. 14] 

N = (iPO ~ + P x S), ap po 

M = -iP x ~ + S (3.7) ap , 
we obtain at once 

N . M = i (p . ~ + 1) (S . P) (3.8) ap IPI 
and 

2 22M2) (S.P)2 N - M = (No - 0 - \PI ' (3.9) 

14 A. Chakrabarti, J. Math. Phys. 7, 949, 1966. 
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where the orbital part 

(N~ - M~) = - (p2 d
2
2 + 3 P !£) . 

dp dp 

= 1 + [i(po :P + l)r· (3.10) 

The operators corresponding to jo and A can now be 
read off from (3.8) and (3.10). 

Using the equivalent explicitly one-dimensional form 
the representation/us we, of course, obtain essent­
ially the same expression, with the helicity parameter 
(in our case jo) replacing S 0 P/IPI. 

Using either Eqs. (3.8) or (3.9), we obtain, in a 
consistent fashion [instead of the Legendre functions 
of the ft > 0 case arising from Eq. (4.13) of Ref. 1], 

F(p) = Cp-l or Fj),(p) = C[~~ ~ ~~~:r(i)-ip-i).-I, 
(3.11) 

where C is a normalizing constant to be determined. 
In fact, in order to extract the j, A dependence of F, 

we could have also used N3 instead of P3. But then, 
instead of Eq. (3.5) we would have needed a somewhat 
different relation, namely, 

d . 
sin e _~i . = J 

de mJo (j + 1)(2j + 1) 

x {[(j + 1)2 - m2][(j + 1)2 - jm!~;'j! 
mjo ~i. 

j(j + 1) mJo 

j + 1 [('2 _ m2)( '2 _ '2)]!~i--:l. 
j(2j + 1) J J Jo m30 

(3.12) 

Thus, we have 

Ip)io = C I roo dA(i)-i(~ + ~A)!)! 
im )-00 (j - IA)! 

x (2j + 1)!~i (e ) -a-II' ) ~ mio cp, ,-cp p Jm io)" 

(3.13) 
C is fixed in order to insure 

and 
io'(P' I P)io = Cl io'io2pCl(p - p') 

io,).,(j'm' I jm)iOA = bi'jClm'mClio'ioCl(A,' - A). (3.14) 

Noting that 

1 i 00 (p')i). 2 -, dA - = ~Cl(p - p'), 
pp -00 p p 

(3.15) 

I 2j

4
+ 1 ~~io(O')~t,.io(O) = Cl(O - 0') 

im 1T 
= sin eCl(e - e')Cl( cp - cp') [0 ---+- (cp, e, - cp)], 

(3.16) 
15 J. S. Lomont and H. E. Moses, J. Math. Phys. 3,405, 1962; 

G. Berendt Preprint, Mathematisches Institut, Freie Universitiit 
Berlin, 1966. 

and 
Cl(p _ p')b(O _ 0') = p2Cl(p - p'), 

we obtain 

Thus we may write 

Ip)io = -.L 2 fdA(iri[(~ + ~A)!J! 
21Tim (j - IA)! 

(3.17) 

(3.18) 

x (2j + l)!~t,.io(CP, e, -cp)p-iJ..-1 Ijm)ioA' 

(3.19) 

Using the orthogonality and completeness relations 
of the above coefficients, we obtain 

I ·m). = -.L f d3

p (i)i[(j - iA) !J! 
J 30A 21T P (j + iA)! 

x (2j + l)!~::io(CP, e, _cp)pi).-llp)io' (3.20) 

The transforms corresponding to the other three 
solutions for ft = 0 can, of course, be calculated in an 
analogous fashion. 

(i) ft > 0 

For ft > 0, similar techniques can again be em­
ployed. But since the result has been given by JOOS,1 we 
content ourselves with briefly indicating how the 
transforms in question imply exactly the matrix 
elements of Sec. 1; it is sufficient of course to consider 
Po only. 

For the case of zero spin (withjo = 0), the task is 
quite simple. We have only to utilize the recurrence 
relation for the Legendre functions: 

(2y + l)zP~(z) 
= (v - ft + I)P~+1(z) + (y + ft)P~-iz). (3.21) 

Hence, assuming this result, we pass on to the case 
of nonzero spin. Here Joos's technique consists in 
expressing the coefficients (or the wavefunctions) in 
the spinor representation in the form 

{p, d I mj, Ajo) = I (Sd, rmr I jm)'lfmrr,i),arP,jo) 
mr,f 

(3.22) 

where 'If~ behaves like a spin-zero wavefunction with 

x = A - Yo (3.23) 

and, moreover, due to a change of normalization 
involved in the definition, the matrix elements of po 
are now 

+ (iX + r)(iX - r - 1) .. 
2iX(iX _ 1) 'lfmr,r,.<A+.)· (3.24) 
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where the 6j symbol involves the parameters We note that the coefficient ar.i(A,jo) determined by 
loos can be expressed as jl = tUo - iA - 1), j2 = -tUo + iA + 1) 

or 
ar" ,(A,j'o) = (_i)r-Ho-i(2r + 1)!{S. j.2 jl}C (A .) 

r 
r,; ,jo, 

12 j jl + j2 + 1 = - iA, jl - j2 = jo, (3.26) 
(3.25) and 

C ,A' = 1. [2(iA + jo)! (-iA + jo)! (iA - jo)! (-iA - jo - r -1)! (r - jo - iA)!J! 
r,,( ,jo) M (-iA - jo)! (-iA - S - 1)! (-j - iA - 1)! (j + iA)! (s + iA)! . 

(3.27) 

The introduction of 6 - j symbols with complex coefficients should be considered merely as a formal way 
of conveniently exploiting the relevant recursion relations. 

Now it is to be remarked that, while so far as 'If). alone is concerned/we cannot distinguish between the 
two ways of varying X, such as, for example 

_ _ {fOr A--+ A + i; jl --+ h + t,jz--+ jz + t, 
A--+A+i 

or jo--+jo-1: h--+jl-t,jz--+jz+t· 
(3.28) 

This is no longer the case when ar;(A,jo) is taken into account. Thus, we finally obtain all four matrix 
elements of po given in Sec. 1. 

In computing the matrix elements in this fashion, it is helpful to note the following relations: 

{ 
~ j~ jl} = [(s + iA)(S - iA + 1)U + iA)(j - iA + l)]! . {S j2 + t jl + t} 

12 j r (-jo + iA)[(r -jo - iA + 1)("":'jo - iA - r)]! j2 + t j r 

_ [(s + jo)(s - jo + 1)(j + jo)U - jo + l)]! {S j2 + t jl - t}, (3.28') 
(-jo+iA)[(r-jo-iA+1)(-jo-iA-r)]! j2+t j r 

Cr,;(A,jo) _ [ (iA + jo)(iA - jo)( -iA + 1 - jo) J! (3.29) 
Cr,;{A + i,jo) - (jo - iA + 1)( -iA - jo - r)(r - jo - iA + 1) , 

and 

Cr,;{A, jo) 

Cr,P, jo - 1) 

.[ (iA+jo)(-iA-jo+1)(-iA+jo) J! 
= -I (iA-jo+1)(r-jo-iA+1)(-iA-jo-r) . 

(3.30) 

Finally, let us note the following point about the 
domains of variation of the parameters jo and A. For 
ft = 0, when jo (helicity) is fixed, we have to integrate 
over - 00 < A < 00. But for ft > 0, exploiting the 
equivalence of the irreducible components (jo, A)--+ 
(-jo, -A), lOOSl keeps only the values 

jo=s,s-l,···,~O, -oo<A<oo, (3.31) 

whereas Ref. 13 retains the values 

jo = -S, ... ,S; 0 ~ A < 00. (3.32) 

4. THE 4-VECTOR G AND DEFORMATIONS 
OF THE POINCARE ALGEBRA 

Let 

Then, for example, 

Go !jm)io;' = - ~ [(2jo + 1) io+1(PO)io !jm)io+U 

- (2jo - 1) io-l(PO)io !jm)io-U 

- (2iA - 1) Hi(PO);.!jm) ioHi 

+ (2iA + 1) ,l.-i(Po);.ljm)io;'-i] 

(io+1(PO)io == io+u(jml Po !jm)io;.etc.). (4.3) 

Similarly, we can write down the matrix elements of 
G also. 

We note the following relations involving G,,: 

[G", G.] = iP2M"v, [G", Py] = i(P2g"y - P"Py), 

[G". Wv] = -iP"W.. (4.4) 
and 

(4.5) 
Let 

G~ = -i[G", N· M] = -i[W", HN2 - M2)] 

= HP"N. M + N· MP,,) (4.6) 

G" = t(rMy" + My"r) 

= -i[P", i(N2 - M2)]. 

(4.1) and hence 
(4.7) 
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As is fairly well known (see, for example, Ref. 8), G,. 
(suitably normalized) can be combined with P,. in 
order to generate (along with M,..) a representation 
of the de Sitter group, starting with an irreducible 
representation of the Poincare group with nonzero 
rest mass. 

The matrix elements and the Casimir operators of 
the representation thus obtained are given immediately 
through the formulas (4.3)-(4.7). In fact, a construc­
tion such as Eq. (4.2), where the modified "translation" 
operators are defined through a commutator with 
Casimir operators of the homogeneous subgroup, is 
sometimes termed "Gell-Mann formula. "9.16 However, 
it brings about a deformation of the original algebra 
(that of Poincare group) in our case only when the 
"mass" 11 ¢ O. For 11 = 0, the original algebra is 
stable with respect to sucha construction. 

In order to treat the two cases together, let us 
define 

Then 

and 
p,2 = E~p2 + E~G2. 

Again, defining 

W~ = -i[P~, N· M], 

W,2 = Eiw2 + E~G'2, 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

where W2 is given by Eqs. (2.25) or (2.39) and G'2 
by Eq. (4.7). 

For 11 > 0, the usual procedure8.17 is to take 

(4.13) 

where E is interpreted as the "curvature" correspond­
ing to the noncommuting "translations." 

Let us now consider the case 11 = O. For the case 
of discrete spin, it is evident that (P~, M,..) generates 
once again a Poincare algebra corresponding to zero 
mass and discrete spin. 

For the case of continuous spin, Eq. (2.39), 

p2 = 0, W2 = _g2/, (4.14) 

we note that in p'2 the parameter ,2 plays a "masslike" 
role. 

In fact, now we have 

[P~, P~] = 0, 

p,2 = -E~,2/4, 

W,2 = -Ei,2/4 - E~,2/16. 

Thus for' real, P; is spacelike for real E2' 

16 R. Hermann, Commun. Math. Phys. 1, 155 (1966). 
17 C. Fronsdal, Rev. Mod. Phys. 37, 221 (1965). 

(4.15) 

(4.16) 

(4.17) 

Again, 

W,2 = _p'2[ - (~+ ~)J 
= _p,2S(S + 1) (4.18) 

for 

E~/( -E~) = !(2s + 1)2. (4.19) 

Thus for E1 fixed and 

2 4Ei 
( -E2) = (2s + 2)2 ' (4.20) 

p /2 = 4En
2 

, 

(2s + 1)2 
(4.21) 

we get a descending mass spectrum (compare Ref. 2, 
p. 340, and Ref. 11). 

In order to get an ascending spectrum we are 
obliged to make El vary suitably with spin, say, for 
example, by putting 

E~ = e«2s + 1)2(s + 1». (4.22) 

5. DISCUSSION OF THE RESULTS 

Discussion of the Formalism: Generalized Eigen­
vectors18 : This part is not specific of the very problem 
which is studied here, and does not contain new 
results. It is rather concerned with a discussion of the 
formalism conventionally used (in that context see 
also Ref. 19), and with an interpretation of the 
properties of the spherical functions. 

Let us recall first the definition of a generalized 
eigenvector. 

Definition18 : A generalized eigenvector of the oper­
ator A, defined on a linear topological space <1>, is a 
linear functional F on <I> such that 

V q;E<I> , F(Aq;) = AF(q;).(5.1) 

A is the corresponding eigenvalue. 

A standard example: the eigenvectors Ip,.) of the 
translation operators P,.. On the space <I> = q;4, the 
generators Pp. = l/i(d/dx,.) have as eigenvectors 
the functions F = eiP,..",". 

These functions do not belong to q;4, but may be 
considered as belonging to the dual space q;~. Indeed, 
to each function q;(xll)Eq;4 corresponds a "scalar": 

F(q;) = fP(p,.) = (2~)4 f q;(x,.)eiP
,.·",,. dx,., 

which is the Fourier transform of q;(X,.); Eq. (5.1) is 
obviously satisfied. 

18 Gel'fand:-Chilov, Les distributions tome 4 (Dunod Cie., Paris, 
1964), Chap. I: Rigged Hilbert Spaces. 

19 J. P. Antoine, "General Dirac Formalis.m," preprint: Univer­
sity of Louvain. (to be published in Math. Phys.). 
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A meaning can also be given to the notion of an 
"orthogonal basis" for such generalized vectors. 

Definition18 ; The set of generalized eigenfunctions is 
complete, if each element of <I> can be expanded in 
terms of the eigenfunctions. 

For instance, each function rp(x) of rp4 can be 
expanded in terms of rip.", by the integral 

rp(x) = -- fP(p)e-'I""'d p 1 J . 
(217l 4 

(5.2) 

and the set of generalized eigenfunctions e ip.", is 
complete. 

Definition20
; This set is orthogonal, if we have a 

completeness relation analogous to the Plancherel 
formula. 

In our example, 

c5(p ) = -- e'I'p''''p dx • 1 1 . 
p (27T)4 IR p 

(5.3) 

Generalized basis for the homogeneous Lorentz 
algebra "adapted" to a decomposition of a representa­
tion [m, s] of the Poincare algebra: As a consequence of 
a general result,21 each strongly continuous unitary 
representation of the Poincare group in the Hilbert 
space 

Je = 1!(d3P) 
2po 

leads to a representation of the algebra, where all the 
generators are defined on a common domain, dense in 
Je. Let us call that domain <I> (the generators are 
selfadjoint on <1». 

The basis "adapted" to a decomposition of a 
representation [m, 0] is given by the functions 

F . ( ) = N _1 Y'."(~) -:-j-!(IPol) 
A,l,m P Ilpl!} Ipi P,;.-t M 

where Nl is a coefficient given in Ref. 1. 
It was proved by JOOSI that these functions are 

eigenfunctions of M2, M3 , and F, with 

F= -iMpvMIIV 

[the other Casimir of SL(2, C):G = ir:.IIVlpaMllvM<pa 

being zero in that case], with the corresponding 
eigenvalues j(j + 1), m, and (1 + ).2)/2. 

These functions are not square-integrable, and do 
not belong to the Hilbert space Je (or to <1>, a fortiori). 
But, exactly as in the translation case, they may be 
considered as linear functionals on <1> by means of the 
transformation 

Fl,;,m(rp) = fPj,m().) = f ::0 rp(p)F1,i,m(P)' (5.4) 

---
20 R. Hermann," Analytic Continuation of Group Representations. 

V" (to be published in Comm. Math. Phys.) 
21 See, for instance, H. D. Doebner and O. Melsheimer: Trieste 

Ie 66-97. 

A quite similar transformation has been studied by 
Vilenkin22 from which we can see that Eq. (5.4) is 
defined when rp(p) E <1>. 

The self-adjointness of the operators M2, Ma, and 
F on <1> is sufficient to assure the relation (5.1). 

The functions F;..i.m(P) are then the generalized 
eigenvectors corresponding to a given representation 
(iA., jo = 0) of SL(2, C). 

Now as one would expect, the relation (5.4) is a 
kind of Fourier transform, and the relations (5.2) 
and (5.3) can also be generalized to that case. In 
fact,1.22 the set of generalized eigenfunctions F;..i.m(P) 
is complete and orthogonal: 

(5.5) 

and 
(5.6) 

Here the norm II fPi. m(A.) II is defined by 

i~J dA. IfPi,m()·)J2)· 

Equation (5.6) results from the Plancherel formula 

(00 1 dA.F;..i,m(p)F;,i,m(pi) = 21Pol c5(p - p'). (5.7) Jo j,m 

We do not discuss here the case jo =;e 0 (s =;e 0). 

Lorentz basis adapted to a decomposition of a represen­
attion corresponding to a zero mass and an helicity jo. 
This basis is formed by the functions 

H;',io.i,m(P) = N 2POiA-
ID7'.io(P) with p2 = P~ 

and N2 is a coefficient given in the expression (3.13). 
They are also generalized eigenvectors for the two 

Casimirs F and G of SL(2, C), and they form a 
complete and orthogonal set: 

(N2)2.1 f+oo dA.Poi)'-lp~i;'-lD'!'to(o.)D:i~UJ.') 
101m -00 

= 27T 15(0. - o.')b(po - p~), (5.8) 
Po 

IIVJi.m,io(A.)1I = II V'(p) II , (5.9) 

where VJi,m.i/).) is defined exactly as in Eq. (5.5). 
How do the translation operators act on such as 

generalized basis? 
The transformations (5.4), (5.7), etc., establish an 

isometry between the space <1>" dense in P(dp/2po), and 
a space <1>;. dense in PC2,ioim dA.). [The elements 
rp'o.i.m().) or <1> A were denoted in Sec. 2 by Ij, m) io.).·] 

The action of the generators PII on the generalized 

22 N. Va. Yilenkin, Dan 118, No.2, 219 (1958). 
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eigenvectors FA,j,m(P) is defined by duality 

I dp I dp [p"Fl,i,,"(P)]qi(p) 2po = Fl,i,m(P)[PjlCP(p)] 2po 

= [p';'CP(P)L,m(A.). (5.10) 

Equation (5.10) has always a meaning for cP E $ 
(it is a consequence of the stability of $ p under the 
multiplication by p,,), so p" . Fl,;,m(P) belongs to $. 

In the case of the zero-mass representations, the 
action of Pjl is simply a multiplication. The result is a 
new linear functional 

POHio,l,j,,,,(P) = N2PoilD~io(CP, e, -cp) 

= Hio,Hi,i,m(P). 

Applying Po successively n times, we obtain the 
linear functionals Hio,Mni,i,m(P)' 

Some comments about the results: At least form-
ally, the functions Hio,l+U,m(P) [or equivalently, 
of FHi,i,m(P)] correspond to a nonunitary represen­
tation of SL(2, C) characterized by jo, A + i, which is 
not present in the unitary reduction of the Poincare 
representation restricted to SL(2, C). 

We have seen that these functions have a meaning 
as functionals of $~: it simply results from the way 
they are constructed, Eq. (5.10). It can also be seen 
after integration with a function ho.i.m(A) E $ "' 
since one then recovers the usual expressions of the 
Poincare representation in a basis of impulsion. 

But we are still faced with the problem of under­
standing the results in terms of the decomposition of 
the Poincare representation on the Lorentz sub­
algebra and, in particular, of understanding the 
appearance of nonunitary representations of SL(2, C). 
How such nonunitary representations can, appear has 
to be understood in the sense of analytic continuation 
of group representations (and not of matrix elements). 

We did not find a satisfactory interpretation of this 
result (which seems relatively new in the physical 
literature23 •24 and completely absent in the mathe­
matical). In fact, we have not succeeded in finding an 
integral formula-as Cauchy formula for example­
which would have described the appearing non­
unitary representations as a continuous superposition 
of unitary representations (in a distribution sense). 

Finally, let us only emphasize one aspect of the 
problem: the representation of the Poincare algebra 
of the domain $ A (A a real number) cannot be 
integrated to a global representation of the Poincare 
group; it can only be partially integrated to a repre­
sentation of the Lorentz group. 

23 N. Mukunda, Syracuse Univ. preprint; This very recent pre­
print contains a discussion of the zero mass case. 

2. J. G. Kuriyan, N. Mukunda, and E. C. G. Sudarshan, "Master 
Analytical Representations, etc.," Preprint, Syracuse University 
(1967). 

This is easily seen by observing that the Nelson 
operator cannot be essentially selfadjoint on $;., $;. 

being not even stable under its action (see Ref. 22 
for more details). 

To sum up: 
(1) Formally, the Wigner-Eckart theorem is still 

valid. This is particularly clear in Sec. 2; the matrix 
elements of Pjl between two homogeneous Lorentz­
group representation are of the following form: 

iu',ol,'U'm'l P,. lim)io.l 
= C,.(jj'mm';joj~, }.A') (j~A'1l P IUoA), 

where Cijj'mm'joj~AA') is the product of a Clebsch­
Gordan coefficient of the rotation group with a 
coefficient which is characteristic of the Lorentz group 
representations involved. 

For instance, 

C3(j,j + 1, m, m,jojo, A, A + i) 
= [ (j + 1)2 - m

2 J\( . + 1 + iA)( . + 2 _ iA)]t. 
(2j + 3)(2j + 1) ] ] 

X [C ~i t) (j + t)2 - j~ )t} 
The second coefficient is obtained from Eqs. (2.9) 

and (2.10). 
In other words, it is equivalent to say that the 

product of the Lorentz representations 
Do.2 EB Dio';;' 

has the same decomposition (at least in a distribution 
sense) as that in the case of the finite-dimensional 
representations, i.e., 

DO.2 ® DiD.a = Dio.iHI EB Dio.i.<-l EB D io+1.il EB Dio-l ,;;'. 

In Gel'fand notation DIIl'P2: (DO,2 corresponds to the 
usual D!·!.) 

(2) In a very formal sense, the direct integral 

~ JdADjO' i
'\ 

10 

of Lorentz representation is "equivalent" to a direct 
sum 

+00 
EEl Dio+p,iHn, 0 < jo + p ::;;; s, 

n=-oo 

of nonunitary representations of SL(2, C) (since 
one recovers the same results after testing with suitable 
functions). 
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Several.general results are obtained for a system of spins on a lattice in which the various lattice sites 
are occ~pled at ~andom, ~nd th~ spi~s, if prese~t, interact via a general Heisenberg or Ising interaction 
decrea.slOg.sufficlently.rapldly ~Ith distance. It IS shown that the free energy per site exists in the limit 
of an I~fimte syst~m, IS a contl':luo~ func~ion of co~centration, and has the usual convexity (stability) 
properties .. For ISlOg syste~s With tnterac~lons of fimte range, the free energy is an analytic function of 
concentratIOn an~ magne~lc field fo~ a su~table ~ange of these variables. The random Ising ferromagnet 
on a square lattice (or Simple cubiC lattice) With nearest-neighbor interactions is shown to exhibit a 
spontaneous magnetization at sufficiently high concentrations and low temperatures. 

1. INTRODUCTION 

The problem of idealized Heisenberg or Ising 
ferromagnets on regular lattices in which certain 
sites, chosen at random, are vacant has been ex­
tensively studied in connection with the problem of 
ferromagnetism in quenched dilute alloys.l Whereas 
the physical properties of such alloys require a more 
complex analysis than was first thought to be the case, 
the model calculations have provided at least a 
qualitative guide in interpreting experimental data.2 

Investigations of statistical properties of a random 
spin system should also yield insight into the effects of 
impurities on phase transitions and critical points, 
both in magnetic and nonmagnetic systems.3 

We shall discuss here, from a rigorous point of 
view, certain mathematical properties of such systems 
associated with tak;ing the infinite volume or "thermo­
dynamic" limit. In essence, we wish to extend to at 
least a certain class of random systems some of the 
results already known to hold for regular systems. 

* Supported in part by the U.S. Air Force Office of Scientific 
Research under Grant 508-66. 

t Alfred P. Sloan Research Fellow. 
t Permanent address. 
1 H. Sato, A. Arrott, and R. Kikuchi, J. Phys. Chern. Solids 10, 19 

(1959); R. J. Elliott, ibid. 16, 165 (1960); J. S. Smart, ibid. 16, 169 
(1960); M. Coopersmith and R. Brout, ibid. 17, 254 (1961); R. J. 
Elliott and B. R. Heap, Proc. Roy. Soc. (London) A26S, 264 (1962); 
B. R. Heap, Proc. Phys. Soc. (London) 81, 252 (1963); D. H. Lyons, 
Phys. Rev. 118,2022 (1962); G. S. Rushbrooke and D. J. Morgan, 
Molecular Phys. 4, 1,291 (1961); 6, 471 (1963); P. J. Wojtowicz, ibid. 
6, 157 (1963); G. S. Rushbrooke, J. Math. Phys. 5, 1106 (1964); T. 
Morita, ibid. 5, 1401 (1964); R. Abe, Progr. Theoret. Phys. (Kyoto) 
31,412 (1964); N. W. Dalton, C. Domb, and M. F. Sykes, Proc. 
Phys. Soc. (London) 83, 496 (1964); S. Katsura and B. Tsujiyama, in 
Critical Phenomena, M. S. Green and J. V. Sengers, Eds. (National 
Bureau of Standards, Washington, D.C., 1966), p. 219. See also 
Refs. 2-5 below. 

• See, for example, M. W. Klein and R. Brout, Phys. Rev. 131, 
2412 (1963); C. E. Violet and R. J. Borg, ibid. 149, 540 (1966). 

• For some applications to nonmagnetic systems, see G. M. Bell, 
Proc. Phys. Soc. (London) 71,649 (1958). 

The mathematical techniques are unfortunately not 
of much value in making good estimates of thermo­
dynamic properties, transition temperatures, critical 
concentrations, etc. Nonetheless, in the absence of 
soluble models (except in one dimension), general or 
"rigorous" results may prove valuable as a guide to 
intuition and a check on the consistency of approxi­
mate calculations. 

An outline of our paper is as follows. In Sec. 2, the 
random spin problem is defined and some notation 
essential to further developments is introduced. 
Section 3 contains a proof of the infinite-volume limit 
of the free energy under fairly general conditions on 
the Hamiltonian. In Sec. 4 we show that an Ising 
ferromagnet with nearest-neighbor interactions on a 
square lattice will exhibit a spontaneous magnetization 
over a certain range of temperatures and concen­
tration. The Ising-model free energy for a system with 
interactions of finite range is an analytic function of 
concentration and magnetic field for suitable ranges·· 
of these variables; the proof is found in Sec. 5. Some 
additional results are stated without proof in Sec. 6. 

In the main, our procedures are simply an adoption 
to the problem at hand of mathematical techniques 
already published and discussed at length in several 
different papers. For this reason our proofs are 
somewhat abbreviated and certain steps are omitted 
in the interests of brevity; we have tried to include a 
complete discussion of the modifications required and 
difficulties encountered in applying the "well-known" 
methods to random systems. 

2. NOTATIONS AND DEFINITIONS 

A finite system or crystal Q (which we shall usually 
assume has a simple shape, for instance, a cube) 
consists of Na, sites lying on a regular lattice. (We 
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shall omit the subscript on N when the system referred 
to is clear from context.) A partition is a subset 0 of 
sites from 0 which are occupied by spins, the re­
maining sites being empty. The case 0 = 0., all sites 
occupied, we call a regular system as distinct from a 
random system for which, in general, 0 is a proper 
subset. 

F or a given partition 0, we define as pin Hamiltonian 

Je(O) = -2! ! Ji;[S~S~ + y(Sts~ + S~Sm 
iE6 ;E6 

- 2f1B ! S~, (2.1) 
iE6 

where Si is the quantum-mechanical spin operator' on 
the ith site; Jij = Jji is the "exchange integral," equal 
to zero for i = j; f1, is the magnetic moment; H, the 
external magnetic field. The x component of Si' 
Sf, has eigenvalues S, S - 1, S - 2, ... , - S, and 
likewise the y and z components; S, the "total spin 
quantum number," is a positive integer or half-odd 
integer. For y = 0, we have an "Ising model" and, 
for y = 1, a "Heisenberg model." The Jij in (2.1) 
are regarded as functions only of the relative location 
of sites i and j and are independent of the partition 0. 
Note that the sums in (2.1) extend only over occupied 
sites. 

The free energy F, defined by 

e-fJF = Tr [e-fJJe ], (2.2) 

where fJ = (kT)-l, the inverse temperature, is a func­
tion of 0 through (2.1). If 0 contains n sites, "Tr" 
stands for a trace over all the (2S + l)n possible 
states or configurations of the n spins located on the 
occupied sites. The magnetization M and entropy S 
for the partition in question may be found, as usual, 
by differentiation: 

M(O) = - (O::»)T' (2.3) 

S(O) = - (OF(O») . (2.4) 
aT H 

In the random spin problem or random impurity 
problem one assigns to each partition a probability 
P(O) and defines the free energy for the crystal as a 
whole by 

Fa = ! P(O)F(O). (2.5) 
6 

We shall henceforth assume that P(O) is independent 
of temperature and magnetic field. Physically, this is 
the assumption that the random "impurities" are 
frozen in position; Brout4 has pointed out that it 
should not be an unreasonable model of a real 

• R. Brout, Phys. Rev. 115, 824 (1959); R. R. Mazo, J. Chern. 
Phys. 39,1224 (1963). 

magnetic crystal in which the motion of various 
impurities is relatively slow and the time required for 
them to come to some ultimate equilibrium is long 
compared with magnetic relaxation in the spin system 
itself and the time scale of ordinary magnetic experi­
ments. (It is also possible to define models in which 
"impurity" equilibrium as well as magnetic equilib­
rium is assumed5 ; we shall not discuss these here.) 

In comparison with regular magnetic systems, 
random systems (as we have defined them) possess 
additional complexity through the existence of two 
kinds of average. There is the ordinary thermal average 
of an operator t) in some partition 0 defined by 

Tr [t)e-fJJe(6)] 

(t»6 = Tr [e-PJe(6)] (2.6) 

and, in addition, the average over partitions of some 
function g(O) (which could, for example, be (t»6): 

«g»a = ! P(O)g(O). (2.7) 
6 

We shall consider two possible forms for P(O): 
(a) For a fixed value of n, 

P = {(~r, if 0 contains n sites, (2.8) 

0, otherwise. 

(b) Choose some p between ° and 1, and let q = 
1 - p. When 0 contains n sites of a total of N in 0., 

P(O) = pnqN-n. (2.9) 

Clearly, (b) is equivalent to the assumption that each 
individual site is occupied with probability p and 
vacant with probability q, and the occupation of 
different sites is statistically independent. It is an 
assumption frequently made in random spin calcula­
tions. The relationship of (a) to (b) is analogous to the 
relationship between canonical and grand canonical 
"ensembles" in the statistical mechanics of regular 
systems. The analogy should not be pressed too far, 
and the proof of asymptotic equivalence of (a) and 
(b) for large crystals (Sec. 3) is a bit different from 
standard arguments relating canonical and grand 
canonical ensembles. 

3. EXISTENCE AND PROPERTIES OF THE 
ASYMPTOTIC FREE ENERGY 

Let P(O) be given by (2.9). The free energy for a 
given crystal 0 is [see Eq. (2.5)] 

Nafa(P) = Fa(P) = ! F(0)pv(6)qN-v(6), (3.1) 
6ca 

5 For example, G. M. Bell and W. M. Fairbairn, Phil. Mag. 6, 
907 (1961); G. M. Bell and D. A. Lavis, ibid. 11, 937 (1965); I. 
Syozi and S. Miyazima, Progr. Theoret. Phys. (Kyoto) 36, 1083 
(1966). 
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where '11(0) is the number of occupied sites in O. 
Provided certain conditions are satisfied by the 
Hamiltonian (2.1) and by a sequence of crystals 0 
of increasing volume, we shall show that 

f= lim fn (3.2) 
No."" 00 

exists. 
In several papers, the existence of the limit (3.2) or 

its analogs has been demonstrated for regular sys­
tems.6•7 The physical idea which underlies all the 
proofs (and is not always clear in the thicket of 
mathematical detail) is quite simple: If a large 
macroscopic system is split into a number of macro­
scopic parts, its free energy is the sum of the free 
energies of the different parts plus correction terms due 
to the interactions of adjacent systems across their 
common boundary. The correction terms, being 
(roughly) proportional to surface areas, become 
negligible for large systems as the surface-to-volume 
ratio approaches zero. 

Cunsider two systems 0 1 and O2 with free energies 
Fl and F2 which together constitute a total system 0 
with free energy F. The totality of sites in a pair of 
partitions 01 , O2 in 0 1 , O2 clearly constitute a partition 
012 for 0 with a probability 

(3.3) 
We may write 

Je(012) = Je(OI) + Je(02) + Je*(OI' ( 2), (3.4) 

where Je* contains the terms in the double sum (2.1) 
for which i lies in 01 and) in O2 or vice versa; that is, 
it represents a "surface term" involving in a significant 
way only spins fairly close to the boundary separating 
0 1 and O2 , 

In Ref. 6 it is shown that if JeA and Jen are two 
Hamiltonians in the same vector space (note that in 
the present context a Hamiltonian is a finite-dimen­
sional Hermitian matrix), the associated free energies 
defined by (2.2) satisfy an inequality 

IF(JeA ) - F(Jen)1 ~ IJeA - JeBI, (3.5) 

where the norm IJeI of a Hermitian operator Je is 
simply the largest of the absolute values of its eigen­
values. We may apply (3.5) to (3.4) by letting JeA be 
Je(012) and Jen be Je(Ol) + Je(OJ; note that Jen is the 
Hamiltonian for two noninteracting systems. It 
follows that 

• R. B. Griffiths, J. Math. Phys. S, 1215 (1964). 
7 The arguments for spin systems are closely analogous to those 

used for classical and quantum fluids; see C. N. Yang and T. D. 
Lee, Phys. Rev. 87,404 (1952); D. Ruelle, Helv. Phys. Acta 36,183, 
789 (1963); M. E. Fisher, Arch Rational Mech. Anal. 17, 377 (1964). 

To obtain a bound independent of 012 we note that 
IJe*1 is less than the sum of the norms of the individual 
terms making up Je*, which sum will be a maximum 
for that partition in which all sites are occupied. That 
is, IJe*(0102)1 is bounded by the corresponding bound 
used in Ref. 6 for the case of a perfect crystal-all 
sites occupied in both systems 1 and 2, 

IJe*(012)I~A12' (3.7) 

Finally, noting that 

! P(012)[F(012) - F(Ol) - F(02)] = F - Fl - F2, 
912 

(3.8) 
we obtain with the help of (3.6) and (3.7) 

(3.9) 

The inequality (3.9) is the rigorous counterpart of 
the intuitive arguments mentioned earlier. Its gener­
alization to the case of several systems placed in contact 
is immediate, and once it has been obtained the 
proof of an infinite volume limit reduces to an exercise 
in geometry (see Refs. 6, 7) which we shall not repeat 
here. The final result is embodied in the following. 

Theorem 1: The limit (3.2) exists provided two 
conditions are satisfied. 

1. The Jij in (2.1) depend only on the relative 
positions of sites i and) (translational invariance) 
and possess a bound 

(3.10) 

where rii is the distance between sites i and), d is the 
dimensionality of the lattice, C and € are strictly 
positive numbers (it is essential to have € > 0), 
independent of the choice of j and). 

2. The sequence 0 is of crystals with sufficiently 
regular shape; for example, a d-dimensional paral­
lelepiped with all d edges increasing to infinity. 

Note that the thermodynamic limit f as a function 
of H, T is convex upwards, or concave, in both 
variables together. That is, if two points of the 
f(H, T) surface are joined by a chord, the chord lies 
entirely on or below the surface. This follows from the 
observation that for any finite crystal 0 and specific 
partition 0, Fo.(O, H, T) is concave,s while averages 
(2.5) and limits (3.2) of concave functions inherit the 
same property. The convexity (concavity) property is 
equivalent to the "stability" conditions of positive 
susceptibilities and heat capacities. It also implies that 
f is a continuous function of both Hand T in the 
range 0 < T < 00, - 00 < H < 00. 

The foregoing results have all been established with 
the assumption that p, the fraction of occupied sites, 
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is held constant. We now wish to examine the depend­
ence of/in (3.1) onp, and also the "microcanonical" 
probability (2.8). In connection with the latter let us 
introduce the quantity 

(N)-1 
to.(n) = L F(O), 

n \'(8)~" 

(3.11) 

for a crystal n with N sites, where the summation is 
over all partitions 0 having v(O) = 11 sites. We shall 
need the following result: 

Theorem 2: Provided the temperature is less than 
infinity, and nand m lie between 0 and N, there 
exists a finite constant D, depending on the Hamil­
tonian (2.1) and the temperature, but independent of 
n, N, n, and m, such that 

It(m) - F(n) I ~ Din - mi. (3.12) 

The proof of this theorem depends on two lemmas, 
the first of which is an almost obvious combinatorial 
result. Given a partition 0 with 11 occupied sites, let 
01 , (}2"", (}N-n be the N - n distinct partitions 
with n + 1 occupied sites obtained by adding to 0 
one additional site from n. 

Lemma 1: Let g be any function defined on the 
partitions. Then 

1 N-n 

L g(O) = - L L g(O;). (3.13) 
v(8)=n+1 n + 1 v(8)=n ;=1 

This result merely expresses the fact that every parti­
tion containing 11 + 1 sites appears in the double sum 
on the right side of (3.13) precisely n + 1 times, since 
this is the number of distinct partitions containing n 
sites from which it can be .derived by the addition of 
one more site. 

Lemma 2: Let Ole be a partition containing 11 + 1 
sites obtained from a partition 0 of 11 sites by the 
addition of one site, say the site I. Then 

!P(Ok) + (3-1 In (28 + 1) - F(O) I ~ h, (3.14) 
where 

h = 4 L IJIi[S~S~ + y(S~S~ + SrSml + 2fJR IS~I. 
(3.15) 

The sum over j in (3.15) extends over all lattice sites; 
(3.10) insures its convergence (note that Jll = 0). 

Proof: (Theorem 2) The comparison of F(O) and 
F(Ok) is conveniently carried out in two steps. The 
first is to add the site I to ()! but set all the terms in 
(2.1) which involve Sz equal to zero. The resulting 
H~miltonian Je'(Ok) is formally identical to Je(O) but 
is defined in a larger space, the (28 + I )nH configura-

tions of Ok' Hence with each eigenstate of :Ie(O) are 
associated 28 + 1 eigenstates of Je'(Ok} having the 
same eigenvalue, and the corresponding free energies 
are related by 

F'(Ok) = F(O) - (3-1 In (28 + 1). (3.16) 

As a second step, we employ (3.5) 

!P(Ok) - F'(Ok}! ~ IJe(Ok) - :Ie'(0le)l, (3.17) 

and note that the two Hamiltonians differ in that one 
lacks all terms involving Sz. The right side of (3.17) 
is bounded by the sum of the norms of these terms, 
which in turn is bounded by (3.15). Thus (3.16) and 
(3.17) together imply (3.14). 

If we define 

D = h + (3-1 In (28 + 1), (3.18) 

(3.14) implies that 

I '~: F(O;) - (N - n)F(O) I ~ (N - n)D. (3.19) 

If we insert this result in (3.13) (with g replaced by F) 
and use the definition (3.11), we obtain 

IF(n + 1) - F(n) I ~ D, (3.20) 

from which (3.12) follows by an obvious iteration. 
This completes the proof of Theorem 2. 

By combining (3.1) and (3.11) one obtains 
N 

F(p) = L ben; N, p)F(n), (3.21) 
n=O 

where 

ben; N, p) = (~)pnqN-n (3.22) 

is the binomial distribution. Let np be the nearest 
integer to pN. The inequality (3.12) yields the bound 

IF(p) - F(lIp») 

~ D L In - npl ben; N, p) 
n 

~ DA L b(n; N, p) + DN L ben; N, p). 
In-n.I:5A In-n"I>A 

(3.23) 
By setting A = Nt and employing an elementary 
estimate for the tails of the binomial distribution,S 
we find 

!P(p) - F(np) I ~ O(DNi). (3.24) 

Let In(P) be defined by linear interpolation between 
successive points where Np is an integer, 0 ~ p ~ 1, 
and at these points by the relation 

In(P) = Fn(pNn)/Nn . (3.25) 

8 H. Cramer, Mathematical Methods of Statistics (Princeton 
University Press. Princeton, N.J., 1946), p. 196. 
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Comparison with (3.1) and (3.24) shows that 

/fn(P) -/n(P)/ ~O(DNni), (3.26) 

which implies that fn and /n converge to the same 
thermodynamic limitf(p). Theorem 2 combined with 
(3.2S), (3.26), and (3.2) teIl us that 

I!(Pl) - f(P2)/ ~ D /PI - P2/, (3.27) 

where D is a continuous function of T and H [see 
(3.18) and (3.1S)]. Sincef(p, H, T) at fixed P is known 
to be a continuous function of Hand T by convexity, 
(3.27) shows that it is a continuous function of all 
three variables together. 

4. SPONTANEOUS MAGNETIZATION IN ISING 
FERROMAGNETS 

A large amount of information is available on the 
phase transition and critical point behavior of Ising 
ferromagnets in two and three dimensions with 
nearest-neighbor interactions. 9 It would be interesting 
to know what effect the addition of random non­
magnetic impurities has on the phase transition. 
With the relatively unrefined tools available for an 
exact analysis, we are unable to make any statement 
about the modification of the critical point indices 
upon addition of impurities. However, we shaH 
demonstrate, using the appropriate modifications of 
an argument originally due to Peieris,lO.l1 that at 
sufficiently high concentrations and sufficiently low 
temperatures, a specific random Ising ferromagnet 
exhibits a spontaneous magnetization; i.e., as the 
magnetic field is reduced to zero from positive values, 
the bulk magnetization m, defined as 

m = - (:~)T.P , (4.1) 

approaches a positive limit. To be specific we shall 
consider a system with Hamiltonian 

Je = -J L all! - H L ai' (4.2) 
(ii) 

where ai = 2S: = ± I, the sum in (4.2) is over 
nearest-neighbor pairs of sites, and the constant J is 
positive. For a random system we make the obvious 
modifications in accordance with (2.1); the second 
sum in (4.2) extends only over occupied sites and the 
first over pairs of nearest-neighbor sites both of which 
are occupied. 

If oN' _ is the number of "down" spins (a i = -1), 
oN' + the number of "up" spins (a i = + 1), the mag-

9 M. E. Fisher, Rept. Progr. Phys. 30, 615 (1967). 
10 R. Peierls, Proc. Cambridge Phil. Soc. 32, 477 (1936). 
11 R. B. Griffiths, Phys. Rev. 136, A437 (1964); see also R. L. 

Dobrushin, Teoriya Veroyatnostei Primeneniya 10, 209 (1965) 
[Theory Probability App!. 10, 193 (1965)]. 

++++++ 
+0[0+0 

+ 
+ 
+ 
+ 

+ III + I r--I _, 

-~LJ + I + + 
+ 0:1l0+ 0 + 
+ + I I 10+ 
+++++++ 

FIG. 1. A typical configuration on a square lattice of a random 
Ising system. The symbols +, - denote spins up and down, respec­
tively, on occupied sites; 0 means the site is vacant. All boundary 
sites are occupied with + spins, and thus all - spins are enclosed 
within closed polygons (shown by the heavy lines). 

netization operator .;I(, is given by 

.;I(, = oN' + - oN' _. (4.3) 

We shall establish an inequality of the form 

«oN'_»n ~ Hp - e)Nn, (4.4) 

with e > 0, for a series of crystals n with a special 
boundary condition but in zero magnetic field, H = 0 
in (4.2). Here p is the fraction of sites occupied on the 
average; assuming P«() is given by (2.9). Since 
oN' + + oN' _ is simply the number of occupied sites, 
with average value equal to pNn, (4.4) implies that 

«.;I(,»n ~ eNg. (4.S) 

In turn, (4.S) implies that 

lim m(H) ~ e. (4.6) 
H-+O+ 

The connection between (4.S) and (4.6) is a trifle 
subtle, and is discussed for regular systems in Ref. 12. 
Identical considerations hold for random systems. 

We shall consider a sequence of square crystals on 
a square lattice with the following special boundary 
conditions: The spins on all occupied sites on the 
edges of the squares are subjected to a magnetic field 
J> 0; alternatively, the sites just outside each edge 
are occupied with Ising spins for which ai = + I 
(Fig. 1). Given any partition () and any configuration 
for this partition, it is possible to enclose all spins 
with ai = -1 inside borders-nonself-intersecting 
polygons consisting of lines passing midway between 
lattice sites, as shown in Fig. 1. 

12 R. B. Griffiths, Phys. Rev. 152,240 (1966). 
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A particular site is adjacent to a border B-to the 
exterior or interior of B depending on whether the 
site lies outside or inside B-and has a coordination 
number z relative to B provided B passes between the 
site and z ~ 1 of its nearest neighbor. The border B 
is realized and the operator X B assigned the value 1 
provided (i) every site adjacent to the interior of B is 
occupied by a spin with (J = -1 and (ii) every site 
adjacent to the exterior of B is either unoccupied or 
occupied by a spin with (J = + 1. Otherwise X B has the 
value O. The requirement that a border B not intersect 
itself has the consequence that z does not exceed 
three, except when B surrounds only one site (Fig. 1). 

For a particular border B (fixed in position and 
orientation) and a given partition e, let reB, e, z) be 
the number of occupied sites of coordination number 
z, relative to B, adjacent to the exterior of B. Define 

'f](B, e) = L zr(B, e, z). (4.7) 

When XB = 1, 'f] is the number of segments of B lying 
between pairs of nearest-neighbor occupied sites 
with (Ji = + 1 and -Ion the site exterior and interior 
to B, respectively. The argument of Ref. 11 shows that 

where 
(4.8) 

y = e-2PJ. (4.9) 

[In essence, (4.8) is obtained by noting that for every 
configuration in which B is realized there is another, 
obtained by reversing every spin interior to B, which 
is lower in energy by 2'f]J.] Note that (4.8) is satisfied 
even for partitions () in which B cannot be realized 
because sites adjacent to its interior are vacant-for 
these (XB ) is necessarily zero. 

Next, average (4.8) over partitions: 
«X B» ::::; L p(e)y~(B,6) 

6 

where PB(rl , r2 , r3) is the probability that precisely 
rz occupied sites of coordination number z with 
respect to B are adjacent to the exterior of B. If k z is 
the maximum possible value of rz (given B), the value 
when all sites are occupied, then 

PB = IT (kz)pr'q",_r,. (4.11) 
z~l rz 

The insertion of (4.11) in (4.10) yields the estimate 

«XB» ::::; (YP + q)kl(y2p + q)"2(y3p + q)"3 

where 
::::; (y3p + q)b/3, (4.12) 

3 

b = Lzkz 
z~l 

(4.13) 

is the length of the border B in units of the lattice 
constant. The final inequality in (4.12) is derived in 
the Appendix. 

Since every minus spin is inside some realized 
border, and the number of occupied sites inside a 
border does not exceed b2/4, we may write 

«.N' _» ::::; L v(b)(b2/4)(ip + qt/3. (4.14) 
b 

If for v(b), the number of different polygons of length 
b in a crystal Q containing No. sites, we use the generous 
estimatel3 

v(b) ::::; 4Nn3b
-

2/b, (4.15) 
and carry out the sum (4.14) over the values b = 
4, 6, 8, ... ; the result is 

«.N' » < 2 K2 2 - K N (4.16) 
- _"9 (1 _ K)2 n, 

where 

(4.17) 
Comparison with (4.4) shows that for sufficiently 

high concentrations and for y small enough (that is, 
at low enough temperatures), there will be a spon­
taneous magnetization. Due to the severe approxi­
mations involved, the estimate (4.16) is not very good. 
In particular, the concentration p must exceed 
approximately 0.985 before it will guarantee a 
spontaneous magnetization at a finite temperature. 
One actually expects that the concentration below 
which no spontaneous magnetization exists at any 
temperature will coincide with the critical concentra­
tion of the corresponding percolation problem,14 that 
is, approximately 0.59. Nonetheless, our argument 
shows that there is a finite range of concentrations for 
which vacancies in the lattice do not alter the qualita­
tive nature of the phase transitions, in that the bulk 
magnetization still shows a discontinuity at zero 
magnetic field. 

An argument analogous to that given above can 
also be carried out for, say, a three-dimensional 
Ising model on a simple cubic lattice. Or one may 
apply a general inequality for correlations in Ising 
ferromagnets in order to obtain a proof for three 
dimensions directly from the knowledge that a 
spontaneous magnetization exists for the two­
dimensional case. 

5. ANALYTIC PROPERTIES OF THE FREE 
ENERGY 

A regular Ising spin system is isomorphic to a lattice 
gas, if an "up" spin indicates the presence, and a 

13 See .. for exa~ple! G. H. Wannier, Elements of Solid State Theory 
(Cambndge Umverslty Press, Cambridge, England, 1959), p. 105. 
Note that there is no choice left in choosing the final step in a border. 
so we have reduced Wannier's estimate by a factor of 3. 

14 M. F. Sykes and T. W. Essam, Phys. Rev. 133, A310 (1964). 



                                                                                                                                    

1290 R. B. GRIFFITHS AND J. L. LEBOWITZ 

"down" spin the absence, of a molecule at a particular 
site. In the analogous isomorphism for a random 
Ising spin system, one has two types of vacant sites. 
For a given partition (), there are sites outside () where 
gas molecules cannot be found because there is (in the 
spin language) no spin on the site. One may think of 
these sites as occupied by fixed impurity molecules 
whose presence excludes gas molecules. Then there 
are sites which belong to () but at which, for a partic­
ular configuration, the spin is "down." One may 
think of these as "vacuum" sites since there are other 
configurations (for the same () in which they may be 
occupied. Not only do the impurities exclude gas 
molecules from certain sites, they also interact with 
gas molecules on nearby sites. As the impurities are 
fixed in position, we treat this additional interaction 
as an "external" potential acting on the gas molecules. 
There is such an effect also in a "regular" system near 
the boundaries. 

Carrying out explicitly the transformation from the 
spin variables S: = ±t to the occupation number 
variable PI = S: + t = (0, 1), we find, using (2.2), 

(JF«() = (J ! (fiB + lcx;) - In E«(), z), (5.1) 
ie8 

where E«(), z) is the grand partition function ofa lattice 
gas, with fugacity z = e2fJJlH , whose particles are 
confined to sites in () and have a pair interaction 
potential between particles located at sites i and j: 

{

CO, 

rp;; = -4Jij , 
i =j, 

i ¥= j, 
(5.2) 

and an external potential for a particle at site i equal to 

The first sum which is constant (except near the bound­
aries) amounts to a change in the fugacity while the 
second term corresponds formally to an external 
potential due to the impurities. 

Continuing our transcription from spin system to 
lattice gas, we have from (3.1) and (3.2) 

in = PfiB + p2 _1_ ! ! Jii - lln(P, z), (5.4) 
2Nn ;enien 

where 

lln(P, z) = «ll«(), z») == (J-l «In S«(), z»), (5.5) 
Nn 

with II «(), z) the "pressure" of the lattice gas confined 
to (). The existence of f = limNo .... oofn then implies 

the existence ofll(p, z) = limn .... oo lln for ° =:;; z =:;; CO, ° ::;; p ::;; 1. [We have suppressed here the dependence 
on (J, ° =:;; (J =:;; co. The second term on the right side 

of (5.4) possesses a well defined limit as Nn -+ co 
provided the J;; satisfy (3.10).] 

We shall now show, using methods developed for 
continuum systems and regular lattice systems,15 that 
n(p, z) is analytic in z and p for Izl < R«(J) and 
Ipl =:;; 1 in the case where the interactions have a 
finite range. [By the symmetry H -+ -H, this is also 
true Izl > R-l«(J).] For purely ferromagnetic inter­
actions Jij'~ 0, the Lee-Yang theorem16 guarantees 
analyticity in Izl for Izl < 1, H ¥= 0, and our results 
can be extended via a theorem due to Ruelle17 to give 
analyticity for real positive p, ° =:;; p =:;; 1, when H ¥= 0. 
(Results on analyticity in (J for "regular" systems, 
which can also be extended to random systems, will be 
discussed elsewhere. IS) 

We begin with the Mayer series 

(In((), z) = - ! In -- =! b;«()ZI, (5.6) 1 N.l (1 - Z) 00 

No ;=1 z;«() Z=1 

where the z;(() are the zeros of the grand partition 
function E«(), z) and 

b;«()) = _1_ ! ... ! UZ(x1, ... ,X/)[rr efJll(Xi)] , 

N nl! x1e8 x1e8 ;=1 

(5.7) 

where X; is the lattice vector of the ith site and the 
sum is over all lattice sites in e, cx(x;) = cx;, and U z is 
the usual Mayer cluster function, U2(X1, X2) = 
exp [ - (J rp(XI - x2)] - 1, etc. Taking the average, 
with P«(), of ll«(), z), we obtain 

00 

(JIIn(P, z) = ! b; (p, Q)ZZ, (5.8) 
1=1 

with 
b;(p, Q) = ! p(e)b;«(). (5.9) 

e 

The averaging in (5.9) is facilitated by the fact that 
the probabilities of occupancy by impurities of 
different sites are independent and will be illustrated 
now for the case I = 2. Writing 

b~(e) = _1_! ulx;, Xi) II e4fJJil 
2Nn ie8 ie8 

+ _1_ ! U2(X;, xi)e4fJJi; II e2fJ [Jik+J;kl, 

2Nn ii"i,i,ie8 ke8 
ki"i,j (5.10) 

16 See, for example, J. Groeneveld, Proceedings of the I.U.P.A.P. 
Meeting, Copenhagen, 1966, T. A. Bak, Ed. (W. A. Benjamin, Inc., 
N.Y., 1967), p. 110. 

16 T. D. Lee and C. N. Yang, Phys. Rev. 87, 410 (1952). 
17 D. Ruelle (private communication). 
18 J. L. Lebowitz and O. Penrose (to be published). 
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we have 

b~(p, Q) = _1_ p I U2(X j , Xi) IT [pe4PJii + (1 - p)] 
2 N n iEn ie!l 

+ _1_ p2 " u (x. x.)e4PJii 
2N . ..t... 2 " 3 

{1 ''''3 
i,jEn 

x IT [pe2P(Jik+Jid + (1 - p)]. 
kEn 

k"'i,j 

(5.11) 

Restricting ourselves to finite-range interactions, we 
see that b;(p, Q) -+ b~(p) as Nn -+ if): 

b~(p) = ipulx1 , Xt) IT [l + p(e4PJli - 1)] 
j 

tp2~:U2(X1 - xj)e4PJij 
j=1 

X IT [1 + p(e2P (J1k+ J ik) - 1)], (5.12) 
k"'1.i 

the indices now running over the infinite lattice. 
Since Iij has a finite range, only a finite number of the 
factors in the products in (5.12) are different from 
unity and thus b;(p) is a polynomial. The same holds 
for every b;Cp). Further, for Ipl :::;; 1, 

Ib~(p, Q)I :::;; _1_ I lu2(xj , Xi) I IT [1 + le4PJii - 11] 
2N n iEn iEn 

where 

X IT [1 + le2P (Jik+Jik) - II]e4PJij 
kEn 

k"'i,i 

:::;; _1_ I luix
i

, xi)1 e2P:tIlJiI,I+IJ;kil 
2N n i,jEn 

:::;; t Iluixi - xj )le2P
<I>, (5.13) 

<P = 2 I Ilul < 00, (5.14) 
k 

and the sum over j and k goes over the infinite lattices. 
Similarly, 

Ib;(p, Q)I:::;;.!. I luzCx1 , X 2 ,"', xl)1 e!P<I> 
i! {X2," ,Xl} 

(5.15) 

where 

B = I lulx1 - xi)l· (5.16) 
j 

The last inequality in (5.15) is due to Penrose.19 It 
follows then from (5.15) that the power series (5.8), 
as well as the series 

00 

{JTI(p, z) = I b;(p)zZ, (5.17) 
1~1 

19 O. Penrose, Statistical Mechanics, FOllndations and Applications, 
T. A. Bak, Ed. (W. A. Benjamin, Inc., N.Y., 1967), p. 101. 

converge for Ipl :::;; 1: 

(5.18) 

The convergence of (5.17) for Izl < R, Ipl :::;; 1 and 
the fact that the b;(P) are analytic (polynomials) in p 
for finite-range potentials implies that TI(p, z) and 
therefore/is analytic also inp for Ipl :::;; 1 and Izl < R. 

For the case of purely ferromagnetic interactions, 
Iii ~ 0 for all i,j, the Lee-Yang theorem16 states that 
the roots of the grand partition function S(O, z), all 
lie on the unit circle IZi(O) I = 1, from which it follows 
that TICp, z) is analytic in z for Izl < 1 and p real 
positive 0 :::;; p :::;; 1. Hence there exists some K such 
that 

for 0:::;; p :::;; 1, (5.19) 

and 

(5.20) 

where (5.20) follows from our previous results. 
Combining (5.19), (5.20), and the fact that b;(P) is 
analytic in p, it is possible to show that TI(p, z) are 
analytic in p along the real axis 0 :::;; p :::;; 1 for all 
Izl < 1, for systems where Jij > O. 

6. ADDITIONAL RESULTS 

In addition to the results established in this paper, 
there are many questions relating to random spin 
systems which we have not touched on at all. These 
concern the dependence of the correlation functions, 
magnetization, including spontaneous magnetization, 
and the critical point indices on p. There are several 
results which can be established easily for random 
Ising spin systems, which we shall state here without 
proof. 

(1) The existence and analyticity of the correlation 
functions for Izl :::;; R, Ipl :::;; 1. 

For systems with purely ferromagnetic interactions 
we also have: 

(2) The average magnetization per spin is a 
monotonically increasing function of p (as well as of 
{J and H). 

(3) It follows from (2) that the critical temperature 
TeCp) (onset of spontaneous magnetization) is also 
a monotonic function of p. 

(4) If To is the critical temperature obtained from 
mean field theory for a "regular" system, then 
Te(P) :::;; pTo· 

(5) For nearest-neighbor interactions, the concen­
tration Po at which spontaneous magnetization occurs 
at T = 0 is greater than or equal to the critical percola­
tion concentration Po. 
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APPENDIX: INEQUALITY USED IN 
EQUATION (4.12) 

Let z be a random variable_ which takes two pos­
sible values Wand 1, with probability p and q = 
1 - p, respectively. We assume that W is nonnegative. 
For ex ~ 1, 

fiz) = z" (AI) 

is a convex function for positive z; hence20 

(W"p) + q = <liz) ~faJ(z» = (Wp + qt. (A2) 

JOURNAL OF MATHEMATICAL PHYSICS 

Thus, for any y > 0, 

(W"p + q)Y ~ (Wp + qty
• (A3) 

We use (A3) twice in obtaining the second inequality 
in (4.12): first with ex = 3, y = k1/3, and W = y; 
next with ex = t, y = 2k~3, and W = y2. 

20 G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities 
(Cambridge University Press, Cambridge, England, 1964), Chap. III. 
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Coulomb and hybrid integrals are shown to be related to overlap integrals. They are expressed by an 
integral whose integrand is an overlap integral plus a finite sum of overlap integrals. 

INTRODUCTION 

Three general numerical methods for the calculation 
of two-center Coulomb and hybrid integrals are: 
(1) the application of the exchange integral method 
based on the Neumann expansion, I (2) the numerical 
integrations on the second electron after the integra­
tion over the first electron has been carried out analyt­
icaIly,2 and (3) the expression for Coulomb integrals 
based on the Fourier convolution theorem.3 

For the Coulomb integrals a general analytical 
method has recently been developed by O-Ohata and 
Ruedenberg. An essential feature of their approach 
is the reduction of the Coulomb_ integrals to an 
integration over overlap integrals.4 

In the present note, it is shown that there exists 
yet another way of expressing the Coulomb and 
hybrid integrals by integration over overlap inte­
grals. 

* Work was performed in the Ames Laboratory of the Atomic 
Energy Commission, Contribution No. 1959. 

t Present address: Department of Chemistry, Rensselaer Poly­
technic Institute, Troy, New York. 

1 K. Ruedenberg, Molecular Orbitals in Chemistry, Physics, and 
Biology, B. Pullman and P. O. Lowdin, Eds. (Academic Press Inc., 
New York, 1964), p. 215. 

2 A. C. Wahl, P. E. Cade, and C. C. J. Roothaan, J. Chem. Phys. 
41, 2578 (1964); see also R. Christoffersen and K. Ruedenberg, 
J. Chem. Phys. 47. 1855 (1967). 

3 M. Geller, J. Chem. Phys. 41, 4006 (1964). 
'K. O-Ohata and K. Ruedenberg, J. Math. Phys. 7, 547 

(1966). 

ATOMIC ORBITALS AND CHARGE 
DISTRIBUTIONS 

A normalized Slater-type atomic orbital on center 
A for electron i is given by 

(Anlm, t i) = N n(2't+1r..:4il 

x exp(-'r.Ai)YZm(OAi, <PAi), (1) 

N n = (2n !)-I, (1') 

where Yzm may be either a real or complex spherical 
harmonic. 5 While overlap integrals usually occur 
between such atomic orbitals, two-center Coulomb 
integrals are commonly defined between certain 
standard "charge distributions" 

[Anlm, " i] = (Mnz/Nn)(Anlm, " i), (2) 

which differ from the orbitals of Eq. (1) by certain 
constants. Since several conventions have been 
employed for the factors M 1IZ, its specific form will not 
be used in the sequel.8 The electron index i may be 
omitted for convenience. 

5 The real spherical harmonics used are those defined by C. C. J. 
Roothaan, J. Chem. Phys. 19, 1445 (1951). 

• For example, C. C. J. Roothaan [J. Chem. Phys. 19, 1445 (1951)] 
uses 

,Mn , = [(21 + 1)/1T]t,.f/[(n + 1+ J)! 2" ... '-1], 

and K. O-Ohata and K, Ruedenberg (Ref. 4) use 

M", = [(21 + I)"rjt,.f/[(n + I)! 22"J. 
Also, ,. is replaced by 2, in both references. 
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ONE-ELECTRON POTENTIALS and 

The one-electron potential arising from the charge A = I, (8c) 

distribution (2) is defined as where the coefficients 

(3) c~z = (n - l)!/[(n + + 1)! k!] 

Use of the Laplace expansion on center A for '121 

yields' 

(Anlm) = [n/(21 + 1)]2n+5/2(AtMnzYz:'(OA2' c/>A2) 

X [(n + I + 1) f dt tn+zsne-st 

+ (n - I)! e-sn~:lSk+!/k!l (4) 

where 

t=rA1/rA2, S=(,ArA2' 

It is possible to express the potential (Anlm) in 
terms of the atomic orbitals of Eq. (1). Two expres­
sions, both having the form 

(Anlm) = M nz[2nH- Zt}nl(21 + 1)] 

x {a(nl) Ildt tZ-!(A(A + l)lm; t('A)* 

+n~:lbinl)(A(l + k + l)lm; (,A)*}' (5) 

are possible. The first expression is essentially identical 
with Eq. (4), and is given by the coefficients 

a(nl) = a'(nl) = (n + I + 1)/(2n- ZN nH), (6a) 

bk(nl) = b~(nl) = (n - l)!/(2kk! Nl+k+l), (6b) 
and 

A = n. (6c) 

The second expression is obtained with the help of the 
identity 

sn Ll dt tn+!e-st = (n + I)! {sll(2l)! II dt t2le-st 

- e-S n]~lsk+Z/(k + 21 + 1)!}, (7) 

and it is given by the coefficients 

a(nl) = a"(nI) = (n + 1+ 1)!/[(21)! N zH], (8a) 

bk(nl) = b~(nl) = (n + I + 1)! c~II(2kNz+kH)' (8b) 

7 The Laplace expansion is given, e.g., in Eyring, Walter, and 
Kimball, Quantum Chemistry (John Wiley & Sons, Inc., New York, 
1957), p. 371. The term in brackets is obtained after integrating by 
parts once on 

which follows directly from Eq. (3). 

- [(k + 21 + 1)!]-1 S; ° (9) 

can be calculated from the recurrence scheme 

c~:Z = 0, 

C;:1 = kc~z - (21 + 1)/(21 + k + 1)!, (9') 

k = 1, 2, ... (n - I). 

TWO-CENTER COULOMB INTEGRALS 

The two-center Coulomb integral between two basic 
charge distributions is defined by 

f dV';. f dV2[Anlm; (,A, l]*[Bn'l'm'; (,B' 2J/r12 

= Omm'C~~';'(R, (,A, (,B)' (10) 

where R is the distance AB. Using the results of the 
preceding section, one finds 

C~~~= (Mn'z,fNw ) f dV(Anlm; (,A)(Bn'l'm'; (,B) (11) 

or 

C~~,?, = MnzMn'z,[2n+l-z('iN:;)nl(21 + l)J 

X {a(nl) lldttl-!Si~~n'(t(4.' (,B) 

where 

+ nI1binl)SI~;:+I,n{(,A' (,B)}, (12) 

S~~'?'«(,A' (,B) = f dV(Anlm; ('A)*(Bnlm; (,B) (13) 

is the two-center overlap integral between Slater-type 
atomic orbitals. Equation (12) gives rise to two 
different formulas for the Coulomb integral depending 
upon which of the two sets of coefficients, viz., Eqs. 
(6a)-(6c) or Eqs. (8a)-(8c), are used. In both cases 
the Coulomb integral is reduced to a one-dimensional 
integration over overlap integrals. 

HYBRID INTEGRALS 

A two-center hybrid integral can be defined by 

Hnn'n" = V; V2[Anm;"'A,1]*r12 lml'm'!"m" fd fd I r -1 

or 

H 1ml'm'I"m" 
n n' n" 

X (An'l'm'; (,A, 2)(Bn"I"m"; (,B, 2) (14) 

= f dV(A(nlm»(An'I'm'; (,A)(Bn"I"m"; (,B)' (15) 
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TABLE I. Sign of mlma and (ml +ma). 

(mlma) (ml + ma) E+ K 

+ + 1 1 
+ -1 1 

+ 1 -1 
1 1 

0 1 0 
0 +,0, - 1 0 

For complex orbitals, it vanishes unless m" = m - m', 
and for real orbitals it vanishes unless m" = M + or 
M-, where 

M ± = sign (m) sign (m') 1{lml ± Im'I}1 
and 

sign (X) = X/IXI. 

(For the real spherical harmonics, m > 0 denotes 
a cos Iml rp dependence and m < 0 denotes a sin Iml rp 
dependence.) When Eq. (5) is substituted in Eq. (15), 
there appear products of two orbitals on the same 
center A. For these products, the following expression 
can be introduced: 

(Aplm; 'A)*(Aql'm'; 'A) 
= 2t'~+!'~r1 N"Nq[('A + 'A)P+fl-1 Np+fl_lrl 

X ! et'k-m'(A(p + q - 1)LM; 'A + ~A)*' (16) 
LM 

where the summation over L is restricted by 

II - 1'1 ~ L ~ (I + 1'), I + I' + L = even. (16') 

For complex orbitals the coefficients ef~m' vanish 
except for M = m - m', in which case they ares 

et'k-m' = ( -1)mC(/( - m), I'm', LM), (17) 
where 

C(lm, I'm', LM) 

= bm+m'+M.o[(21 + 1)(2/' + 1)(2L + 1)/417]1 

X (II'L) (I I' L). (18) 
000 mm'M 

For real orbitals the coefficients vanish unless M = 
M + or M -, in which case they are 

elml'm' = E (_I)m,+ma[l + <5 ]~ 
L.l.lf+ + O.mlm2 

X C(I (-Iml),l'( -lm'l)' L(lmll + 1m2!) (19) 
and 

Clml'm' = E (_I)max(Jmd ,lmaP[1 + b ]1 
L.ll_ - O,m,-ma 

X C(I(-lmj),l'lm'I,L(imll-lm2i)), (19') 

(
It 12 L) 

8 The 3} symbol is given, e.g., in A. E. Edmonds, 
m, maM 

Anglllar Momentum in Quantum Mechanics (Princeton University 
Press, Princeton, N.J., 1957), p. 46, Eq. 3.7.3. 

where E+ and E_ depend on the sign of ml m2 and 
(ml + m2) as given in Table I. 

After substituting Eqs. (5) and (16) into Eq. (15), 
one obtains the result for the hybrid integrals: 

H lml'm'I"m" 
n n' n" 

= M n,[2n-l+l'.i17/(21 + 1)]2t Nn,'A"+i! ei:':.,}'m' 
L 

x {(a(nl)NA+l/NA+n') fdtt,-t 

x [(t'A)A+t/(t'A + 'A)A+n'+l] sf+n'~:r"" (t'A + 'A' ~B) 
n-l-l 

+ ~ b (nl)N YZH+i[N (Y + Y' )n'+I+k+t]-l 
k k 1+k+1SA n'+I+k "'A "'A 

k=O 

X n'+/Hn" SA + SA' SB) . S L l"m"(Y Y' Y } (20) 

Depending upon the choice of a(nl), bk (n I) , and A, 
one has again two possible representations. 

Both real and complex orbitals yield the same form, 
since the spherical harmonic YI"m"(O, </J) is orthogonal 
to all but (at most) one harmonic in the expansion of 
the product of Slater-type atomic orbitals encountered 
in the modified potential. 

DISCUSSION 

The two-center Coulomb and hybrid integrals are 
both obtained by a numerical integration and summa­
tion over overlap integrals. The first of the two 
expressions given for these integrals will yield greater 
accuracy, since the sign of the terms will be that of the 
overlap integral involved; namely, for s-type integrals, 
only positive contributions occur. The second expres­
sion has the advantage that the principal quantum 
numbers needed are smaller for the overlap integrals 
in the integrand. Therefore, if the method developed 
by Ruedenberg et al,9 is used, a smaller table can be 
generated, thus saving computation time; however, to 
obtain these Coulomb and hybrid integrals, one can 
expect a difference between two large numbers and a 
corresponding loss in accuracy. 

Coulomb integrals have been calculated through 
3db cases for which a 16-point Gauss-Legendre 
numerical integration gave 7-figure accuracy. 
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Quasibinomial representation of Clebsch-Gordan coefficients is symbolized by a Regge-like square. 
Rules for exchange of rows and columns of this square are derived. Thus our various quasi binomial 
forms can be read off from this square directly. 

1. INTRODUCTION 

In previous papers1.2 we have described an operator 
method for the addition of two angular momenta, 
according to which one of the angular momenta is 
added to another in n steps of half each, the symmetri­
zation of the n half angular momenta, so introduced, 
being taken into account at each step explicitly. It was 
shown that the determination of the angular­
momentum eigenfunctions at each step can be per­
formed easily by employing a particular representation 
of Lowdin's projection operators.3 The use of these n 
operators was seen to be responsible for the appear­
ance of products of n parameters in the general ex­
pression of the Clebsch-Gordan coefficients (CGc). 
Consequently, the notation of generalized power4 was 
utilized to write our basic expression of CGc5 in a 
clear and concise form. It was found that various 
quasibinomial (q.b.) representations of this expression 
of CGc can be derived6 when the algebra of general­
ized power (g.p.) was taken seriously. These various 
q.b. forms are actually nothing but the different 
symmetry relations between the symmetrical formulas 
of CGc. An extension of the formalism to include 
Wigner-type unsymmetrical formulas with the aid of 
negative g.p. is possible. The negative q.b. representa­
tions of CGc, so obtained, can be treated exactly as 
their "positive" counterpart.7 

In the days of preoccupation with the graphical 
and symbolic methods,S it is not inexpedient to look 

* Based on a part of the author's dissertation, University of 
Tiibingen, 1966 (unpublished). 

t Present address: Lehrstuhl fiir Theoretische Astrophysik, Uni­
versitat Tiibingen, 74 Tiibingen, Hausserstr. 64, Germany. 

1 S. M. R. Ansari, Nuovo Cimento 38, 1883 (1965). In this note, 
we have reported only the essential results of this series of our 
papers (see below). 

2 S. M. R. Ansari, Fortschr. Physik IS, 707 (1967). 
3 P.-O. Lowdin, Rev. Mod. Phys. 36, 966 (1964). 
• See definition (2) above. 
5 See, for example, Ref. I, expression (3), or Ref. 2, expression 

(3.35). 
6 S. M. R. Ansari, Fortschr. Physik IS, 729 (1967). For the 

definition of q.b. expansion see Eq. (3) above. 
7 S. M. R. Ansari, J. Math. Phys. 9, 1299 (1968) (following paper). 
8 J.-N. Massot, E. El-Baz, and J. Lafoucziere, Rev. Mod. Phys. 

39, 288 (1967); G. L. Strobel, Nucl. Phys. A96, 229 (1967); G. 
Flach, Nucl. Phys. 69, 68 (1965). 

for symbolization of our q.b. representations. To that 
end, we employ Regge-like squares,9.10 from which 
one is able to read off the corresponding q.b. repre­
sentations just by inspection. Naturally, these squares 
are related to one another as the various q.b. forms 
themselves. In the following, we give the proofs of the 
rules by means of which anyone square can be 
transformed into any other. We illustrate the rules by 
an example. Finally, the difference between our CGc 
square and that of Regge is examined. 

2. RECAPITULATION 

A general square symbol for CGc is defined byl,6 

0( (3 y 
( , I)! ,,(/X"-y') ! 

0(' (3' y' =.N" ~[O( ___ (3(/X"-P') (/X"-y')J 
'(3,(/X"-1') y 0(. 

0(" (3" y" 

X «(3'y" - (3"y'»(/X), (1) 

where .N" is a constant factor which remains the same 
on permutation of rows or columns. It is given by 
Eq. (15"). Here we employ the notation of generalized 
power defined in general asH 

x(n) == x(x - 1) ... (x - n + 1) = (:) n!, x ~ n. 

(2) 

The double parentheses in (1) symbolize our q.b. 
expansion, a general one being defined as 

«ax - by»(n) = ~ (-1)' (:) a(n-r)x(n-r)b(rly<rl. (3) 

Note 
«ax - by)yn) = (-It«by - ax)yn), (4) 

and also the product formula 

(5) 

• Our square is different from the Regge square, Ref. 10. We 
examine this point in Sec. 5 in detail. 

10 T. Regge, Nuovo Cimento 10, 544 (1958). 
11 For a resume of generalized powers (factorials) we recommend 

especially Ref. 6, Sec. 2. See also C. Jordan, Calculus of Finite 
Differences (Chelsea Publishing Co., New York., 1950). 
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Since (3) contains only the positive g.p.,12 we may 
call it also a positive q.b. expansion and, consequently, 
the square symbolizing it a positive CGc square. 

We recall the relations between the various elements 
of the square, viz.,13 the sum of elements in a row (or 
column) is always an integer, and all such sums are 
equal, i.e., 

oc + oc' + oc" = {J + {J' + {J" = oc" + {J" + y" = etc. 

(6) 
3. PROOFS OF THE RULES 

Rule I: The square is invariant with respect to trans­
position. 

By Eq. (1), the transposed square is given by 

y y' y" 

x «{J'y" - y'{J"»(I1.). (7) 

S· b (6) "+ (J" , 0 . (5) mce y oc - y - y = ,usmg , 
one gets 

y(Y-fJ") = y(Y-fJ"){J"(I1."+fJ"-Y-Y') = y(I1."-y') 

and 

Similarly, 
(Jt(y-fJ") = (Jt(I1."-Y'). 

Again by (5) and (6) 

Substituting these relations in (7), one sees immedi­
ately that 

oc oc' oc" oc {J y 

{J {J' {J" - oc' {J' y'. 

y y' y" oc" {J" y" 

Rule II: A square obtained by exchanging the 
second and the third row (column) is always multi­
plied by (-1)11., oc being the first element. 

11 In contradistinction to (2), one may define the negative g.p. by 
(-x)(n) = (_l)n(x + n - 1)(n), which plays an important role in 
the "negative" q.b. representations of the Wigner-type unsym­
metrical formulas of CGc. See Ref. 7. 

13 See Ref. 6, Sec. 6. This property defines what is called a semi­
magic square in the theory of partitions; see P. A. Macmahon, 
Combinatory Analysis (Cambridge University Press, Cambridge, 
England, 1916), Vol. II, Chap. VII, p. 160 et seq. The symmetry of 
such a square has been studied on the basis of permutations by 
T. Shimpuku [Nuovo Cimento 27. 874 (1963)]. 

Now the new square is given as follows: 

{J y 

OC" {J" y" = X' ~ OC (J(I1.'-fJ") (11.'-y") 
( "')![ , (11.'-Y") J! 

I (J"(I1.'-Y") Y OC. 
oc' {J' y' 

X «{J"y' - (J'y")il1.). (8) 

First, by virtue of (4) 

Second, we utilize the following factorization due to 
(5) and (6): 

(J(I1.'-fJ") = {J(I1."-fJ')({J + (J' - oc")(I1.'+fJ'-«"-fJ") 
- (J(I1."-fJ') "(y"-y') - Y . 

Similarly, 

With these, the square-root factor in (8) becomes 

(J"(fJ"-fJ') 
[oc"! "(Y"-Y')oc'(I1.'-Y")] [(J(I1."-fJ') (11."-Y')] 

y (J"(I1.'-Y") y 

= [oc'! oc"(I1."-Y')U{Jt(I1."-Y')]-l[{J(I1."-fJ')y(I1."-Y')], (9') 

which is exactly the square-root factor appearing in 
(1). Here, we have used the following relations due to 
(5) and (6): 

and 

oct(I1.'-Y") = oct(I1.'-I1.")oc"(I1."-Y')yt(y'-Y"), 

"(y"-y') (y'-y") - 1 Y Y -, 

Thus with (9) and (9'), the rule 

oc {J y oc {J y 

(_1)11. OC" {J" y" = oc' {J' y' 

oc' {J' y' oc" (J" y" 

is also established. 
In the case of exchanging the second and third 

column, the validity of the rule can be seen immedi­
ately, if one takes note of the relationship 

oc"(I1."-fJ') oc"(I1."-Y')yt(Y'-fJ') oc"(I1."-Y') 

yt(I1."-fJ') = y'(Y'-fJ'){Jt(I1."-Y') = (J'(I1."-Y')· 

Rule III: An exchange of the first and second row 
of a square gives rise to an additional factor (-I)fl", 
{J" being the element in the third row and second 
column. 
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That is,143 

oc' (J' y' oc (J y 

( -l)P" oc (J Y = oc' (J' y' • (10) 

oc" (J" y" oc" (J" y" 

From (1), we have 

oc' (J' y' 

oc (J y 
( I)![ " (<<"-Y) J! = .N" ~ oc __ (J'(<<"-P) ,(a"-y) 

, I (J(<<"-Y) y OC. 
oc" (J" y" 

x «(Jy" - (J"y»(<<'), (11) 

in which, by definition (3), the q.b. expansion is given 
by 

«(Jy" - (J"y»(<<') = ~ (-1)"'(:') (J"("')y("')(J(<<'-"')y"(<<'-"'). 

(12) 

In order to prove (10), we have first of all to deduce 
from it the q.b. expansion with oc as exponent. For 
that purpose we proceed as follows: 

On substituting in (12) the relations 

(J(<<'-"') = (J(a'-P")ydP"-"') [by (5) and (6)], 

y"(<<'-"') = y"(<<'-P")ocW'-"') [by (5) and (6)], 

and the "exchange" 

(:') (J"("') = (~') oct "'), [by (2)] 

we get, with (J" - x = y, 

«(Jy" - (J"y)y«') 

( 1)P"«' ,»w')(J(<<'-P") " (<<'-P") = - oc y - ocy y. 

We now make use of the exchange 

(:') oc(~) = (;) (J"(Y) 

(12') 

in « ))tP") above, and proceed exactly as before. We 
obtain finally the q.b. expansion with oc as exponent, 
namely, 

« »(<<') = (-l)P"«(J'y" - (J"y')y«) 
dP" -fZ) (P" -a;)(J(<<' -P") ,1(<<' -P") X oc Y y. (13) 

In this way we have the factor (-1)P" also. The only 
thing we have to show now is that all the factors 
appearing before « »(<<), obtained by putting (13) 
into (11), can be recast into the same form as in (1). 

To this end, let us denote these factors by {f} and 
make the following substitutions: 

(p"-«) - (<<"-Y')(J"(P"-P') y - y , 
(J(a'-P") = (J(<<"-P')y"(Y"-Y'), 

14& Compare this and the following Rule IV with those of Regge, 
Ref. 10. 

and 
,,(<<"-y) _ ,,(<<"-y') dy'-y) OC -oc Y . 

Then 

{f} = .N"( oc,,(a"-Y') (J(<<"-P')y(<<"-Y'»! (oc !)! {oc'(P"-«)y"(<<'-P")} 
oc' ! 

X [y"(Y"-Y')ydy'-Y)yW'-fZ) (J'(<<"-Pl]! 

X {(J(<<'-P")yM'-Y) (J"w-P') / (J(<<"-Y)}!. 

Again, with the aid of (5) and (6), one may simplify 
the brackets after a little algebra and obtain the 
following results: 

{ } = ocd«'--a), y" = oc' + oc - (J", 

[ ]! = y"(Y"-P')(Jd«"-P) = y"(O) = 1 

(as (J' = oc + y - (J", y" + oc" = (J + (J'), 
and 

{ }! = (J(P-P')/(J(<<"-Y) = ocl(a'-p'). 

Note also that 

ocd«'-a)( oc! ocda'-P'»! = [oc!«(Jda"-Y'»!r1 

(oc = (J' + y' - oc"). 

Consequently, {f} goes into the factor which appears 
in (1). 

A corresponding rule holds also for the first and 
second column and can be proved in the same way as 
above. It states: 

Rule IV: Exchanging the first and second column in 
a square yields an additional factor (_1)1', y' being 
the element of the third column and second row. 

That is, 

oc (J y (J oc y 

oc' (J' y' = (-1)1' (J' oc' y' . 

oc" (J" y" (J" oc" y" 

4. AN ILLUSTRATION 

We start with our basic square,14b viz., 

fJ- an-p, bp,+1 

2/1 - fJ- Z S (14) 

Note first the following relations between our 
parameters and the quantum numbers usually em­
ployed in the theory of addition of two angular 

Ub Reference 6, Eq. (6.1). 
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momenta: 

p, = II + 12 - j, an_,. =j + M, b,.+! =j - M, 
2/1 - P, = II - 12 + j, Z = 12 - m2, s = 12 + m2, 

n - p, = 12 - II + j, bz+! = II - ml> az = h + m1 • 

(15) 
The CGc matrix 

C(/1/2j; m1m2M) = C1m2 (15') 

then in our notation is C,.., or, for fixed p" simply C., 
the q.b. representation of which is C (exponent). 
Thus, for instance, the q.b. representation associated 
with the square (14) is C(p,), which can be immediately 
written out by definition (1).15 In terms of our 
parameters (15), the factor 

X' = [(2/1 + n - 2p, + 1)/(2h + n - p, + I)!]!. 
(15") 

We may mention that C(p,), when expressed in terms 
of ordinary factorials, is the well-known Racah 
symmetrical formula for CGc.1S 

As an application of the rules derived above, we 
now show that17 

(16) 

We may recall that it is in fact a symmetry relation18 : 

(_1)h-i+m 2 • 

= ! CU1211;M, -m2, m1)· 
(211 + 1) 

If we symbolize the operation of exchanging the 
rows or columns by arrows, we have 

p, ~b"+1 
211 - P, Z s 

n - p, bz+! az 

= (-1)" 
II 

z 

b,.+! 
= (_l)H,. S 
IV 

15 See. Ref. 6, formula (3.14). 
16 G. Racah, Phys. Rev. 62, 438 (1942), especially p. 440, formula 

(16). 
17 See Ref. 6, Eq. (5.7'). 
18 Reference 6, Sec. 7, Table 1. 

b,.+! an_,. p, 

= (_l)H" 
II 

a. b.+! n-p, 

s z 211 - P, 

b,.+! a. s 

= (_l)H" 
I 

an_,. bH1 z (17) 

P, n-p, 211 - P, 

5. REGGE SQUARE 

Analogous to the example of the last section, one 
may verify that, with s = n - z, 

/,p, an-,. b,.+! 

~ll- p, Z s 

n-p, bZ+1 a." 
= (-1)"+' P, an_,. b,.+! 

I\n - p, b.+! a. 211 - P, z sl 

n-p, b.+! a. 

= (-1)' 211 - P, Z S (18) 

P, an_,. b,.+! 

That is,19 

CRacah = C(p,) = (-l)"C(n - p,). (18') 

It is also a symmetry relation in the usual sense of 
the term. Now, but for a phase factor, the square on 
the right-hand side of (18) is the Regge squarelO 

expressed in our parameters. With this square, Regge 
denotes the 3j symbol 

{ 
II 12 j} _ (_1)11-Z2+M 

- ! CRaCah ' 
ml m2 - M (2j + 1) 

Apparently, there is just a difference of a phase 
factor between our square C(n - p,) and that of 
Regge. However, we feel that from the point of view 
of q.b. representations ofCGcour symbolism (14),i.e., 

CRacah = C(p,) = C(s) = C(bH1), 

is more consistent than that of Regge, since these are 
the only q.b. representations obtainable directly from 
the Racah formula16 by using just definitions (2) and 
(3). This is immediately evident from the summation 
part 

.2 [y! (p, - y)! (s - y)! (b H1 - y)! (z - P, + y)! 
1/ 

X (a. _ p, + y)!]-1 

19 Reference 6, formula (3.20). 
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of the Racah formula in our notation. On the other 
hand, C(n - p,) can only be gotten from ~11 by letting 
y _ s - y,20 which gives rise to a phase factor (-1)', 
in accordance with (18'). In our way one is able to 
handle both the formulas of CGc and their symmetry 

20 Note, by (15), s = n - z. 

JOURNAL OF MATHEMATICAL PHYSICS 

relations directly, rather than through the interme­
diary 3-j symbol. 
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New quasi binomial forms are derived from the quasi binomial forms given previously by making use of 
both positive and negative generalized powers. They turn out to be a new representation of the Wigner­
type unsymmetrical formulas of Clebsch-Gordan coefficients for angular momenta. Consequently, 
formulas of Racah, Majumdar, and Shimpuku are deduced as special cases. Rules to construct a square 
symbol are given from which all these "negative" quasibinomial representations or, more precisely, 
expansions can be read off directly. Thus, a unified treatment of both symmetrical and unsymmetrical 
formulas of Clebsch-Gordan coefficients is thereby accomplished. 

I. INTRODUCTION 

Utilizing the positive generalized powers, l it has 
been shown recently that the various symmetrical 
formulas of Clebsch-Gordan coefficients (CGc) for 
angular momenta can be treated in a unified manner.2 
In particular, the summation occurring in our basic 
CGc formula3 was transformed into the so-called 
quasibinomial (q.b.) expansion,2.4·5 a general one 
defined by 

«ax - by»(nl == ~ (_IY(:)a(n-alx(n-alb(aly(al, (1) 

where the generalized power6 (g.p.) 

x(nl = x(x - 1)(x - 2)'" (x - n + 1) = (:)n!, 
x ~ n. (2) 

• An extended version of a part of the author's dissertation, 
University of Tiibingen (1966). The main results have already been 
reported in a previous article [Nuovo Cimento 38, 1883 (1965)]. 

t Present address: Lehrstuhl fiir Theoretische Astrophysik, 
Universitiit Tiibingen, 74 Tiibingen, Hausserstr. 64, Germany. 

1 See definition (2) above. 
2 S. M. R. Ansari, Fortschr. Physik 15, 729 (1967). 
3 See Ref. 2, formula (3.1); or Ref. 4, formula (3). 
4 S. M. R. Ansari, Nuovo Cimento 38, 1883 (1965). 
5 S. M. R. Ansari, J. Math. Phys. 9, 1295 (1968) (preceding 

paper). 
6 For a resume of generalized powers (factorials), we refer to 

Sec. 2 of Ref. 2. See also C. Jordan, Calculus of Finite Differences 
(Chelsea Publishing Co., New York, 1950). 

Note the following property: 

«ax - by»<nl = (-I)n«by - ax»(nl. (2') 

We recall that the main difficulty in carrying out 
the summation in Eq. (1) arose from the occurrence of 
( _1)a, which does not permit one to apply the 
Vandermonde binomial expansion of the generalized 
powers/ viz., 

(x + y)(nl = ~ (:)x(n-aly(al. (3) 

In the following, we show that with the aid of our 
. extension of (3) to the negative generalized powers, 
defined by 

(_x)(nl = (-I)n(x + n - I)(n l == (x-)(nl, (4) 

( -I)a can be eliminated, thus enabling one to sum up 
at least a part of the q.b. expansion with the aid of the 
Vandermonde formula (3). However, the use of this 
extension, more precisely formula (A3) in Appendix 
A, gives rise to another summation which, finally, can 
be expressed again as another q.b. expansion com­
prising, this time, negative g.p. also. Consequently, 
we call the resulting expression simply a negative q.b. 
representation of CGc. In fact, such q.b. forms 

7 We may mention that in analogy with this expansion (3) we 
have termed the summation (I) quasibinomial expansion. For the 
derivation of Eq. (3), see Ref. 6. 
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of the Racah formula in our notation. On the other 
hand, C(n - p,) can only be gotten from ~11 by letting 
y _ s - y,20 which gives rise to a phase factor (-1)', 
in accordance with (18'). In our way one is able to 
handle both the formulas of CGc and their symmetry 

20 Note, by (15), s = n - z. 
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5 S. M. R. Ansari, J. Math. Phys. 9, 1295 (1968) (preceding 

paper). 
6 For a resume of generalized powers (factorials), we refer to 

Sec. 2 of Ref. 2. See also C. Jordan, Calculus of Finite Differences 
(Chelsea Publishing Co., New York, 1950). 

Note the following property: 

«ax - by»<nl = (-I)n«by - ax»(nl. (2') 

We recall that the main difficulty in carrying out 
the summation in Eq. (1) arose from the occurrence of 
( _1)a, which does not permit one to apply the 
Vandermonde binomial expansion of the generalized 
powers/ viz., 

(x + y)(nl = ~ (:)x(n-aly(al. (3) 

In the following, we show that with the aid of our 
. extension of (3) to the negative generalized powers, 
defined by 

(_x)(nl = (-I)n(x + n - I)(n l == (x-)(nl, (4) 

( -I)a can be eliminated, thus enabling one to sum up 
at least a part of the q.b. expansion with the aid of the 
Vandermonde formula (3). However, the use of this 
extension, more precisely formula (A3) in Appendix 
A, gives rise to another summation which, finally, can 
be expressed again as another q.b. expansion com­
prising, this time, negative g.p. also. Consequently, 
we call the resulting expression simply a negative q.b. 
representation of CGc. In fact, such q.b. forms 

7 We may mention that in analogy with this expansion (3) we 
have termed the summation (I) quasibinomial expansion. For the 
derivation of Eq. (3), see Ref. 6. 
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correspond to the Wigner-type unsymmetrical8- 1o or 
fractionalll CGc formulas. 

As previously stated,2.5 a negative q. b. representa­
tion may also be symbolized by means of a "negative" 
square, which enables one to read off all possible 
negative q. b. representations directly from it. 

The importance of introducing the negative q.b. 
representation lies actually not only in simplifying 
the numerical calculations of CGc, especially by 
computers, in which case the Wigner-type formulas 
prove to be better than Racah's symmetrical ones,12 
but also in unifying the derivation of CGc formulas as 
such in contradistinction to the hitherto treatment as 
found in the literature. 8-11 The various formulas derived 
therein are shown to be special cases of our treatment. 

Incidentally, we also show that the same symmetry 
relations, as in case of symmetrical CGc formulas, 
i.e., positive q.b. representations,2 hold true now 
also13 and their derivation is not "tedious" at alp4 

II. NEGATIVE QUASIBINOMIAL EXPANSION 

Let us rewrite the positive q.b. expansion (1), 
using (2), in the following form: 

«ax - by»(n) = ~ (-1)"(:)n(")yC")a(n-«)x(n-«). (5) 

We now factorize the g.p. of x andy by the product 
formula (AI) as follows: 

x(n-«) = x(n-b)(x + b - n)(b-«) (6) 
and yC,,) = yCn-a)(y + a - n)(a-n+ .. ). (7) 

The g.p. of (y + a - n) may then be expanded by the 
formula (A4), viz., 

(y + a - n)(a-n+ .. ) 

= (_1)n-« I (_1)p(n - OI.)(y + a - n + (J)(a). (8) 
a(n-«) fJ {J 

Therefore (5) with the aid of (6)-(8) can be r~expressed 
as 
«ax - by»(n) 

= (_1)nx (n-b) y(n-a) I ..!. (y + a - n + (Jya)( -1)ft 
P {J! 

X ~ (!)n(")(n - OI.)(P)(x + b - n)(b-«). (9) 

• E. P. Wigner, Group Theory and its Application to Atomic 
Spectra (Academic Press Inc., New York, 1959), p. 191. 

• S. D. Majumdar, Progr. Theoret. Phys. (Kyoto) 20, 798 (1958). 
10 G. Racah, Phys. Rev. 62,438 (1942), especially p. 440, formula 

(15). 
11 T. Shimpuku, 1. Math. Anal. Appl. 7, 397 (1963). 
11 See Ref. 10, p. 440, formula (16). 
18 This seems to be quite obvious. Nevertheless, the symmetry 

relations are usually derived from the symmetrical CGc formulas, 
as done by Racah, Ref. 10. 

U This is remarked by M. E. Rose, Elementary Theory of Angular 
Momentum (John Wiley & Sons, Inc., New York, 1957), p. 40. 

We notice that (-1)" has been eliminated from the 
summation over 01.. We can now make use of the 
Vandermonde formula (3), bearing in mind the rela­
tion 

n(")(n - OI.)(fJ) = n("+P) = n(fJl(n - {J)("', (9') 

due to (AI). Thus (9) goes into 

«ax - by»(n) = (-1)nx(n-b)yCn-a)t(-1)p(;) 

X (y' + {Jia)(x' + n - (J)(b), (10) 

where we have put 

y' = y + a - n and x' = x + b - n. (10') 

To express (10) in a quasibinomial form, we employ 
the following factorizations due to (A2): 

(y' + {J)(al = (y' + {J)(fJ'y'(a-n1y<n-fJl 
and 

(x' + n - {J)(bl = (x' + n - {J)(n-fJ)x!(b-n)x(Pl. 

This gives us immediately, with x' + 1 == x~ ,y' + 1 == 
y~, and introducing the negative g.p. due to (4), in 
analogy with (I), the negative q.b. expansion, viz., 

«ax - by»(n) = t (-1)P (;) y(n-p)(xC)(n-Plx(fJl(yC)(fJ) 

== «yxC - xyC»(n), (11) 

since, again by (AI) and definition (2), 

y(n-a)(y + a - n)(a-n) = I = x(n-b)(x + b _ n)(b-n). 

Now instead of expanding (y + a - n)<a-n+ .. ), as 
in (8), had we expanded (x + b - n)(b-.. ) according to 
(A4), we would have 

(x + b - n)(b-«) 

= (-1)"~(_1)ft(0I.)(X + b - n + (J)(b). (12) 
bl .. > t {J 

Note that (12) can also be obtained directly from (8) 
by the substitutions: j ~ x, a ~ b, i.e., y' ~ x' and 
n - 01. ~ 01.. However, one should bear in mind that 
(_1)n appearing in (8) was cancelled finally, as we 
introduced the negative g.p. according to the definition 
(4). Consequently, this time it should appear in the 
final expression. Hence, without repeating the whole 
procedure again, we find that 

«ax - by»(n) = (-1),,«xyC - yxC)inl, (13) 

which is also evident from the definition (11) directly, 
that is,16 

«yxC - xyC)yn) = (-1)n«xyC - yxCWn). (14) 

16 Compare Eq. (2'). 
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Similarly, the substitution x ~ a yields 

«ax - by»(n) = «xa - by»(n) = «ya~- - ayC»(n>, 

(15) 
where we have put 

a{ == a' + 1 == (a + b - n + 1) 

and 
y~ == y" + 1 '== y + x - n + 1. 

On the other hand, b ~ Y gives 

«ax - by»(n) = «by~- - xaC»(n), 

while with a ~ x and y ~ b one obtains 

(16a) 

(16b) 

(17) 

«ax - by»(n) = «byC - axC»(n). (18) 

Thus we find that, corresponding to every positive 
q.b. expansion, there exist four different negative q.b. 
expansions with the same exponent n. 

Now let us consider the formula (18). Because of 
(14) and (2'), it is clear that 

«axC - byC»(n) = «by - ax»(n), 

from which, with the help of the substitutions (10'), 
one gets 

«ax1 - bY1»(n) 

= «b(y - a + n) - a(x - b + n) »(n). (19) 

This is the converse of the case we treated. in the 
beginning of this section: a transformation of a 
negative q.b. expansion into a positive q.b. expansion. 
In fact, a detailed proof of (19) can be constructed.l6 

The method is just the opposite of the above: one 
expands some g. p. first of all by means of the Vander­
monde formula (3); after a little algebraic manipula­
tion, one is able to sum up a part of the resulting 
expression with the aid of our extension (A3) and 
obtains (19). We sketch this proof very briefly in 
Appendix B. 

The four negative q.b. expansions, with the same 
exponent n, (11), (15), (17), and (18), are not the 
only ones into which «ax - by»(n) can be trans­
formed. One can also deduce from the latter, by 
simple algebraic manipulation, another set of negative 
q.b. expansions differing in exponents. We sketch this 
proof in Appendix C. The result is 

«ax - by»(n) 

= (_l)a-n(n !/a' !)yCn-a)x(n-o)«y'x1 - x' Y1)la'>, (20) 

where again y' and x' are given by (10') and a' by 

18 s. M. R. Ansari, D.sc. dissertation, University of Tiibingen 
(1966) (unpublished), Appendix C. 

(16a). Now, as previously, while y ~ bin (20) gives 
(y" = x + y - n) 

«ax - by»(n) = (_1)a-n(n !/y' !)b(n-a)x(n-II) 

X «a'x1 - y"b1»(II'), (21) 

a ~ x, i.e., a' ~ x', yields 

«ax - by)yn) = (_l)"'-n(n!/x'!)y(n-x)a(n-b) 

x «y"a1 - a'Y1)Yx'). (22) 

Finally, with a ~ x and b ~ y, i.e., y' ~ x' and 
a' ~ y", from (20) one obtains 

«ax - by»(n) = (-l)"'-n(n !/y"!)b(n-x)a(n-y) 

X «x' a1 - y'b1»(II"). (23) 

Summarizing, we may say that a positive q. b. 
expansion can be converted into essentially five 
negative q.b. expansions with different exponents and 
four negative q.b. expansions with the same exponents. 
These negative q.b. expansions give, in fact, all 
possible unsymmetrical formulas for CGc. Conse­
quently, in the following section we show that the 
unsymmetrical expressions for CGc found in the 
literature8- 11 can be deduced as special cases from 
our above formulas. 

III. FORMULAS OF WIGNER, RACAH, 
MAJUMDAR, AND SHIMPUKU 

In this section we use our previous notation.17 

Our treatment of the preceding section has been quite 
general up to now. We take a particular positive 
q.b. representation of CGc as the starting one, 
namely, C(bl'+1)l8: 

C. = ( -1)HI'C(bl'+l) 

== (-1)HI'(.N"/bl'+l!) 
X {an_l'! Lu(I'-')/b~l')]s(I'-')a~l'-bHl)}l 

X «bH1(2/I - f-l) - (n - f-l)Z»(b/l+1). (24) 

With the aid of the formulas derived in the pre­
ceding section,19 the q.b. expansion in (24) yields 

«bH1(2/1 - fl) - (n - fl)Z»(o/l+1) 

(~) «za~-/l+l - (2/1 - f-l)f-l1»(°1'+1) 

(~) «zsl - bHIa:;+l»(bl'+l) 

= « (n - f-l)a:;+l - (2/1 - f-l)Sl»(bl'+l) (17) 
- «( ) - b - »(oP+1) 
(ls) n - f-l f-l1 - '+lan-/l+l . 

17 See Ref. 5, Eqs. (15) and (15'). 

(25) 

(26) 

(27) 

(28) 

18 It can be read off directly from the corresponding positive 
square symbol of CGc; see Ref. 5, Eq. (17), and def. (1); or Ref. 2, 
Eq. (5.8). 

19 We write the number of the formula used under the sign of 
equality. Hereafter we shall often employ this notation to save 
space. We use the notation n - z = s, a~ = 11 - II + M + x, and 
b"'+1 = 21t - az . For other relations, see Ref. 5, Eq. (IS). 
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These formulas are obviously to be multiplied by the 
same factors which appear in front of the double 
parentheses in (24). Then (25) and (28) give just the 
q.b. representations of two of the Majumdar formulas,9 
the hypergeometric functions of which can be ex­
pressed in our parameters17 and with the notation (4) 
as 

and 

2F1(b;+1' (n - ,,)-;(2j)-;X: 1). 
Similarly, one may confirm that (26) and (27), multi­

plied again by the factors in (24), yield the unsym­
metrical CGc formulas of Racah10 and Wigner,8 
respectively, when one converts all the generalized 
powers into factorials by (2). We would like to 
mention here that (27) is not the only q.b. representa­
tion of the Wigner formula. First, by (14), the double 
parentheses (27) can be written as 

(_l)bll+l« (211 - ,,)si - (n - ,,)a;+1»(bll+l). (29) 

Using the relations20 

and 

(21 - Il)(bll+l-") = (21 - 1l)(bn +1) a(':-Il-") 
1 r (AI) 1 r nil' 

(S-)(bll +1-«) = (S-)(bn +l)(b-)(n-Il-«) 
1 (AI') 1 • 

= (_I)bn+lb(bn+1)(b-)(n-Il-«) 
(4) .+1. , 

(b:+1)(n - ,,)(<<) ~) C : ")b~~l' 
where oc is the summation index of the q.b. expansion 
(29), one can easily recast (29) into the form 

b~~yl)(211 - ,,)(bn+l)( -It-II 

X «an-lib; - bll+1a;+l»(n-Il). 

When one takes into account the factors appearing in 
(24) and uses (14) again, finally21 one gets 

C. = (-l)Z+IlC-(bll+1) = (-IYC-(n - ,,) 

== (-I)'(.N" I(n - ,,)!) 
x {(211 - ,,)! Lu(Il-s) /z(ll-s)]a~Il-8)b~~1·)}t 

X «bll+1a:;+1 - an_llb:;»(n-Il ), (30) 

from which just by inspection one can immediately 
tell that another q.b. representation of the Wigner 
formula would be C-(an- Il). Incidently, we have also 

O. For verification, use the relations given above in Ref. 19. 
21 Here we employ the notation c- (exponent) for the negative 

q.b. representation of CGc. Formula (30) was reported for the first 
time in the short note, Ref. 4, formula (5). With the aid of the rules 
given in the following section, it can be read off from the square (18) 
of Ref. 5. 

set up above a relation between two negative q.b. 
representations of CGc, viz., 

C-(bll+1) = (-I)n-IlC-(n - ,,). 

This is, in fact, a symmetry relation exactly as in the 
"positive" case.22 

For the sake of completion we give, in the following, 
other negative q.b. expansions obtained by means of 
formulas (20)-(23): 

«bz+1(211 - ,,) - (n - ,,)ZWbll +1 ) 

~ «,,(211 - " + 1)- - an_ llzi»(S), 
(20) 

Zl == Z + 1, (31) 

~ «s(2/1 - " + 1)- - a.(n - " + 1)-»(11) (32) 
(21) 

(33) 

(34) 

One may verify that the factors in front of these 
negative q.b. expansions in a complete formula C-(s), 
C-(,,), C-(an- Il), and C-(a.) turn out to be exactly the 
same as those appearing in the corresponding positive 
q.b. representations C(s), C(,,), C(an- Il) , and C(a.) , 
respectively.23 This is a special feature of only q.b. 
representations of CGc expressions. Then, for instance, 
formula (32) is the q.b. representation of the Shimpuku 
fractional formula. 24 Incidentally, we have also shown 
the algebraic equivalence of various Wigner-typ'e or 
unsymmetrical formulas for CGc, which, for instance, 
in terms of hyper geometric functions, is quite difficult. 25 

IV. NEGATIVE CGc SQUARE 

Analogous to the positive CGc square,2.5 one may 
symbolize the negative q.b. representations of CGc 
formulas by "negative" CGc squares, defined below, 
from which the same formulas of CGc can be read 
off directly. However, as mentioned above, the front 
factors of the positive and negative q.b. expansions 
with the same exponent being identical, one may 
confine oneself to reading only a negative double 
parentheses symbolizing a negative q.b. expansion 
from a negative square directly. Obviously the front 
factors are then to be deduced from the corresponding 
positive square, as previously.II.5 

•• See Ref. 2, Sec. 7, Table 1. This shows that the derivation of the 
symmetry relations from Wigner-type formulas is also not "tedious" 
(Ref. 14). Only in terms of ordinary factorials are they really unprac­
tical, as was also pointed out by Racah, Ref. 10 . 

• 3 They are given in Ref. 2, formulas (3.21), (3.14), (5.7), and 
(5.3), respectively. One can also deduce them from the corresponding 
positive CGc squares by means of definition (1) and rules I-IV in 
Ref.5. 

2. See Ref. 11, p. 414, last formula. 
2. Compare the remark of S. D. Majumdar, Ref. 9, p. 802. 



                                                                                                                                    

QUASIBINOMIAL REPRESENTATIONS OF C-G COEFFICIENTS. II 1303 

To this end, let the positive CGc square be given in 
terms of the general parameters used in Sec. 2. That 
is,26 

n y" a' 

x' (35) 

y' 

A negative CGc square is defined as the square 
obtained from (35) such that two of its elements are 
negative. Two negative squares are then obtained 
from (35) by the following rule: 

Rule I: Substitute the second and third elements of 
the first row (or first column), increased by 1, by their 
negative values. 

Thus 

n y" a' 
-"-f::""""""""""" 

x~_ i a y 

y~ i b x 

and (36) 

"---./ 

Then one can associate with each of these squares, 
contrary to (35), two negative double parentheses as 
follows: 

Rule II: Take any two row (column) elements of the 
inner (dotted) square and constJ;uct their products 
with the negative elements appearing in the corre­
sponding columns (rows) of the main squareY 

Rule III: The first product in a negative double 
parentheses is always the one which contains the 
second element of the first row (or first column) of 
the inner square. 

We denote the first and second pair in the negative 
double parentheses by solid and dotted arrows, respec­
tively. Four negative q.b. expansions symbolized by 
double parentheses with the same exponent n are then 
obtained with the aid of the above rules just by inspect­
ing (36). That is, the left square in (36) gives formulas 
(15) and (17), while the right square yields formulas 
(18) and (11). Thus our purpose is achieved. As a 

2. For its construction, we use the property: The sum of elements 
in a row (column) is always an integer; all such sums are equal. 
See. Ref. 2 or 5. 

2' The product so constructed may be thought of as a column 
product (or row product) contrary to the cross product in (35). 

simple exercise one may read off the formulas (25)­
(28) from the "negative" of the left square in (37) 
below. 

To get the other set of formulas (20)-(23), it is not 
necessary to set up other rules. One may start from the 
positive squares with the first elements as a',y', etc.,28 
obtain from them the corresponding negative squares, 
and apply the above rules to get again four negative 
double parentheses fer each of the exponents a', y', 
x', and y". It is clef.' that one of these negative double 
parentheses must be the one which appears in the set 
(20)-(23). We illustrate this procedure by the following 
example: 

Again, in terms of our actual parameters of the 
theory of addition of two angular momenta, the 
positive square symbolizing the q.b. representation 
C(bl'+1) is given by29 

s 

z 

n - # 211 - # 

s az 

= 211 - # n - # # , (37) 

where we have used rules II-IV of Ref. 5. Then one 
of the corresponding negative squares will be 

s az bl'+! 

(2/1 - # + l)-~# 

-+ «#(2/1 - # + 1)- - a"_l'zi-))C8). (38) 

For the complete formula C-(s), the front factors are 
to be obtained from the positive square C(s) on the 
right-hand side of (37), as mentioned before. 30 

In conclusion, we reiterate that the negative q.b. 
representations of the unsymmetrical CGc formulas 
(Wigner type) can also be manipulated in the same 
way as their counterpart, the (positive) q.b. represen­
tations of the symmetrical CGc formulas, in the sense 
of writing out at once the double parentheses symbols 
with any exponent according to one's choice. Besides 
that, the symmetry relations between the various 

.8 Evidently these positive squares can be obtained from (35) 
by our previous rules given in Ref. 5. 

•• See Ref. 5, Eq. (17). 
3~ For that, use definition (I) given in Ref. 5. Similarly, one may 

venfy formula (30), i.e., C-(n - 1-1) by reading it off from the 
square (18) given in Ref. 5. 
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unsymmetrical CGc formulas can also be derived 
easily, thereby showing their algebraic equivalence. 
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APPENDIX A 

We reca1l2•6 the product formula obeyed by a gen­
eralized power defined by (2), viz., 

x(n) = x(m)(x - m)(n-m). (AI) 

It is easy to confirm that for the negative g.p. one 
has analogously 

(x-)(n) = (x-)(m) [(x + m)-](n-m). (AI') 

One can also derive a 3-factors product formula from 
(AI), viz., 

(x + (3)(n) = (x + (3)(p)x(n-a)(x - n + IX)("-P), (A2) 

which will be used extensively in this paper. 
Now, lety -+ -y == y- in the expansion (3). Then, 

by definition (4), 

(x - y)(n) = ~ (-l)"(:)x(n-,,)(y + IX - 1)("), (A3) 

which is the extension of (3). 
Let us consider the g.p. n("l. Again, by (4) 

n(") = (-n-Y") = (-1)"( -n + IX - 1)(") 

= (-1)"[(x - n + IX) - -ex + l)](")~ 
Expanding the right-hand side by the formula (A3), 
one obtains, first of all, 

n«l) = (-l)(lt(-V(;)(X - n + IXY,,-P>(X + (3)(PI, 

which, being multiplied by x(n-"l on both sides and 
by virtue of the 3-factors formula (A2) yields 

x(n-(l) = (-1)"~(_1)P(IX)(X + (3)(n). (A4) 
n(") P {3 

Thus we get a series expansion of the generalized 
power x(n-(ll. 

APPENDIX B 

We sketch in the following a few steps of the proof 
of formula (19). In fact, what we are doing is just 
recasting an unsymmetrical expression of CGc into a 
symmetrical one, in the usual sense of the term.10 

We think that effecting this transformation in terms of 
q.b. expansions and generalized powers is more elegant 

and clear than that in terms of factorials usually 
found in the literature.31 

Analogous to a positive q.b. expansion (1), a 
negative q.b. expansion is, by definition (Xl == X + 1, 
YI == Y + 1): 

«axi' - bYi'»(n) = ~ (-l)" (:) a(n-")(xi')(n-(ll 

X b«l)(Yi')«l) 

= (-on ~ (_l)(l (n) [a(n-a)(y + IX)(")] 
(4) (l IX 

X [(X + n - IX)(n-")b«l)] 

( ) 
( + )(II+n-a) 

= (-l)n~(-l)" n =y~IX~_ 
(A2) (l IX y(lI-a ) 

(x + n - IX)(Hn-bl 
X .0..-_---:--:"-__ 

X(:t-b) (BI) 

Expanding now the g.p. of (x + n - IX) with the 
aid of the Vandermonde formula (3) and using the 
relation (9'), (BI) may be expressed as 

«axi' - bYi'»n 

= [y(II-a)X(:t-b)]-I( -It t (X + ; - b) x(:t+n-b-P)n(P> 

X ~ (_1),,(n : (3)(y + IX)(Hn-a). (B2) 

By (A2), 

(y + IXYII+n-a1 = (y + IX)("ly(II-a+PI(a _ (3)(n-p-(l>' 

with which the summation over IX in (B2) can be 
performed by (A3), to yield (Yl == y + 1): 

~ = (a - {3 - YI)(n-PI = (-l)n-P(y + n - a)(n-P>. 
(l (4) 

With the factorization 

and 

x(:t+n-b-Pl = X(:t-b1b(n-PI 

y(II-a+PI = y(lI-ala(PI 

by (AI) and using the "exchange" 

n(P>(X + ; - b) = G) (x + n - b)(PI, 

(B2) goes into (19) by definition (1). Q.E.D. 

APPENDIX C 
To prove formula (20), we proceed as follows. We 

rewrite the q.b. expansion (1) as 

«ax - by»(n) = ~(_I)(l( n )b(,,)/a)a(n-a)x(n-a) 
a n - IX 

= ~(_I)"n(n-a)b(a)/(lI( a )x(n-(l), 
(2) (l n - IX 

(el) 

31 See. for example. G. Racah. Phys. Rev. 61, 187 (1942), especi­
ally the Appendix, p. 196. 
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and express the g.p. of degree ex by (AI) as 

b(<<) y(<<) = ex(2«-b) b(b-«) ylb-b+«). 

The generalized power of y in the above relation may 
now be expanded with the aid of (A4). With these, 
(CI) is converted into 

«ax - by»(n) = I (-l)llH (y + f3Yb) 
P f3! 

X I ( a )x(n-«) 
« n - ex 

X [n(n--OC)ex(2«-b)(b - exlPl ]. (C2) 

But by (A2), the square bracket in (C2) is equal to 

n(nH-b+P) = n(n-a'+Pl(a' _ f3la- n+«) 
(All ' 

where a' is given by (16a). Therefore one is able to 
perform the summation over ex in (C2) by the Vander­
monde formula (3), namely, 

I ( a )x(n--oc)(a' - f3ya-n+«) = (x + a' - (3)(a). 
« n - ex 

JOURNAL OF MATHEMATICAL PHYSICS 

Equation (C2) may then be written as 

«ax - by)yn) 

= (_l)b!!J.. I (-1)'1 (a') (y + f3Yb)(X + a' - f3)(a). 
a'! p f3 

(C3) 

Factorizing now the g.p. in (C3) by 3-factors formula 
(A2) as follows, 

(y + (3)(b) = (y + (3)(p)yln-a)y'(a'-p), 

y' = y + a - n, 

(x + a' - (3)(a) = (x + a' - (3)(a'-p)x(n-b)x'U3l, 

x' = X + b - n, 

and using definition (4), (C3) is finally transformed 
into the negative q.b. form, viz., 

«ax - by»<n) 

= (_l)a-n n,\ y(n-a)x(n-b)«y'xl _ x' Yl»(a'). 
a. 

Q.E.D. 
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A method of constructing invariants for the Lie algebras of the inhomogeneous pseudo-orthogonal 
and pseudo-unitary groups from invariants of the (homogeneous) pseudo-orthogonal and pseudo-unitary 
groups, respectively, is presented. The method is based on the "expansion" (or "deformation") of the 
inhomogeneous algebras to homogeneous ones. Several examples are worked out. 

1. INTRODUCTION 

Herein is presented a method of constructing invar­
iants for the Lie algebras of the inhomogeneous 
pseudo-orthogonal and pseudo-unitary groups from 
invariants of the Lie algebras of the (homogeneous) 
pseudo-orthogonal and pseudo-unitary groups, re­
spectively.! The method is based on "expansion" (or 
"deformation") of the Lie algebra of IO(p, q) or 
IU(p, q) to the Lie algebras of O(p + 1, q) and 
O(p, q + 1), or U(p + 1, q) and U(p, q + 1), re-

• This work was supported in part by the U.S. Atomic Energy 
Commission (Report No. NYO-2262TA-164). 

t On leave of absence from Tel-Aviv University. 
1 This general method is based on relations found in Ref. 2 [Eqs. 

(41), (\29), and (132)], which are special cases of the method. 

spectively, whereby the two homogeneous algebras in 
each case are constructed as subalgebras of the 
enveloping algebra of the inhomogeneous algebra.2 •3 

Any invariant of the Lie algebra of O(p + I, q), 
O(p, q + 1), U(p + 1, q), or U(p, q + 1) thus corre­
sponds to an element of the enveloping algebra of 
IO(p, q) or IU(p, q), whichever is appropriate, and is 
shown to be an invariant of the Lie algebra of IO(p, q) 
or IU(p, q), respectively. 

2. DEFINITIONS AND NOTATION 

Greek indices run from 1 to n; Latin indices run 
from 1 to n + 1. gllv is a diagonal metric tensor whose 

• J. Rosen and P. Roman, J. Math. Phys. 7, 2072 (1966). 
3 J. Rosen, Nuovo Cimento 468, 1 (1966). 
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eigenvalues consist of + 1 P times and -1 q times, 
where p + q = n. gab is also diagonal with g n+1n+1 = 
± 1. The summation convention is assumed. The 
metric tensors raise and lower indices as usual. 

O(p, q): the n-dimensional (homogeneous) pseudo­
orthogonal groups. Mlly = - MYIl form a basis for 
their Lie algebras, where 

[M"y, Mpa] = 

gllpMYa - gyP Mila + g"aMpy - gyaMpll' (1) 

IO(p, q): the n-dimensional inhomogeneous pseudo­
orthogonal groups. Mlly = -MYIl and PIl form a 
basis, where Eq. (1) holds and 

[Mil" Pp] = gllPPy - gypPIl , (2) 

[PIl , p.] = O. (3) 

U(p, q): the n-dimensional (homogeneous) pseudo­
unitary groups. A basis for their Lie algebras is formed 
by Elly = - EYIl and Flly = FYIl obeying 

[Elly , Epa] = g"pEYa - gypElla + g"aEpy - gyaEpll' (4) 

[E"y, Fpa] = g"pFYa - gypF"a + gllaFpy - gyaFpll' (5) 

[F"y, Fpa] = g"pEw1 + gypE"a - gllaEpy - gyaEpll' (6) 

IU(p, q): the n-dimensional inhomogeneous pseudo­
unitary groups. Ellv = -Evil' Fllv = Fyll , QIl' and RIl 
form a basis for their Lie algebras, where Eqs. (4)-(6) 
hold and 

[Ellv , Qp] = gllpQy - gvpQIl' (7) 

[Ellv , Rp] = gllpRv - gvpR" , (8) 

[F"v, Qp] = -g"pRv - gvpR" , (9) 

[Fllv' Rp] = gllpQv + gvpQIl' (10) 

[QIl' Qv] = [QIl' Rv] = [RIl' Rv] = O. (11) 

3. PSEUDO-ORTHOGONAL GROUPS 

p2 = PIlPIl is a second-degree invariant of IO(p, q). 
Denote 

J Il = !(PVMllv + Mllvr), 

and define MUb = - Mba by 

M"n+1 = (_£p2)-iJ", 
with 

where £ = ± 1. The Mab obey 

[Mab' M ed] = gacMbd - gbeMad 

(12) 

(13) 

(14) 

+ gadMeb - gbdMca' (15) 

and therefore form a basis of the Lie algebra of 
O(p + l,q) (£ = +1) or O(p,q + 1) (£ = -1).2-4 

• This construction was performed for 10(p, q) by A. Sankarana­
rayanan, Nuovo Cimento 38, 1441 (1965), and for 10(3,1) by M. A. 
Melvin, Bull. Am. Phys. Soc. 7.493 (1962), and by M. Y. Han, 
Nuovo Cimento 42B. 367 (1966). See also A. Biihm, Phys. Rev. 
145. 1212 (1966) and C. Fronsdal, Rev. Mod. Phys. 37, 211 (1965). 

We now prove the following: 

Theorem: If an element of the enveloping algebra of 
IO(p, q) (i.e., a polynomial in M"y and PI..) commutes 
with all M"v and J", it also commutes with all P". 

Proof: Let Xbe ajth-degree polynomial in Mllv and 
P" obeying 

[M"v, Xl = [J", Xl = 0 

for all ft, 'V. Denote 

(16) 

(17) 

Each component of Y" either is a jth-degree poly­
nomial or vanishes. Equations (12), (16), and (17) 
give 

M"vYV + YVM"v = O. (18) 

From Eqs. (2), (17), and the Jacobi identity for 
commutators, we obtain 

[M"v, yV] = (1 - n)YIl . (19) 

Addition of Eqs. (18) and (19) gives 

(20) 

Now if any of the Y" are assumed to be nonzero, 
Eq. (20) can be used to show contradictions such as 
the assumed nonzero component vanishing or a jth­
degree polynomial equaling a (j + l)th degree 
polynomial. So we have the result that Y" = 0 for all ft. 

Q.E.D. 

Take any invariant of the Lie algebra of O(p + I, q) 
or O(p q + 1) of the form Mal Ma • ••• Mam (m 

, a2 a3 at 

even and <n + 1) or € ... Mala • ••• Manan+! for 
at an-t-l 

n + 1 even (£a '" a completely antisymmetric with 
1 1Hl 

£1 ... n+1 = 1). Substitute Eqs. (13), (14), and (12). 
Either all square roots and £'s disappear or they can 
be factored out. Multiply by £ and (_€p2)i, if necess­
ary, and by p2 to the lowest power sufficient to remove 
all negative powers of P2. (The expression can also be 
multiplied by any convenient numerical factor.) The 
resulting polynomial in M"y and P" commutes with all 
Mlly and J" and, according to the above theorem, 
therefore commutes with all P" and is an invariant of 
the Lie algebra of IO(p, q). In specific cases this 
resulting IO(p, q) invariant might reduce to a function 
of lower-degree invariants. 

Example 12: Starting with the second-degree invari­
ant Ma bMba' we obtain the fourth (in general)-degree 
invariant 

P2M" M V _ 2P"PVM Ma _ l(n _ 1)2p2 
v " "a v "2" • 

For n = 3 this becomes (£llapPIlMVP)2 + 4p2 and is a 
function of second-degree invariants. 



                                                                                                                                    

PSEUDO-ORTHOGONAL AND PSEUDO-UNITARY GROUPS 1307 

For n = 4 we obtain f./lVP"PvMp"f./l«pyP«MPY + 9P2, 
which is a bona fide fourth-degree invariant. 

Example 2: For n = 3 the second-degree invariant 
f.abedMab Med gives the second-degree invariant 8/lVp 
P/lMVP. 

Example 3: The fourth-degree invariant MabMbc 
MCdMda gives rise to the eighth-(in general)-degree 
invariants 

P4M« MP MY MO - 4p2pvp/lM M« MfJ MY PYOIZ I'IZPYv 
+ 2P"PPPVp/lM/lIZMavMppMP" 

- (3n - 4)P4M apMP« 

+ (n - 1)(3n - 2)P2PV~/lM/l«M\ 

- -h(n - 1)3(n - 3)p4. 

4. PSEUDO-UNITARY GROUPS 

Q2 + R2 = QI'Q/l + RI'R/l is a second-degree in-
variant of IU(p, q). Denote 

A/l = HQvE/l v + E/lvQv - WF/lv - F/lvW), (21) 

B/l = t(WE/lv + E/lvW + QVF/lv + F/lvQV), (22) 

A = HQ/lB/l + B/lQ/l - WA/l - A/lW) 

= 2QI'WE/lv + (QI'Qv + WW)F/lv, (23) 

and define Eab = - Eba and Fab = Fba by 

E/ln+1 = [_f.(Q2 + R2)]-!A/l' (24) 

F/ln+l = [-f.(Q2 + R2)]-!B/l' (25) 

Fn+1n+1 = [_f.(Q2 + R2)]-lA, (26) 
with 

gn+ln+1 = f., (27) 

where f. = ± 1. The Eab and Fab obey Eqs. (4)-(6) 
with fl, P, p, and a replaced by a, b, c, and d, respec­
tively, and therefore form a basis of the Lie algebra 
of U(p + 1,q) (f. = +1) or U(p,q + 1)(8 = _1).2.3 

We now prove the following: 

Theorem: If an element of the enveloping algebra 
of IU(p, q) (i.e., a polynomial in E/lv, F/lv, Q/l' and R/l) 
commutes with all E/lv, F/lV, AI" and BI" it also com­
mutes with all QI' and RI'. 

Proof: Following the line of the proof of the previous 
section, let X be a jth-degree polynomial in El'v, 
Fl'v, QI" and RI' obeying 

[£1' V , X] = [Fl'v' X] = [A/l' X] = [BI" X] = 0 (28) 

for all fl, P. Denote 

YI' = [QI" X], 

ZI' = [RI" X]. 

(29) 

(30) 

Each component of YI' and Z/l either is a jth-degree 
polynomial or vanishes. Equations (21), (22), and 

(28)-(30) give 

E/lvYv + YVE!lv - Fl'vZv - ZVFl'v = 0, (31) 

El'vZv + ZVEl'v + Fl'vYv + YVFl'v = O. (32) 

From Eqs. (7)-(10), (29), (30), and the Jacobi 
identity for commutators, we obtain 

[El'v' yV] = (1 - n)YI" (33) 

[E/lv' ZV] = (1 - n)ZI' , (34) 

[Fl'v' YV] = -(1 + n)ZI' , (35) 

[Fl'v' ZV] = (1 + n)YI'. (36) 

Subtraction of Eq. (36) from the sum of Eqs. (31) 
and (33) gives 

El'vYv - Fl'vZv = -nYI" (37) 

and addition of Eqs. (32), (34), and (35) gives 

E/lvZv + Fl'vYv = -nZi'" (38) 

Now if any of the Y/l and ZI' are assumed to be non­
zero, Eqs. (37) and (38) can be used to show contra­
dictions such as the assumed nonzero component 
vanishing or a jth degree polynomial equaling a 
(j + l)th-degree polynomial. Therefore YI' = ZI' = 0 
for all fl. Q.E.D. 

Take any invariant of the Lie algebra of U(p + 1, q) 
or U(p, q + 1) having the form of a polynomial whose 
terms are proportional to products of Gab'S and Hab's 
with all indices contracted among themselves. Sub­
stitute Eqs. (24)-(27) and (21)-(23). All square roots 
and f.'S disappear. Multiply by Q2 + R2 to the lowest 
power sufficient to remove all negative powers of 
Q2 + R2 (and by any convenient numerical factor, if 
desired). The resulting polynomial in El'v, Fl'v, QI" 
and RI' commutes with all El'v, Fl'v, AI" and BI'; 
according to the above theorem, it therefore commutes 
with all Q/l and RI' and is an invariant of the Lie algebra 
of IU(p, q). In specific cases this resulting IU(p, q) 
invariant might reduce to a function of lower-degree 
invariants. 

Example 12: Starting with the first-degree invariant 
Faa, we obtain the third (in general)-degree invariant 
(Q2 + R2)Fa'" - A. 

Example 22: The second-degree invariant EabEba -
F\Fb

a gives the sixth (in general)-degree invariant 

(Q2 + R2)2(E"'pEP« _ F""pFP«) 

+ 2(Q2 + R2)(AaAa + BaB"') - N. 
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A mathematical model of the alternating-current distribution for a long superconducting strip with 
small thickness is analyzed. The interestin& feature.of the model i~ that it issoluble .. Thecu~ren~ d!stribu~ion 
is found from the analytic solution to a smgular mtegral equatIon, and from t~IS solutIOn I! IS possIble 
to predict the behavior of the distributi~m thro.ughout a complete. c~cle. PrevH;>Us (unl?ubhshed) work 
showed that purely physical arguments dId not gIve the correct predIctIOns for thIS behavIOr at the end of 
each half-cycle. The present model overcomes this deficiency. 

1. INTRODUCTION 

When alternating current flows in a thin super­
conducting strip, the alternating magnetic field 
associated with the current cuts into the plane of the 
strip and the current tries to distribute itself across the 
width so as to make this field zero. Perfect flux 
exclusion right to the edges would entail infinite 
current per unit width at the edges (and finite values 
elsewhere in the width). In fact, the current per unit 
width i is limited by the properties of the supercon­
ductor to a critical value io, which is here simplified to 
a constant independent of the field. 

Then there is always a portion of the strip from each 
edge inward which carries io, and this portion i~creases 
with current. It can be shown that a hysteretic effect 
takes place and that, when the current is reduced after 
its initial maximum, the regions do not shrink but 
instead a region of opposite polarity grows inward 
from each edge. In the inner part of the strip the 
current adjusts itself to make the field there zero, but 
in the outer regions carrying io this is not possible; 
flux enters the strip and causes a power loss because 
the voltages which it induces are in the same direction 
in each part of the region as is the current. 

In Fig. I the width of the strip is represented by 2a, 
and the x axis is chosen so that -a ~ x ~ a. The 
current distribution i(x) at some stage in the half-cycle 
can be approximated to the form shown. The inner 
portion of the strip -b ~ x ~ b is superconducting, 
i.e., its resistivity remains zero, and no flux enters. 
The jumps in i(x) at D, A of Fig. I (where AB = 
CD = oc) are here represented vertically in the follow­
ing analysis, but a truer represent~tion near t~ese 
points would require the introductIOn of a r~p.Idly 
increasing function. In symbols the above condItions 

• This research was sponsored in part by the English Electric 
Company, Ltd., Stafford, and in part by the Mathematics Research 
Center (U.S. Army) under contract number DA-31-124-ARO-D-
462. 

on i(x) now become 

. . {-a < x < -a + oc, I(X) = -10 , 
a - oc < X < a, 

. . {-a + oc < X < -b, 
I(X) = ' 0 , b < x < a - oc. 

We impose the condition 

i(x) =;0 at x = ±b. 

(1) 

(2) 

(3) 

(4) 

(5) 

The starting point for the development of the theory is 
the London equation for the current density i, 
curl i = - ,82H, and the Maxwell equation curl H = i. 
Here 1/,8 is the penetration depth. Since the problem is 
one-dimensional, it is straightforward to see that we 
can represeQ.t the magnetic-field distribution H( 0 
at some point, by means of 

H(O = (27T,84)-l P ra 
i(x) dx, (6) 

J-a' - x 

where the P signifies that the Cauchy' principal value 
of the integral has to be taken. The representation 
(6) satisfies the one-dimensional forms of the London 
and Maxwell equations. The reader may note that 
Marcus l considered a problem similar to the above, 
although he dealt with direct-current flow and con­
sidered a cylindrical superconductor. The above 
representation (6) can be deduced from the formulas 
given by Marcus. The singular integral equation for 
the current density derived by Marcus is of a mathe­
matically more complex form than Eq. (14) below. 

The magnetic field has to be zero over the super­
conducting portion of the strip and hence 

P ~ dx = 0, -b ~ , ~ b. fa i(x) 

-a'-X 
(7) 

There is now sufficient information available to enable 

1 P. M. Marcus, Intern. Conf. Low Temp. Phys., Toronto 7,418 
(1960). 

1308 
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FIG. I. Current distribution across the strip. 

a representation to be discovered for the current 
distribution over the superconducting portion of the 
strip. To facilitate interpretation of the integrals which 
arise when dealing with (7), we introduce the quantity 
i'(x) defined as 

i'(x) = io - i(x) for -b::::;; x ::::;; b. (8) 

Thus, in place of (5), we now have 

i'(x) = 0 at x = ±b. (9) 

The remaining sections concern the analysis of the 
consequential current distribution. 

2. SOLUTION OF THE INTEGRAL 
EQUATION 

Application of (7) and (1)-(4), for -b::::;; ~ ::::;; b, 
now yields 

pJ'b i'(x) dx = ioFW, -b::::;; ~ ::::;; b, (10) 
-b ~ - x 

where we have set 

Fa) = 21n" + a - ()(I - 21n I~ - a + ()(I 
- In " + al + In " - al. (11) 

To reduce the algebra we introduce the transformations 

(x + b)/2b = u, (~+ b)/2b = v, (12) 

and write 
leu) = i'(2bu - b)/io• 

This means that in place of (10) we now have 

P e leu) du = -f(v) , 0::::;; v ::::;; 1, 
Jo u - v 

where now we have defined 

f(v) = F(2bv - b). 

(13) 

(14) 

(15) 

Equation ,(10) is a singular integral equation with a 
Cauchy kernel for the quantity leu). Various authors 
have examined the solution of equations of this type 
and, in particular, S. G. Mikhlin2 has devoted some 
effort in this direction; from the analysis in his book 

we can place the solution of (10) in the concise form 

1 ( u )i leu) = -2 --
1T 1 - u 

X P e(1 - V)i f(v) dv + C ,(16) 
Jo v u - v [u(1 - u)]i 

where c is an arbitrary constant. By simple rearrange­
ment, 

leu) _ -1 (_U_)f e f(v) dv 
- 1T2 1 - u Jo [v(1 - V)]f 

_ .!. [u(1 _ u)]i p e f(v) dv 
1T2 Jo (u - v)[v(1 - v)]i 

+ [u(1 ~ u)]i' (17) 

It is possible to show that the first integral in (16) has 
the value zero and hence we have from (17) 

leu) = -1 [u(1 _ u)]i p e f(v) dv 1 

1T2 Jo (u - v)[v(1 - v)]~ 

+ [u(l ~ u)]i' (18) 

When u is near zero (or unity), it can be shown that 
the first integral in (18) is bounded; consequently, 

lim [u(1 - u)]i p e f(v) dv = o. 
u-->Oorl Jo (U - V)[v(1 - v)]i 

Also application of condition (9), via the transforma­
tion (13), yields 

1(0) = 1(1) = o. 
It follows from the above analysis that we can take 
the constant c to be zero in (18); thus the solution 
(which is now unique) for leu) is 

leu) = =1. [u(l _ u)]! p r f(v) dv , 
1T2 Jo (u - v)[v(1 - v)]i 

o ::::;; u ::::;; 1. (19) 

3. ANALYSIS OF THE SOLUTION 

On using (12), we now put (15) in the form 

f(v) = 2ln 12bV - b + a - ()( 1 + In 1
2bV - b - a I. 

2bv - b - a + ()( 2bv - b + a 

If we set v = sin2 C/>, this expression becomes 

f(sin2 c/» = 2 In 1 a - ()( - b cos 2c/> 1 
a - ()( + b cos 2c/> 

_ In 1 a - b cos 2c/> 1 

a + b cos 2c/> . 
2 S .G. Mikhlin, Integral Equations (Pergamon Press, Inc., New 

York, 1957). 
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From (19), if we introduce v = sin2 e/>, u = sin2 'IjJ, then 
we have 

I(sin2 'IjJ) = -: sin 'IjJ cos 'IjJ 
7T 

X P [17/2 In I(a - a - bcos2e/»/(a - a + bcos2e/»1 de/> 

Jo sin2
'IjJ - sin2 e/> 

2 . + 2sm 'ljJcos 'IjJ 
7T 

X P [17/2Inl(a - bcos2e/»/(a + bcos2e/»lde/>. 

Jo sin2
'IjJ - sin2 e/> 

Let K('IjJ) denote the integral 

p [17/2 In I(A - B cos 2e/»/(A + B cos 2e/»1 de/> . 

Jo sin2 'IjJ - sin2 e/> 

Then we have 

1"/2 sec2 e/> sec2 'IjJ 
K('IjJ) = P 

o tan2 'IjJ - tan2 e/> 

X In [A - B + (A + B) tan
2 

e/>J de/>, 
A + B + (A - B) tan 2 e/> 

if A - B and A + B are each greater than zero. In 
this integral, use the substitutions x = tan e/>, r = 
tan 'IjJ: 

1
00 1 

R(r) = (1 + r2) p --2 
o r2 - x 

X In [A - B + (A + B)x
2J dx, 

A + B + (A - B)x2 

where we have set R(r) = K(tan-1 r). Now, by simple 
analysis, we have 

In {A - B + (A + B)x2
} 

= In (A + B) + In{1 + (~ ~ !):2} + Inx
2
. 

If we place k2 = (A - B)/(A + B), we may now write 
R(r) in the form 

R(r) = (1 + r 2)p [00 1 21n (1 + k:) dx Jo r2 - x x 

2 JOO 1 ( 1 ) - (1 + r )P 2 21n 1 + -2- dx. 
o r - X k x 2 

By the integration of 

1 ( ik) -2--2 In 1 + - , 
z - r z 

where z = x + iy, it is straightforward to verify that 

P --- In 1 + - dx = - tan-1 
- , J 00 1 ( k

2
) 7T k 

o r2 - x2 x2 r r 

and this result requires k to be positive. Accordingly, 
it is possible to obtain a closed form expression for 
R(r), and hence 

K('IjJ) = . -7T tan-1 
( 2B !sin "Pcos "P). 

sm 'ljJCOS "P (A2 - B2) 

It is straightforward to obtain I(sin2 "P); and since 
sin2 "P = u, the solution of the integral equation is now 

I() 4 t -1 2b(u - u2)! 
u = - an 

7T {(a - a)2 - b2}! 

_ ~ tan-1 2b(u - u2
)! 

7T (a 2 
- b2)! 

We are now in the fortunate position of being able to 
utilize the first transformation of (12) to bring the 
solution to a form involving the original variable x. 
From (8) and (13) the current distribution can be 
placed in the form 

i(x) 4 -1 (b 2 
- x 2)! 

- = 1 - -tan 
io 7T {(a - a)2 - b2}! 

2 (b 2 
- x 2)! + - tan-1 

• 

7T (a 2 
- b2)! 

F or convenience in further theoretical investigation and 
computation, we now introduce the nondimensional 
parameters 

A = rx/a, fl = bfa, w = x/b. 

As a consequence, 

i(bw) = 1 _ ~ tan-1 [ (1 - OJ2)fl2 J! 
io 7T (1 - A)2 - fl2 

+ ~ tan-1 [(1 - OJ2)fl2J!, (20) 
7T 1 - fl2 

where -1 S OJ S 1. 

4. BEHAVIOR OF THE CURRENT 
DISTRmUTION 

Since we have a definite analytic expression for the 
current distribution, we can now pursue the behavior 
throughout a cycle with some ease. If we regard the 
region of superconductivity to be given, that is, b/a 
or fl is known, then, during each half-cycle, rx mono­
tonically increases its value from zero to a-b. 
Accordingly, in (20) we can regard fl as being fixed 
and A as varying from zero to 1 - fl. From the 
description given by Fig. 1 we have 

b < a or fl < 1; a - a > b or 1 - A > fl. 
(21) 

Consequently , for OJ in the range -1 S OJ S 1, the 
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denominators of each quantity in the representation of 
the current distribution (20) do not become negative. 
Also, since i(bOJ) is an even function of OJ, we need 
only consider values of w for which ° S; w S; 1. 

One immediate result from (20) is that, when w = 
±1, i(±b)=io, which agrees with (5). Now, by 
differentiation of (20) with respect to w, we have 

~[i(~W)J 
dw 10 

1.0 

o 9 

0:8 

0.7 
}"·o -----

0.6 

0.5 

0.4 
}.,·0.25-----

0.3 

2wtt(N - DW2tt2) 0.2 

= 7T(1 - (2)!{(1 _ A)2 _ w2tt2}(1 - w2tt2) , 0 I 

where 0 

N = 2{(1 - A)2 - tt2}1 - (l - A)2(1 - tt2)!, 

D = 2{(1 - A)2 - tt2}~ - (1 - tt2)!. 

- 0 I 

- o. 2 

-0.3 

}".0.45 ------

The gradient is infinite for w = ± 1 and is zero when- -0.4 

ever 
OJ = 0, (22) 

(23) 

The first of these, Eq. (22), gives a minimum or a 
maximum turning point, accordingly as N :::: 0. For 
convenience, we introduce 

A = [2 - 2(1 - tt
2 
+ tt

4

)!J!, B = t(1 + 3tt2)!. 
1 - tt2 

Hence the following can be verified: 

N > 0, 1 - A > A; N = 0, 1 - A = A; 

N<O, l-A<A; D>O, l-A>B; 

D = 0, 1 - A = B; D < 0, 1,- A < B. 

In the (A, tt) plane with tt as abscissa, there are three 
regions: region 1, which lies above the curve I - A = 
B; region 2, which lies between the curves 1 - A = B 
and 1 - A = A; and region 3, which is the very 
narrow region lying between 1 - A = A and the line 
1 - A = tt. Note that the curves 1 - A = A and 
1 - A = B do not overlap, but are tangential to each 
other at tt = 1. In region 1, N> 0, D > 0, and 
Nj D > 1. Therefore the value of w as given by (23) 
is greater than unity, which is not allowed. Hence 
there is no turning point in this case. However, the 
turning point given by (22) is a minimum. 

In region 2, N> 0, D < 0, and the value of w 2 as 
given by (23) is negative; again there is no turning 
point in this case. The turning point given by (22) is a 
minimum. 

In region 3, N < ° and D < 0. Set 1 - A = tt + €, 

where € is a small positive quantity. A straightforward 
expansion in terms of € indicates that, for values of 

-0.5 
}.,. 0.495 ---______ --

-0.6 
A. 0 .4999 =======::::::=­
A' 0.5 -0.7 

-0.8 

-0,9 

-1.0 

o 0.1 0.20.3 0.4 0.5 0.6 0.7 O.B 0.9 1.0 w 

FIG. 2, Behavior of the current distribution i(bw) for!.t = 0.5 and 
.Ie increasing from 0 to I - !.t per half-cycle. 

1 - A close to tt, we have w 2 less than unity; accord­
ingly, there are now turning points given by (23). It is 
easy to verify that this is a minimum turning point. 
The turning point given by (22) is a maximum. 

The above analysis can be used to indicate the be­
havior of the current distribution i(bw) through a 
half-cycle from r:t. = ° (A = 0) to r:t. = a - b (A = 
1 - tt). For when A = 0, we have, from (20), 

i(bw) = 1 _ ~ tan-1 (1 - (
2
)tt . 

io 7T (1 - tt2)! 
(24) 

As A increases, successive curves of i(bw) lie beneath 
the curve defined by (24) (see Fig. 2). At some value 
of A (actually given by N = 0) each curve begins to be 
convex and to take the forms shown on the figure. 
When A = 1 - tt, Eq. (20) gives 

i(bOJ) 1 2 -1 (1 - ( 2)tt -- = - + -tan , 
io 7T (1 - tt2)! 

which is just the exact inverse of (24). Figure 2 shows 
some typical curves for the current distribution for the 
case when tt is 0.5 and for ° S; w S; I. 
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The importance of the existence of the closed-form 
solution for the above mathematical model of the 
superconducting strip is as follows. By means of purely 
physical reasoning it was possible to predict that the 
profile of the current distribution in the supercon­
ducting portion of the strip during the first half-cycle 
would be convex upward and that in the next half­
cycle the profile ought to be concave downward. The 
above mathematical model predicts this behavior, and 
the analysis of the slope of the current distribution 

JOURNAL OF MATHEMATICAL PHYSICS 

illustrates in detail how the transition during each 
half-cycle is effected. 
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We express the grand canonical partition function (GCPF) for a system of interacting bosons as a 
functional integral over one complex function. Our derivation is based on the so-called coherent-state 
representation [R. J. Glauber, Phys. Rev. 136,2766 (1963)]. We show how to extract the perturbative 
expansion of the GCPF and the various Green's functions from our functional-integral representation 
and we indicate the relevance of our formalism to the theory of superfluidity. 

I. INTRODUCTION 

The central quantity in the quantum statistics of 
many-boson systems is the grand canonical partition 
function (GCPF). It is useful to obtain a variety of 
mathematical expressions for this quantity, "Since a 
particular expression might prove to be particularly 
suitable for a discussion of a given physical phenome­
non. We believe that, for a discussion of superfluidity 
occurring in 'He at low temperature, it is useful to 
express the GCPF as a functional integraP analogous 
to Feynman's well-known path-integral representation 
of quantum-mechanical wavefunctions. The basis for 
this belief is discussed in Sec. V of this paper. 

A functional-integral representation for the GCPF 
has been described some time ago by Bell2 on the basis 
of a somewhat involved mathematical argument. In 
the present paper we present a much simpler and 
more physically transparent derivation of Bell's result. 

1 S. G. Brush, Rev. Mod. Phys. 33, 79 (I96\); I. M. Gel'fand and 
A. M. Yaglom, J. Math. Phys. 1,48 (1960). 

• J. S. Bell, The Many Body Problem, E. R. Caianiello, Ed. 
(Academic Press Inc., New York, 1962). After the completion of this 
paper we discovered that S. S. Schweber, [I. Math. Phys. 3, 831 
(1962») had used a method essentially identical to ours to derive the 
content of Sec. II. However, since he considers only real time and 
does not discuss the GCPF directly, we feel that our derivation is 
still useful. Schweber's paper gives references to other works on the 
coherent state formalism. 

Our approach makes crucial use of the so-called 
coherent-state representation.3 Our method has the 
further advantage of yielding the functional integral 
representation of'the GCPE directly. In contrast, 
Bell's derivation yields an expression only for the 
ratio ZjZo, where Z and Zo are the GCPF's for the 
interacting and free systems, respectively. Finally, 
Bell's derivation relies implicitly on the assumption 
that the chemical potential is finite, whereas ours 
does not. 

Our derivation of the functional integral for the 
GCPF is given in Sec. II. In Sec. III, we derive the 
perturbative expansion of the GCPF directly from 
its functional integral representation. In Sec. IV, we 
widen our outlook to include an additional interaction 
with an external c-number source J(x). This enables 
us to apply formal functional-integration techniques 
and derive an expression for the GCPF, from which 
the various Green's functions of the system are easily 
recovered by means of functional differentiation with 
respect to J(x). The relevance of our formalism to the 
treatment of superfluidity is discussed in Sec. V. 
Langer' also discusses the role of coherent states3 in 

3 R. J. Glauber, Phys. Rev. 136, 2766 (1963). 
• I. S. Langer (report of work prior to publication). We wish to 

thank Professor A. Ron for drawing our attention to this work. 
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FUNCTIONAL INTEGRALS FOR MANY-BOSON SYSTEMS 1313 

the theory of superfluidity, but his method differs 
from ours, since he considers functions which depend 
on the space variables only. 

n.FUNCTIONALINTEGRALS 

In this section we derive the functional-integral 
expression for a system of interacting bosons. For 
the sake of clarity we shall first give the derivation 
for a system of free bosons. All the essential points of 
our method appear in this simple case and the general­
ization to the case of interacting systems is straight­
forward. 

We therefore seek to evaluate the grand canonical 
partition function5 

Z = Tr e-PHo (1) 

for a system of free bosons described by the Hamil­
tonian 

(2) 

where €k - ft (with €k = k2) is the free particle energy 
measured from the chemical potential ft. We have set 
Ii = 2m = 1. In Eq. (1), {J is the inverse temperature 
in units of Boltzmann's constant and the trace in­
volves all states and all par'ticle numbers. The creation 
and destruction operators at and ak obey the usual 
Bose-Einstein commutation rules 

[ak , ak'] = 0, 

[ak , a~,] = (jkk" 

We shall assume throughout that we are dealing with 
spinless particles. 

Let us choose as our set of states over which the 
trace in Eq. (1) is to be taken, the set of Glauber­
coherent3 states I <xk)· These are defined to be the 
eigenstates of the non-Hermitian operators ak : 

ak I<xk) = <Xk I<xk)· 

These states are given explicitly by 

I<xk) = e(aWlkt-iik'lk) 10), 

with the bar indicating complex conjugation. The 
properties which are important here are the expression 
for the scalar product of two coherent states 

(<Xk I <x~,) = (jkk' exp (OCk<X~' - t I <Xk1
2 

- t I <x~, 12) (3) 

and the completeness relation 

I d2<Xk II I<xk) - (<Xkl = 1, 
k 7T 

(4) 

where 

• J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 5, 1417 (/960). 

If we use the coherent states to represent the GCPF, 
we then have 

Zo = II I d 2
<Xk(<Xkl e-P€Wlktakl<Xk)' 

k 7T 

where we have 

€k = €k - ft· 

Let us rewrite the matrix element that appears in the 
integrand in the following manner6: 

(<xkl e-P€kaktak I<xk) = (<Xkl IT e-6Tn€kuktuk I <xk), (5) 
n=l 

where we have set 2;Y=1 (jT n = {J, with (jT n€k'-""; liN. 
We shall, of course, be interested in the limit N ---+ 00. 

We now omit the subscript k and write 

I d2<x (<xl IT e-6Tn €at
a I <X) 

7T n=l 

=I d
2

<Xij (<xol e-6T1 €utul<x1) d
2

<Xl ••• d
2
<Xm 

7T 7T 7T 

X (<Xml e-6Tm+lEuta I <Xm+l) d
2
<Xm+1 ••• d

2
<XN_l 

7T 7T 

(6) 

Here the subscript m refers to the ordering introduced 
in Eq. (5) and the original <Xk variable has been denoted 
by <Xo. The right-hand side of Eq. (6) can be written 
to the first order in (jT as 

I d:<x
o exp {-t 1<Xol 2 + OCO<Xl - (jTl€OCO<X1 - t I <X112} ••• 

I d2<Xm {.l I 2 -
X ---;;- exp - 2 <Xm I + <Xm<Xm+l 

- (jTm+1OCm<Xm+1 - t I <Xm+112} ••• 

I d2<XN_l {II 12 -
X -7T- exp -"2 <XN-l + <XN-l<XO 

- (jT~N_l<XO - t l<xoI2}. 

Here we used the formula (3) for the scalar product 
(<x I <x'). We now combine terms involving the indices 
(m, m) with those involving the indices (m, m - 1) 
and similarly terms involving the indices (m, m + 1) 
are grouped with the terms featuring the indices 
(m + 1, m + 1). This leads to terms of the following 
general form: 

exp {-I<XmI 2 + OCm_l<Xm - (jTm€OCm_1<xm}. (7) 

Note that, for this arrangement, <Xo is considered as 
indexed by N except for the mixed term OCO<Xl where 
<Xo is the zeroth term. The expression (7) can be written 

• R. P. Feynman, Phys. Rev. 84, 123 (1951). 
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as 

(8) 

We can now replace the iXm-1ocm by iXmocm, since the 
correction term is negligible when compared with the 
other term in the square bracket for €(h m ---+ 0 which 
is the limit considered here. Thus, in this limit, we 
can now write Z in the form (restoring the k index) 

Zo = 1] f d2
OC;(T) exp {-f: dT[OTiXiT)ociT) 

+ €kiXiT)OCk(T)]}, (9) 

where the integral over b2ock ( T) is now interpreted as 
sum over all functions Re oc( T) and 1m oc( T). If we 
consider Re OCk(T) and 1m OCk(T) as the Fourier coeffi­
cients of Re tp(r, T) and 1m tp(r, T), respectively, we 
can rewrite Eq. (9) in the succinct form1 

Zo = f btp(r, T) exp { -SoP dT dr[oT1jj(r, T)tp(r, T) 

- 1jj(r, T)(V2 + ft)tp(r, T)]} 

(tp = Re tp + 1m tp). (10) 

We now wish to remark on the allowed time depend­
ence of the tp(r, T). Since the time interval of interest 
is from 0 to f3, we need consider only periodic function 
with a period f3. A restriction on the allowed time 
dependence follows from the following argument. In 
Eq. (7) we chose to group together the (m + 1) term 
with the m term. Equally well, we could have used the 
grouping (m - 1, m). Upon following the latter 
prescription, the term 

f dr dToT1jj(r, T) . tp(r, T) 

in the action is replaced by 

-f dr dT1jj(r, T) . OT tp(r, T). 

For consistency, these expressions must be equal. As 
may be ascertained by partial integration, this implies 

f dr Itp(r, f3W = f dr Itp(r, 0)12. 

This requirement does not follow from the usual 
periodicity constraint which only imposes the equality 
oftp(r, f3 + e) with tp(r, 0 + e). 

We now turn our attention to the interacting 
system. In this case we must evaluate [cf. Eq. (1)] 

Z = Tr e-P(Ho+V), (11) 

with 

v = i L (klk21 V Ikak4> atataksak., 
klk2k3k• 

i.e., with a two-body interaction term which is also 
[cf. Eq. (2)] expressed in the second-quantized form. 
Again, we can rewrite the trace as 

(12) 

Now, of course, we cannot split the matrix element 
in the integrand into a product over independent 
factors ock • Nonetheless, the procedure remains form­
ally the same as for the free-boson case-only here 
the differential d2ocO/7T and the unit operator 

flOCm> d
2;m (oc",1 

stand for the product, e.g., 

d
2

0c = II d20Ck . 
7T k 7T 

With this definition we can perform the step leading 
to Eq. (6) as before because the Hamiltonian no + v 
is in normal order (i.e., the creation operators appear 
to the left of the absorption operators whenever 
present). A typical exponential term in the resultant 
expression is 

exp {-iLl OC;:'12 + ! iX;:'oc;:'+1 
k k 

- bT m+l[! iX;:'EkOC;:'+1 +! ! iXhiX;:: 
k klk.ksk. 

X (klk21 V I kak4> OC~+1OC;:+lJ - it loc;:'+112}. 

Finally, if we consider Re OCk(T) as a Fourier coefficient 
ofRe tp(r,T) (and similarly for the imaginary part), the 
result can be written as a functional integral over one 
complex c-number function tp(r, T): 

Z = f btp(r, T) exp {SoP dT dr[ 1jj(r, T)(V2 + ft - 0T)tp(r, T) 

- ~ I dr' 1jj(r, T)ip(r', T)v(r, r')tp(r', T)tp(r, T) J}. 
(13) 

Equation (13) is our final result expressing the GePF 
of a many-boson system as a functional integral 
analogous to Feynman's path-integral representation 
of a quantum-mechanical wavefunction.7 Note that 
our result holds true for a wide class of interaction 

7 In fact, R. P. Feynman, [Phys. Rev. 97, 660 (1955)] used this 
method to eliminate the phonons from the polaron problem. See 
also L. P. Kadanoffand M. Revzen, Nuovo Cimento 33,397 (1964). 
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Hamiltonians, provided that they are normal-ordered 
and that each term involves a finite number of crea­
tion and destruction operators. Finally, we remark 
that, in contrast to Bell's derivation, our approach 
is valid whether or not the chemical potential is finite. 
Thus our formalism is directly applicable to phonons 
for which ft = O. 

III. LINKED CLUSTER EXPANSION 
FOR THE GCPF 

In this section we outline a new method for ob­
taining a linked cluster expansion for In Z. This will 
serve as a point of contact with the standardS linked 
cluster expansions of quantum-statistical mechanics 
as well as providing an independent method for deriv­
ing this expansion. 

Of course, the point of Eq. (13) is to provide a 
basis for discussing many-boson systems when the 
cluster (i.e., essentially perturbative) expansion is not 
useful. This aspect of the formula will be dealt with 
in Sec. V. 

Since we are dealing with simple functions in Eq. 
(13), we can expand the exponential containing the 
potential V to get 

Z = Zo + J ~1p(r, T) 

with 

X exp {loP dr dT[1jj(r, T)(y2 + ft + oT)1p(r, T)]} 

X {- ~ loP dr dr' dT1jj(r, T)1jj(r', T)v(r, r') 

X 1p(r', T)1p(r, T) + (~~)2 ~ r .. + .. J (14) 

Zo = J ~1p(r, T) 

X exp {J: dT dr[1jj(r, T)(y2 + fJ, + 0T)1p(r, T)]}. 

(15) 

At this point we remark that only terms with equal 
number of OCk and !Xk contribute for each k. This follows 
quite generally and will become clear when we consider 
below a special example. This corresponds to the fact 
that only terms with equal numbers of creation and 
absorption operators contribute in the standard 
linked cluster expansion.s We shall defer remarks 
pertinent to the case where five indices repeat until 
we consider a special example. Going back to Eq. 
(14), we now divide through by Zo and, as an explicit 

8 A. A. Abrikosov, L. P. Gorkov, and 1. E. Dzya\oshinsky, 
Methods of Quantum Field Theory in Statistical Physics (R. A. 
Silverman, translator) (Prentice-Hall, Inc., Engelwood Cliffs N.J. 
1963). ' , 

example, consider the first-order term: 

Z01J II d2
!Xk(T) 

k 7T 

X exp {-LP
dTt OCk (T)(k2 - ft - OT)!Xk(T)} 

x (-)! [P dT 2 OCkk)OCk.(T) (k1k21 v Ikak4> 
2 Jo klk.k3k4 

(16) 

As was remarked above, the only contributions come 
from the following three cases: k1 = k2 = ka = k4' 
k1 = ka ¥= k4 = k2' and kl = k4 ¥= ka = k 2 • Since 
the exponential term in the numerator of Eq. (16) 
splits into products of different index k, all terms 
whose k is not present in the potential-energy term 
simply cancel with the corresponding term in the 
denominator. In fact, it is easy to see that our problem 
reduces to the evaluation of terms such as (omiting 
the index k) 

(17) 

and terms in which more than one pair of OC(T), !X(T') 
appear in an arbitrary order (i.e., T can be "later" or 
"earlier" than T'). [For brevity we shall consider only 
the term of Eq. (17) and remark on the other terms 
as well as the vanishing terms-i.e., those where oc 
is not paired with !X.] 

The denominator can be evaluated directly to give 
the Bose factor 

(18) 

The evaluation is straightforward and requires the 
repeated use of the identity9 

!. Jd2'fje-y~q+Aq+v~ = ! eAV / Y, (19) 
7T Y 

which is valid for all complex numbers y, 'fj, A, and y 

with Re y > O. 
The numerator of Eq. (17) can also be evaluated in 

the same way. For the arrangement given, the 
integration up to T! is done simply; for the !Xl integra­
tion it gives the factor 

We now remove the OCI factor (not in the exponent) 
by relabelling !Xo -4- !X~; then, after the !Xl integration, 

• B. R. Mollow and R. J. Glauber, Phys. Rev. 160, 1076 (1967). 
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Eq. (20) gives the factor IV. EXTERNAL SOURCES AND GREEN'S 
FUNCTIONS 

o {-od(-Il) ['- -Tl«-Il)]} - e exp 0(00(1+1 e . 
OO(~ 

(21) To widen the field of application of our technique, 

Proceeding in the same way to the O(n term, we get the 
factor 

~ {e-(rn-q-or)(-Il) e«o'ane-(rn-or)«-Il) 

OO(~ 

Again we remove the O(n factor (which is not in the 
exponent) by writing it as a derivative of a tagged 
variable fln+1 and then carry out the integration over 
the O(n variable to get 

(23) 

which leads to two terms 

The first term in the square bracket leads to 

e-P«-Il) e-(rn- TI)«-Il)(l - e-P«-Il»-l, (24) 

while the second term leads to 

(1 - e-{J«-Il»2 
(25) 

Adding the two terms together and dividing by Eq. 
(18) gives the well-known result for the free-particle 
Green's functionS 

e-(Tn-rl)«-Il)(l _ e-P«-Il»-l. (26) 

Our method was such as to make reasonably clear 
the following: 

(a) If fl is not paired, the integral vanishes. This 
follows ultimately from the symmetry of the integral. 

(b) If 0( comes earlier than fl, one gets an extra 
factor e-P«-Il). 

(c) If more than one pair of fl, 0( is present, one gets 
products of free-particle thermal Green's functions.s 

We also remark that only linked terms need be 
considered when one takes the log (Z/Zo). To sum­
marize, the functional method is consistent also for 
the case dealt with in this paper, and the perturbation 
(diagrammatic) schemeS is derivable from it directly. 
(Needless to say, we do not recommend this way to 
get the diagrammatic expansion for Z.) 

we now include an additional interaction 

Hext(T) = _ fJ(X, T)tp(X, T) + .;p(x, T)J(X, T» d3x 

(27) 

with an external c-number field J(x, T). Physically, 
this amounts to probing the interacting boson system 
with the aid of an external source. The response of 
the system to this probe yields the various Green's 
functions of physical interest. For example, the one­
particle Green's function in the presence of the 
external source 

G(x, x')J = -i(Ttp(x).;p(x'»J (28) 

[with x = (x, T)] is obtained by functional differentia­
tion of the grand canonical partition function Z [J, J]10: 

G(x x') = _1_ --~- --~ - Z[J J] (29) 
, J Z[J, J] ~J(x) bJ(l") , . 

In general, an nth-order Green's function is obtained 
by taking the nth-order functional derivative of Z[J, J]. 

Now the functional integral for Z[J, J] is given by 

Z[J, J] 

= c f ~tp(x, T) exp {-loP dT f drf dr'.;p(r, T).;p(r', T) 

X v(r, r')tp(r', T)tp(r, T)} 

X exp {-loP dT f dr[ .;p(r, T) otp~~ T) 

- .;p(r, T)(V2 + p,)tp(r, T) 

- J(r, T)tp(r, T) - .;p(r, T)J(r, T) J}' (30) 

which differs from (13) by the appearance of the 
source-dependent terms in the second exponential 
factor. We shall formally carry out the functional 
integration in (30) so as to cast Z[J, J] into a form in 
which the functional differentiations with respect to 
J can be read off as a perturbative series in the inter­
action potential v. This will yield the linked cluster 
expansion for the Green's functions. 

Note that we have introduced an arbitrary multi­
plicative constant C in the expression (30). This is due 
to a difference in the meaning of the symbol ~tp(x, T) 
as used in (30) as compared to, say, (13). In (13), 
and more generally throughout Secs. II and III, the 

10 P. C. Martin and 1. Schwinger, Phys. Rev. 115, 1342 (1959); 
E. S. Fradkin, Zh. Eksp. Teor. Hz. 36, 1286 (1959) [Sov. Phys.­
JETP 9, 912 (1959)]. 
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"volume element" in functional space c5lji(x, T) has 
been taken in the sense of the limit 

lim II d2OCk(TO) d2OCk(Tl) ••• d2OCk(T;) •.• d2ock(Tn) 
n .... co k 7T 7T 7T 7T 

as the number of points 7"1 ... T; ••• on the interval 
between TO = 0 and TN = {3 tends to infinity. On the 
other hand, in (30), the functional volume element is 
taken to be 

c5lji(x, T) = II II d
2
ockko , (31) 

k ko 7T 

where the OCkko are the coefficients of the expansion 

OCk(T) = ~>kkoUko(T) (32) 
ko 

of OCk(T) in terms of some complete, orthonormal set 
of real functions Uko(T) on the interval 0 ~ T ~ {3. 
This change in the definition of c5lji(x, T) [with the 
corresponding appearance of the constant C in (30) 
to represent the Jacobian of the functional change of 
variables (32)] allows us to apply to (30) the powerful 
functional integration techniques developed by 
Symanzikll in relativistic quantum-field theory. The 
constant C will be determined at the end by the 
requirement that Z[J, J] reduce to 

Zo = [1 - eIHE-/l)r1 

when J = J = 0 and vCr, r') = 0, that is, for the 
noninteracting system. 

To integrate (30) we start with simple formula 

f c5rp exp ( -) f dxrprp = 1 (33) 

due to Symanzik.H Following Symanzik, we assume 
that the functional integration is translation-invariant, 
i.e., that 

f c5rpF[ rp] = f c5rpF[ rp - X] (34) 

for a functional F[rp], so that, from (33), we obtain 

f c5rp exp f dx[ - rprp + irp + rpX] = exp f dxix· (35) 

With the aid of (35), for an arbitrary functional 
F[rp, rp] we can now write 

f c5rpF[rp, rp] exp f dx[-rprp + irp + rpX] 

= J c5rpF[c5: ' c5~J exp J dx[- rprp + irp + rpX] 

= F[c5: ' c5~J exp J dxix, (36) 
---

11 K. Symanzik, Z. Naturforsch. 98, 809 (1954). See also D. 
Lurie, Particles and Fields (John Wiley & Sons, New York, 1968). 

where we have made the further assumption that the 
functional differentiations with respect to X and X* 
can be removed from under the functional-integral 
sign. 

Let us now write the expression (30) in the con­
densed form 

Z = C f c5rp exp { -lP dT f dr f dr' ViViVljilji} 

x exp{foPdTfdr[-ViDlji+ Jlji+ W]}, (37) 

where 

D =.E.. _ \7 2 _ p,. 
at 

To be in a position to apply the formula (36), we must 
first change the functional variable of integration in 
(37) by means of the formal substitution 

lji ->- D-!lji (38) 
to obtain 

Z[J,J] 

= c' f c5lji exp (-) foP dT f dr f dr' Vi D-!Vi D-!vD!lji D!lji 

x exp lP dT f dr[ - Vilji + J D-!lji + Vi D-!J], (39) 

where we have absorbed the Jacobian of the substitu­
tion (38) into the constant C'. We now perform the 
functional integration with the aid of (36). This gives 
the result 

Z[J, J] = C' exp {- {P dTfdrfdr' .2. .2. v ~ ~} Jo M M M M 

x exp f dT f drJD-1J. (40) 

SinceZ[J, J] reduces to C' for J = J = v = 0, we may 
write our final result in the form 

Z[J, J] {lPd fd fd ' c5 b --- = exp - T r r ------
Zo 0 M(r, T) M(r', T) 

X v(r, r') _ b _b_} 
M(r', T) c5J(r, T) 

X exp {foP dT foP dT' f dr 

X f dr'J(r, T)Go(r - r', T - 7"')J(r', T')}, 

where we have used the identity 
1 

----J(r,T) 
.E. _ \72 _ P, 
ot 

(41) 

= J Go(r - r', T - 7"')J(r', T') dr' dT', (42) 
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where Go(r, T) is the free one-boson Green's function 
satisfying 

(:T - V 2 
- fl) Go(r, T) = d(3)(r)d(T). (43) 

Expansion of the exponentials in (41) now yields 
the well-known diagrammatic expansion of the grand 
canonical partition function in the limit J :;::: J = O. 
We have 

Z[J = J = 0] 

= Zo ( 1 - J d~ d~ v d~ d~ + .. -) 

X (1 +JJGoJ + 1. JJGoJJJGoJ + .. ·)1_ 
2! J=J=O 

= - Zo J dT J dr J dr' Go(O, O)v(r - r')Go(O, 0) 

-Zo J dT J dr J dr'Go(r' - r, O)v(r - r')Go(r - r', 0) 

+ .... (44) 

In a similar way one extracts from (41) the linked 
cluster expansions for the various Green's functions 
of the system in the limit in which the external sources 
are switched off. Setting J = J = 0 in (29), for 
example, one has 

G(x, T, r', T') 

= _ 1 b ~, Z[J, J]I_ ' Z[J = J = 0] bJ(x, T) dJ(x , T ) J=J=O 

(45) 

and it is straightforward to check that this yields the 
linked cluster expansion for the one-boson Green's 
function upon expansion of the exponentials in (41). 

V. THEORY OF SUPERFLUIDS; LANDAU­
GINZBURG EQUATION 

Equation (13) would be particularly useful under 
the following circumstance: If a particular function 
'IjJ'(r, T) gives a large contribution to the sum Eq. (13), 
and if further there is no dispersion (second moment) 
to this function 'IjJ'(r, T), then we might approximate 
the whole GCPF by the contribution from this func­
tion alone. Then it would be tempting to associate 
this function 'IjJ' (r, T) with the "stiff" wavefunction of 
the system.12,13 However, the problem here is im-

12 F. London, Super fluids Vol.I.1I (John Wiley & Sons, New York, 
1954). 

13 P. G. de Gennes, Superconductivity of Metals and Alloys 
(W. A. Benjamin, Inc., New York, 1966). 

mensely more complicated than this simple discussion 
might indicate because we are dealing with complex 
functions. At this point our analysis is closely related 
to Langer's4 remarkable paper. 

Clearly, the first step in our program is easy. Thus 
the functions 'IjJ'(r, T) which give large contributions 
to Eq. (13) are those which give a stationary exponent, 
i.e., those which satisfy the Schrodinger-like equation 
(we have changed variables T -- it) 

.O'IjJ(rt) (r72 ) ( ) J 1 ' 2 , 
I at = v - fl 'IjJ r, t + 'IjJ(r , t)1 vCr, r )'IjJ(r, t). 

(46) 

This equation is to be interpreted as the Landau­
GinzburglO equation of our problem. As in Langer's 
case,4 we have an exact equation that gives the maximal 
contribution to Z [Eq. (13)]. The approximation 
wherein Eq. (46) suffices-i.e., the neglect of the prob­
lem of dispersion-is tantamount to approximating 
the maximum of the Gibbs potential by its mean value. 
This is a well-known14 feature of Landau's theory of 
second-order phase transitions. An important feature 
of the equation is its explicit dependence on fl and 
implicit dependence on {3. Thus thermodynamic 
parameters enter directly into the wave equation of 
the system, and hence the dispersion depends on 
these parameters. 

VI. CONCLUDING REMARKS 

An exact formulation of the many-boson system in 
terms of a functional integration over one complex 
function was derived. The results were used to provide 
an alternative derivation of the linked cluster expan­
sion for the interacting bose system. These results 
were obtained previously by Be112 by a completely 
different method. Then we argued that a merit of his 
formulation was that even when perturbative expan­
sion is not useful, such as in the case presumably 
when superfluidity sets in, the formalism does provide 
a natural vehicle for the discussion. This is because 
the formalism lends itself to a simple derivation of the 
Landau-Ginsburg equation and (at least) to a formal 
statement of its limitation. 
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A generalization of the r = 2m "Schwarzschild surface" is defined for static metrics which are not 
necessarily spherically symmetric. This surface exhibits simultaneously the properties of being a "one-way 
membrane" for causal propagation and of being a surface of infinite red shift. The necessary and suffi­
cient condition that these two phenomena take place on the same surface in an arbitrary stationary metric 
is also obtained. The distinctions between the static and stationary cases are shown to be essential by 
examples from the Kerr metric. 

I. INTRODUCTORY REMARKS 

The "Schwarzschild surface" at r = 2m in the 
Schwarzschild exterior metric displays several inter­
esting properties which are well known. Two of them 
are: (l) with reference to static sources and observers, 
infinite red shift takes place at the surface; (2) the 
surface is a null surface, so that it acts locally as a 
one-way membranel (all 4-velocities in the future 
light cone cross the surface in the same direction). 
The question arises whether the two phenomena are 
interrelated and whether it is possible to characterize, 
in an arbitrary metric, surfaces exhibiting one or 
both of the above properties. This question can be 
answered in case of static and stationary metrics; 
the timelike Killing vector admitted by these metrics 
makes it possible to analyze the problem in a com­
pletely coordinate independent manner. 

In Sec. II, the well-known red-shift formula is 
derived, for the sake of completeness, explicitly in 
terms of the Killing vector, which shows that infinite 
red shift results at the surface ~o on which the 
Killing vector becomes null. It will be proved that, 
in an arbitrary static metric, ~o is necessarily a null 
surface which means that ~o is both an infinite red­
shift surface and a one-way membrane as in the case 
Schwarzschild exterior metric. Similarly, in the case 
of stationary metrics, the necessary and sufficient 
condition that the surface on which the Killing vector 
becomes null be itself a null surface is obtained. In 
Sec. III, we study the Kerr metric as a specific ex­
ample of these considerations. It is seen how the two 
"Schwarzschild" properties of infinite red shift and 
of "one-way" causality will typically not coincide, 
in contrast to the Schwarzschild and other static 
metrics where they occur at the same surface. 

* Supported in part by NASA Grant NsG-436. 
t Present address: Institute for Space Studies, Goddard Space 

Flight Center, NASA, New York, N.Y. 
1 D. Finkelstein, Phys. Rev. 110, 965 (1958). 

These questions have also been studied independ­
ently by Carter,2 and it is hoped that the present 
paper can serve as an elementary, although incomplete, 
introduction to his more general and broadly based 
study. 

II. GENERALIZED "SCHWARZSCHILD 
SURFACES" 

A static metric admits a timelike Killing vector 
field ~a (Latin indices run from 0 to 3), the trajectories 
of which form a normal congruence.3 Hence, the 
Killing vector satisfies the Killing equation 

~a;b + ~b;a = 0 (1) 

and the condition for a normal congruence4 ~[a~b:CJ = 
O. From the anti symmetry of ~a;b' this last equation 
reduces to 

(2) 

We can define "static" observers or sources to be those 
with 4-velocities which satisfy3 

(3) 

The frequency y that an observer of 4-velocity ua 

assigns to a light ray with geodesic tangent ka is 
v = -uaka so the general red-shift formula is given by 

(4) 

where the subscripts sand 0 stand for the source 
and the observer. For "static" sources and observers 
Eq. (3) reduces this to 

YO/YB = (-~a~a)t/(-~a~a)L (5) 

• B. Carter (report of work prior to publication). 
3 J. Ehlers in Gravitation: An Introduction to Current Research, 

Louis Witten, Ed. (John Wiley & Sons, Inc., New York, 1962). 
• Square brackets denote antisymmetrization: 

~[a~b:cl = tr~a~b;C + ~b~c;a + ~c~a;b - ~b~a;, - ~a~';b - ~c~b;al. 

We use a metric with signature - + + + . 
1319 
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where use has been made of the fact that, along a null 
geodesic, the product ~aka is a constant.s 

An analog of the "Schwarzschild surface" is 
given by ~o: ~a~a = 0, for which Eq. (5) yields 
infinite red shift. (Since no timelike ua is actually 
defined on ~o, this is meant as a limit; i.e., near ~o 
red shifts may be arbitrarily large.) This condition is 
important, as we shall see in Sec. III when we study 
the Kerr metric. 

Next, consider the family of surfaces ~ given by 

~a~a = const. (6) 

In order to be sure tbat ~, defined in this way, is a 
regular 3-dimensional hypersurface in 4-space, we 
shall assume that the gradient of ~a~ does not 
vanish on ~. Then the vector 

(7) 

is nonzero and is normal to ~. We readily verify that 
~a lies in ~ since it is orthogonal to na (use the anti­
symmetry of ea;b): 

na~a = ~b;a~b~a = 0. 

Now compute the length of the nonnal vector: 

nbnb = (ea;b~a)(~C;b~c) = (ea;beC)(e·;b~a). 

By use of Eq. (2), it can be shown that 

nbnb = Ha~a(~b'C~b;C). (8) 

We see that n~b, therefore, vanishes when ~a~a does, 
so the surface ~o where ~a~a = 0 is a null surface. 

Now all null surfaces are "one-way membranes" 
for causal effects, but this is usually uninteresting. 
For example, the surface z = t in Minkowski space 
is null (we have c == 1) and "one way" in the sense 
that future-directed timelike curves can only cross 
this surface in the direction of decreasing z; to cross 
it in the sense of increasing z would mean travelling 
faster than light. Every null surface such as ~o has 
local properties similar to this standard example; 
namely, it contains at each point exattly one null 
direction (which is also the nonnal to the surface) 
but no time vector. The future null cone therefore 
lies entirely on one side of the null surface, so that 
all future-directed timelike directions cross the null 
surface in the same sense. What is remarkable about 
the null surface ~o, where eaea = 0, is that it does 
not extend to spatial infinity (where ea~a = -1), so 
the light rays (null geodesics) it contains neither come 
from nor escape to infinity. In fact, these light rays 

• This is shown by a well-known computation 

(;okOhkD = ;o;DkokD + ;oko;bkb = 0, 

using the (Killing) antisymmetry of ;o;b and the geodesic equation 
for kO. 

"stand still" in the sense that their tangent k a is 
parallel to ~a, the Killing vector which defines the idea 
of "static," "at rest," or "time-independent" in this 
metric. To see this, note that since na and ~a are both 
null vectors lying in ~o, they must be proportional 
there with na = f~a' But then Eq. (7) reads ~a;b~b = 
-Ha, which shows that ~a is parallel to a geodesic 
tangent k a• 

The situation in stationary metrics is considerably 
different from that in static metrics due to the fact that 
the trajectories of the timelike Killing vector field ~a 
no longer fonn a normal congruence, but, on the other 
hand, contain rotational terms. 

As in the case of static metrics, we now define 
"stationary" observers or sources to be those with 
4-velocities which satisfy 

ua = e-'P$a, uaua = -1. 

The covariant derivative of the 4-velocity has the 
expansion6 

Ua;b = -Uaub - (-g)t£abr,arU', (9) 
where 

and 
ar = H_g)-l£r·PQu.U2>;q. 

Here ar is the rotation vector of the 4-velocity ua• 

As a result, Eq. (2) is modified into the form 

ea;b~c + eb;cea + eC;aeb 

= - (_g)lar ~·[£abrs~c + £bcr8~a + £car.~b]· (10) 

Nevertheless, Eq. (5) still holds for the 4-velocities 
ua which now define "stationary" observers and 
sources. The surface on which $a becomes null is 
once again an infinite red-shift surface with respect to 
these sources and observers. On the other hand, a 
straightforward calculation using Eq. (10) leads to the 
result 

nbnb = H~a~a(eb'C~b;C) - corcor], 

where cor = (_g)--1£r.pq~'~2>;q, so cor is the rotation 
vector associated with the Killing vector trajectories. 
Hence we have the theorem that the surface on which 
the Killing vector becomes null will itself be a null 
surface if and only if the rotation vector of the 
Killing vector field also becomes null on it. Only 
under this condition will the infinite red-shift surface 
act as a one-way membrane also. 

We may note in passing that, in both static and 
stationary metrics, the two vector fields ea and rfl 
yield a natural generalization of the r-t two-surfaces 
of the Schwarzschild metric, since the tangent 2-
planes they' define are surface-fonning according to 

• G. Salzman and A. H. Taub, Phys. Rev. 95, 1959 (1954). 
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Frobenius' theorem,7 for the Lie derivative of na with 
respect to ~a is CS<na) = 0. In fact, if we think of 
~a~a = _e2'1' as defining a generalization of the 
Newtonian gravitational potential "p [as is reason­
able in view of the red-shift formula of Eq. (5»), 
then na is a vector in the direction of the field 
lines (along the potential gradient), and these r-1 
two-surfaces are swept out by the field lines (trajec­
tories of na) under the time translation generated by 
~a. The same Newtonian imagery helps again if we 
ask whether any "radial geodesics" can be found, 
that is, geodesics confined to a ~a_na two-surface. 
That the answer is usually "no" one can verify by 
calculation, or understand by considering that even 
in Newtonian mechanics particles move along a 
single "line of force" with their velocity and accelera­
tion parallel only under conditions of exceptional 
symmetry, as in the case of a particle moving along 
an axis of symmetry. 

m. KERR METRIC 

The Kerr metricS has the form 

gab = 'flab + 2Hkakb' (11) 

where 'flab is the metric of Minkowski space, ka a null 
vector field, and H a scalar field. In explicit form, the 
line element is given by 

ds2 = dr2 + 2a sin2 0 dr dcfo 

+ (r2 + a2) sin2 () dcfo2 + X d()2 

- dt 2 + (2mr/x)(d, + a sin2 0 dcfo + dt)2, 

where m and a can, respectively, be identified with the 
mass and the angular momentum per unit mass of the 
source, and where 

x(r, 0) = r2 + a2 cos2 (). 

Since the metric components are independent of the 
time coordinate t, the timelike Killing vector will be 

~t == (~t, ~r, ~IJ, ~<P) = (1,0,0,0) 

(the subscript t has been used to distinguish the time­
like Killing vector from the other Killing vectors we 
shall encounter) and 

(I;t)2 = goo = _(r2 - 2mr + a2 coss (J)/X' 

7 See Theorem 5.1 in S. Sternberg, Lectures on Differential 
Geometry (Prentice-Hall. Inc., Englewood Cliffs. N.J., 1964) or 
Theorem 8-4 in L. Auslander and R. E. MacKenzie. Introduction 
to Differentiable Manifolds (McGraw-Hill Book Company, Inc., 
New York. 1963). Sufficient for our purposes here is also a comment 
on p. 105 in J. A. Schouten, Ricci Calculus (Springer-Verlag, Berlin, 
1954). 2nd ed. 

8 Some of the basic equations in this section have been taken from 
the preprint "Maximal Analytic Extension of the Kerr Metric" by 
R. H. Boyer and R. W. Lindquist. See also R. H. Boyer and T. G. 
Price, Proc. Camb. Phil. Soc. 61, 531 (1965). 

Consequently, the Killing vector becomes null on 
surfaces where 

r2 - 2mr + a2 cos2 () = 0. (12) 

This equation has the solutions 

ro = m + (m2 
- a2 cos2 6)t, 

r i = m - (m2 - a2 cos2 ()t. 

Outside the outer surface ro, we can have stationary 
sources and observers with 4-velocities following 
the Killing-vector trajectories and for these and only 
these infinite red shift occurs at the surface ro. On the 
other hand, a surface fC', 6) = const will be null 
only if the following equation is satisfied: 

(r2 - 2mr + a2
) (is + (~)2 = 0. (13) 

The surface given by Eq. (12) does not satisfy this 
condition and therefore the surface ro is nonnull and 
does not act as a one-way membrane. Here is an 
instance of the two phenomena of infinite red shift 
and one-way membrane not taking place at the 
same surface. However, as Boyer and PriceS have 
pointed out, we do have stationary null surfaces 
given by 

,2 _ 2m, + a2 = 0 (14) 
or 

'+ = m + (m2 
- a2)!, ,_ = m - (m2 

- a2)!, (15) 

which are physically significant for a2 S m2• 

The null vector field k a inherent in the Kerr metric 
is given by 

k == (kt, kr, k IJ
, k<P) = (1, -1,0,0). 

This shows that the future-null cone points inwards 
at the two null surfaces. Particles and light can only 
enter, but not leave, these surfaces. (These null surfaces 
'+ and ,_ and the infinite red-shift surface ro«() are 
sketched in Fig. 1.) Concentrating on the outer 
surface r +, we find that we cannot think of stationary 
observers along ~t on this surface, since the surface 
r+ lies within the surface ro, the two touching each 
other at 6 = 0, 7T, and ;t is spacelike in the interme­
diate region between the two surfaces. Even otherwise, 
, + is not an infinite red-shift surface as ;t does not 
become null on it. Nevertheless, we can find a set of 
"pseudostationary" observers and sources for whom 
infinite red shift still occurs on r +. This is done as 
follows. 

In addition to I;t, the Kerr metric admits ;,.., the 
Killing vector associated with rotation about the 
axis. We form a "mixed Killing vector" ;,., defined 
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FIG. I. Some surfaces of interest in the Kerr metric. The surfaces 
r_ and '+ are null surfaces. The timelike Killing vector 1;, becomes 
null on the surface ro which gives infinite red shift for stationary 
sources. The "mixed" Killing vector 1;", becomes null on r+ and ra. 
the latter surface being nonnull. In the hatched region (region I), 
1;, is timelike so this region admits stationary observers and sources, 
while ;, is spacelike in regions II and III. The vector 1;", is space like 
outside r", and timelike in the region between, + and,,,,. The cross­
hatched region enclosed by the surface r _ contains the inner surface 
'1 (not shown), on which ;, again becomes null, and the singularity 
r = O. The future light cone pOints inwards at '+ (and at r _) so that 
particles and light rays can only enter, but not leave" + (respectively, 
r _). The diagramshave been drawn: (a) for high values of the param­
eter a, i.e., for a in the neighborhood of m: the surface r", lies 
within TO and there is no common region in which both ;t and ;'" 
are timelike. When a is equal to m, the surface '/1. coincides with r +. 
(b) For low nonzero values of a: surface TO lies within the surface '/1. 
and in the region between these two surfaces both ;t and 1;00 are 
timelike. For a = 0, the Kerr metric goes over to the Schwarzschild 
metric, the surface r 0 and r + coalesce into the Schwarzschild sphere 
r = 2m, r_ collapses into the origin, = 0, and r", ceases to exist. 

by 

;'" = p sin ex;t + cos ex;", = (p sin ex, 0, 0, cos ex), 

where p has the dimension of length and ex is the 
mixing parameter. We wish to determine ex and p for 
which ;'" becomes null on the surface r +. We compute 

(;",)2 X = - (r2 - 2mr + a2 cos2 e)p2 sin2 ex 

+ [(r2 + a2)(r2 + a2 cos2 0) sin2 0 

+ 2mr a2 sin4 0] cos2 ex 

+ 4mrap sin2 e sin ex cos ex. (16) 

Substituting r = r + = m + (m2 - a2)!, we readily ob­
tain 

A choice would be 

ap = 2mr+, sin ex = 1/v'2, cos ex = -1/v'2. 
With these parameters, 

~ _ ~ (2mr+ ~ _ ~ ) 
"'" - J2 a "t "",. (17) 

A second sheet r = raCe) on which ea becomes null 
(but which is not a null surface) can be found from 
the other roots of the equation 

where p and ex have the above values. It is cumber­
some to obtain explicit solutions to this equation in 
terms of e. However, the solutions for r at e = 0, 1T, 
and 1T/2 can easily be worked out and provide enough 
information. At () = 0, 1T, this equation has the 
only possible root r = r +, whereas at 0 = Tr/2, it 
admits two acceptable roots: 

r1 = r+ and r2 = r;[ (1 + 8:~+)! - 1]-
For m > a, r2 > r1 so that the null surface r = r+ 

lies inside the second sheet and the two touch each 
other at 0 = 0, 1T; ;'" becomes spacelike at infinity 
and hence is timelike in the region between the above 
two surfaces. Therefore, we can define the "pseudo­
stationary" sources and observers in this region with 
4-velocities along ;'" . Although these have no 
global significance, since such observers and sources 
cannot be found at infinity, it is still worthwhile 
noting that, for these, infinite red shift does occur on 
the null surface r +. This surface, rather than the 
surface ro, resembles the Schwarzschild surface in 
that it is a one-way membrane (it exhibits infinite red 
shift with respect to the "pseudostationary" observers 
as well). This choice is borne out also by an analysis 
of null geodesics in the equatorial plane,s which 
shows that light signals can be sent to spatial infinity 
(from sources moving along timelike curves) from 
every point in the region between the surfaces ro and 
r +, whereas no signal can escape from within the 
surface r+. 
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The Lagrangian for the interaction of two particles is evaluated in a model nonlinear scalar field 
theory. A trial function suggested by a Rayleigh-Ritz procedure is used and an exact calculation is 
performed. The terms in the interaction are expressed as complete elliptic integrals. 

The problem of finding particlelike solutions to where 
nonlinear model field theories has been studied 

1';; = I Oo(i)00(j)d3r, recently by Rosen1.2 and by Derrick and Kay-Kong.3 

Rosen has shown that a nonlinear model scalar field 
theory based on the Lagrangian density 

L = 02 - (Ve)2 - /ce), e = e(r, t), Cl) 

has a singularity-free, static, spherically symmetric 
solution for the case/Ce) = _ge6

• This solution to the 
derived scalar wave equation 

-8 + \l2e + 3ge5 = 0 (2) 
is 

(3) 

Here g is a positive coupling constant and z is a "size 
parameter" for this metastable particlelike solution. 

To investigate the "interaction" of two such 
particlelike solutions, we assume an approximate 
solution of the form2.3 

where the "coordinate" ;i = ;;(t) will describe the 
motion of the ith particle. Here eo[r - SiCt)] are 
exact solutions to the equation 

\l2eo + 3geg = O. (5) 

The Lagrangian density then becomes 

L = (OoCl) + 00(2)l - (Veo(1) + Veo(2»2 

+ g(eoCl) + eo(2)t. (6) 
We can write 

L = fLd3r = T - V = ~ 1';; - ~ V;; + Vg , (7) 
'l,J 1.,] 

1 G. Rosen, J. Math. Phys. 6, 1269 (1965). 
2 G. Rosen, J. Math. Phys. 8, 573 (1967). 
3 G. H. Derrick and W. Kay-Kong, J. Math. Phys. 9, 232 (1968). 

V;; = I veo(i)· veo(j)d 3r, (8) 

Vo = g I (eo(l) + eo(2»6d3r. 

Integrating by parts in the expression for Vi;, after 
discarding the surface term and remembering that 
eoU) obeys (5), we have 

V;; = - I eo(i)\l2eo(j)d3r = 3g I eoCi)e~(j)d3r. 

Noting that 

(9) 

and 

I eo(1)e~(2)d3r = I eg(l)(Jo(2)d3r, 

the velocity-independent potential terms may be 
combined to give 

V = - g I [-4e~ + 6e~(1)(Jo(2) 

+ 15(e~(1)eg(2) + eg(I)(J~(2» + 20e~(I)e~(2)]d3r. 
(10) 

The evaluation of integrals of the type f eg(l)eg(2)d3r 
is discussed in the Appendix. 

To evaluate the integrals appearing in T, we use 

Oo(i) ,,= ;i . Veo(i)· 
Then, 

Tn = IOg(1)d3r = I (~1 • Veo(I»2d3r 

= L ~li2PI[\l aeo(l)][\l peo(1)]d3r 
a,p 

= L ~lilpOpa X tI[Veo(I)]2d3r = t~iVll' (11) 
",p 

1323 
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T12 = T21 = I Oo(I)Oo(2)d3r 

= I [~1 • V00(1)][~2 • VOo(2)]d3r 

= ! gli2pIV'aOo(l)V'pOo(2)d3r 
a,p 

= - ! gli2PIOo(1)V'aV' pOo(2)d3r. 
a,p 

(12) 

The further evaluation of this last integral is discussed 
in the Appendix. 

The total field energy associated with the single­
particle solution 00 is 

I [(VOO)2 - gog] d3
r = 2g I o~ d3

r = 2
7T;* == mo· (13) 

After performing all integrations and separating out 
the center-of-mass motion, we find the Lagrangian for 
the relative motion of two particles with size param­
eters which are equal in magnitude (Zl = ±Z2 == z) 
to be 

(14) 

where 

cx:± = ot±(R) = 1 T 32 D(k) , (14') 
7T (R2 + 4)~ 

P± = P±(R) = 1 T ~ B(k) , . (14") 
7T (R2 + 4)* 

± = ±(R) = [2 T 16 B(k) 
Y Y 7T (R2 + 4)* 

- ~ T 352 D(k) ] (14"') 
R2 + 4 7T (R2 + 4)~ , 

R == 1;2 - ;11, k == R/(R2 + 4)*, 

and D(k) and B(k) are the complete elliptic integrals4 

D(k) = ("/
2 

sin
2 

, d, , 
Jo (1 - k2 sin2 ')* 

1,,/2 COS2 , d, 
B(k) = . 

o (1 - k 2 sin2 ')* (15) 

Length units are chosen such that Z2g* = 1. The veloc­
ity-dependent parts of the interaction have been 
incorporated into the kinetic energy terms, giving rise 
to reduced (enhanced) effective radial and transverse 
masses mocx:+(R)[mocx:-(R)] and mo,B+(R)[mo,B-(R)] for 

, E. Jahnke and F. Emde, Tables of Functions (Dover Publications, 
Inc., New York, 1945). 

2.0 

nz 

10 20 30 40 50 

R 
FIG. 1. Plot of the functions cx±(R), fJ±(R) (dimensionless). 

like (unlike) particles. The functions cx:±(R) and ,B±(R) 
are plotted in Fig. 1. 

As first quadratures of the Euler-Lagrange equa­
tions derived from (14), we have the conserved 
angular momentum 

[ = ,mo PR2~ = const (16) 
2 

and the conserved energy 

m [2 
E = --.l! cx:R2 + -- + moy = const. (17) 

4 mopr2 

The leading terms in the series expansions of B(k) 
and D(k) valid for large R, i.e., k ~ 1, are 

B(k) = 1 _ (2A - 3) D(k) = A-I + 3A - 4 
R2 + 4 ' R2 + 4 ' 

where 
A = In([2(R2 + 4)]*). 

Asymptotically for large R, we have 

B(k) 1 D(k) ----1n-R 
(R2 + 4)* -- R' (R2 + 4)~ -- R3 ' 

checking the previous approximate results.2.3 
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2.2 

20 

1.5 

1.0 

0.5 

°0~----~10----~20~--~3~0----~4~0----~50' 

2 
o 

-26\'-0 -----+.-10------,!,2bc------,J.~O~--~4"'" 0-----,,150 

R 
FIG. 2. Plot of the functions y±(R). 

From Fig. 2 we see that the potential VCR) = 
moy±(R) is attractive for like particles at all R; for 
unlike particles it is repulsive for large R, but becomes 
attractive for R ,.; 22. We may assume that our trial 
function is close to the true solution if the overlap 
of the particles is small, i.e., if 1;1(t) - ;2(t)1 »Z2gt 
or R» 1. 
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APPENDIX 

The integrals occurring in V(R) , the velocity­
independent part of the interaction potential, are of 
the form 

Introducing new variables 

the integral (AI) becomes 

Z~-bZ~-a f d3x 
g(a+b-3l/2 (Q-2 + x2t/2[Q2 + (x _ R)2]b/2' (A3) 

which, after performing the angular integration, is 
equal to 

Z3-bZ3-a 
27T 1 2 

g(a+b-3l/2(b _ 2)R 

foo x dx 
X -00 (Q-2 + x2t/2[Q2 + (x _ R)2t/2- 1 ' (A4) 

if b ~ 2. For the case a = 6, b = 0, Eq. (A3) can be 
readily evaluated to give 

f e~(i)d3r = 7T
2/4l 

For a = 2, b = 4, Eq. (A4) can be evaluated by con­
tour integration yielding 

f e~(I)e~(2)d3r = f e~(I)e~(2)d3r 
7T2 1 

= g! [R2 + (Q + Q-1)2] . 
(AS) 

The cases where a and b are odd lead to elliptic 
integrals. For the special case of size parameters 
which are equal in magnitude (Q = ± 1), the integrals 
can be expressed in terms of complete elliptic integrals. 
In the general case, the values for Q = ± 1 are them­
selves the first terms of an elliptic series. 

For Q = ± 1 we make the following transforma­
tions of the integral (A4): The substitution x' = 
x - (R/2) allows us to write the integral as a linear 
combination of integrals of the form 

(A6) 

Then, with the substitutions 

where 

A = (1 - k2 sin2 ,)t, k2 = R2/(R2 + 4). 
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The integrals needed to evaluate the terms in V(r) 
have m = 3, and the relevant elliptic integrals may be 
found in Ref. 4, p. 56. One finds 

I() (1)()5(2) d3r= ± 47T [~'2- + 2D(k) J 
o 0 3gi (R2 + 4)! (R2 + 4)~ , 

(AS) 

(AlO) 

We again specialize to the case Q = ± 1. The bafJ part 
of the integral is of the form of the integral in (A3) 
and is readily evaluated by the above method. The 
first integral in (AIO) vanishes for ()( ¥= fJ when the 
azimuthal integration is performed. If the polar axis, 
about which there is cylindrical symmetry, is chosen 
to be in the z direction, then All = A22 • We also 
observe that 

Tr A = =F ~ I d
3

x 
afJ g! [1 + (x + R)2]! 

x [(1 :2 x2)i - (1 +1 x2)i J 
3 f d

3
x 

= ± g! [1 + (x + R?]!(l + x2)! 

= 3g I ()o(1)O~(2) dar 

_ ± 47T[ B(k) + 2D(k) ] 
- g! (R2 + 4)! (R2 + 4)~ . 

(All) 

It remains to evaluate 

3 X 27T {eo d II d(cos ()x4 cos:! () 

TJo x -1(1 + x 2 + R2 + 2xR cos ()!(1 + x2)! 

_ 67T{OO x 4 dx II p2 dp 

- giJo (1 + x;)i(l + x 2 + R2)! -1 (1 + tp)!' 

(AB) 
where 

The integral 

remains finite for x -- ± co, t -- 0, since, if we expand 
this expression for small (P, we get 

[
1!3 + p3 + O(tp4)]1 = [p3 + O(tp4)]1 . 
1St 3 -1 3 -1 

After combining the contributions from the upper 
and lower limits of (AI4), the integral (Al3) becomes 

47T leo X4 dx [(1 + x2 + R2)3 

5g! -00 (1 + x 2)i(1 + x 2 + R2)! x3R3 

_ (1 + x
2 + R2)2 + .2 (1 + x

2 + R
2)J. (Al5) 

x 2R2 2 xR 

After considerable labor, this may be reduced to a 
collection of integrals of the form (A6) with values of 
m being 1, 3, and 5. All of these may be found by the 
above methods or in tables.4 •5 The results simplify to 
give 

A = ± 87T D(k) 3' 

33 g! (R2 + 4)'" 
Au = ± 27T B(k) . 

g! (R2 + 4)! 

(A16) 

The expression for T12 can be cast into a rotationally 
invariant form by writing 

1~2 = All(~l:t~2'" + ~li2Y) + A33~li2z 
= All~l • ~2 + (A33 - All)~h~2. 

. . RR· .. 
= An ;!';2 + (A33 - Au) ~2' ~li~2j' (A17) 

5 W. Grobner and N. Hofreiter, Integraltafel (Springer-Verlag, 
Berlin, 1961), Vol. I. 
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